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Abstract. We consider a linearly elastic material with a periodic set of voids. On
the boundaries of the voids we set a Robin-type traction condition. Then, we inves-
tigate the asymptotic behavior of the displacement solution as the Robin condition
turns into a pure traction one. To wit, there will be a matrix function b[k](·) that
depends analytically on a real parameter k and vanishes for k = 0 and we multiply the
Dirichlet-like part of the Robin condition by b[k](·). We show that the displacement
solution can be written in terms of power series of k that converge for k in a whole
neighborhood of 0. For our analysis we use the Functional Analytic Approach.
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1 Introduction

There is almost a century of literature on the mathematical analysis of perfo-
rated plates and porous materials (see, e.g., [4,15,19,20,30], see also Mityushev
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et al. [2] for a review). Examples can be found in the applications to the study
of porous coatings and of interfacial coatings. If the thickness of the coating is
smaller than the characteristic size of the pores (while its material properties
are weaker/softer in comparison with those of the main composite material),
the corresponding mathematical problems may degenerate into periodic prob-
lems with conditions of Robin type (see [3,22,25,26,31,32], see also the books
by Milton [24, Chap. 1] and Movchan et al. [28]). In dimension two, these prob-
lems can be analyzed with complex variable techniques (see, e.g., Kapanadze et
al. [21], Drygaś et al. [11], Gluzman et al. [14]). For analog problems in dimen-
sion n ≥ 2, one may resort to integral equation methods (as, e.g., in Ammari
and Kang [1]). Perturbed boundary conditions in linear elasticity have been
analyzed in the framework of Homogenization Theory, for example in Gómez,
Nazarov and Pérez-Mart́ınez [16,17].

In this paper, we study the Lamé system in a periodic domain with a
Robin-type traction condition on the boundary. The trace of the displacement
part (we may also say the “Dirichlet-type term”) of the boundary condition is
multiplied by a matrix function b[k](·) that depends analytically on a positive
parameter k and that vanishes for k = 0. Then, as k approaches 0 the Robin
boundary condition degenerates into a pure traction one (a natural condition
to have when dealing with the Lamé equations). We study the map that takes
k to the displacement solution u[k] and, under suitable conditions on b[k](·),
we show that k 7→ u[k] can be described in terms of power series of k that
converge for k in a neighborhood of 0. A similar result was obtained in [29] for
the analog problem in a bounded domain with a single hole. Here we show that
the approach of [29] can be adapted to the case of infinite periodic domains.

1.1 The problem

We start by presenting the geometric setting. We fix once for all

n ∈ N \ {0, 1} , (q11, . . . , qnn) ∈]0,+∞[n .

Here, N denotes the set of natural numbers including 0. We take

Q := Πn
j=1]0, qjj [

as fundamental periodicity cell and we denote by q the diagonal matrix with
(j, j) entry equal to qjj for all j ∈ {1, . . . , n}. We construct our periodic domain
by removing from Rn congruent copies of a bounded domain of class Cm,α. (For
the definition of sets and functions of the Schauder class Cj,α (j ∈ N) we refer,
e.g., to Gilbarg and Trudinger [13]). Therefore, we fix once for all a natural
number m ∈ N \ {0}, a real number α ∈]0, 1[, and we assume that

ΩQ is a bounded open subset of Rn of class Cm,α such that ΩQ ⊆ Q.

We define the periodic domain (see Figure 1)

S[ΩQ]
−:=Rn \

⋃

z∈Zn

(qz +ΩQ).
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Figure 1: A 2-dimensional example of perforated reference periodicity cell. The hole
⌦✏,� shrinks toward the point p when ✏ tends to 0.
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Figure 2: A 2-dimensional example of periodically perforeted set S[⌦✏,�]
�.
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The periodic set of holes is given by

S[⌦✏,�] :=
[

z2Zn

(qz + ⌦✏,�) ,

and the periodic domain where we defined the Poisson equation is

S[⌦✏,�]
� := Rn \ S[⌦✏,�] 8(✏,�) 2 ]�✏0, ✏0[ ⇥ O�0 ,

that is, the domain obtained removing from Rn the periodic set of holes S[⌦✏,�] (see
Figure 2). When ✏ approaches zero, the hole in the cell qz + Q shrinks toward qz + p.

We now introduce suitable spaces for the functional data of the problem. For the
right-hand side of the Dirichlet boundary condition we take a function

g 2 C1,↵(@⌦) ,

which we properly transplant to be defined on @⌦✏,� = p + ✏�(@⌦). As for the Poisson
datum, regularity has to be chosen more carefully. Lanza de Cristoforis in [18] and
Preciso in [32, 33] shown that Roumieu analytic functions produce analytic composition
operators and analytic Newtonian potentials, a feature that will come handy later on
in our analysis. Moreover, since we are dealing with a periodic problem, we have to
take periodicity into account. So, the right-hand side of the Poisson equation will be a
function

f 2 C0
q,!,⇢(Rn) ,

3

Figure 1. A 2-dimensional example of the periodically perforated set S[ΩQ]− .

To introduce the Lamé equations in S[ΩQ]
−, we denote by T the function

from ]1− (2/n),+∞[×Mn(R) to Mn(R) defined by

T (ω,A):=(ω − 1)(trA)In + (A+At)

for all ω ∈]1 − (2/n),+∞[, A ∈ Mn(R). Here, Mn(R) denotes the space of
n×n matrices with real entries, In denotes the n×n identity matrix, trA and
At denote the trace and the transpose matrix of A, respectively. We note that
if we set L[ω]:=∆ + ω∇div, then, L[ω]u = div T (ω,Du) for all regular vector
valued functions u, where Du denotes the Jacobian matrix of u.

Then, we take a matrix B ∈ Mn(R), a function g ∈ Cm−1,α(∂ΩQ,Rn), and
a function b ∈ Cm−1,α(∂ΩQ,Mn(R)), such that

• ξtb(x)ξ ≤ 0 for all ξ ∈ Rn and all x ∈ ∂ΩQ,

• det

∫

∂ΩQ

b dσ ̸= 0.

(Note that the last condition implies that det b(x0) ̸= 0 for some x0 ∈ ∂ΩQ.)
With these ingredients we write a boundary value problem for the Lamé equa-
tion in S[ΩQ]

− with a Robin-type boundary condition. That is,





div T (ω,Du) = 0 in S[ΩQ]
− ,

u(x+ qej) = u(x) +Bej ∀x ∈ S[ΩQ]−, ∀j ∈ {1, . . . , n},
T (ω,Du(x))νΩQ

(x) + b(x)u(x) = g(x) ∀x ∈ ∂ΩQ ,
(1.1)

where {e1, . . . , en} is the canonical basis of Rn and νΩQ
denotes the outward

unit normal to ∂ΩQ. The matrix B determines a variation of the displace-
ment function on the opposite sides of the fundamental cell. In particular,
the displacement is periodic when B = 0. From the physics view point, a
matrix B different from zero can result from the application of an external

Math. Model. Anal., 28(3):509–521, 2023.
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load that affects the entire matrix material. Just for comparison, when dealing
with similar problem for the Laplace equation, B ̸= 0 signals the presence of
a heat flow through the enveloping matrix (cf. [9], Mityushev, Pesetskaya and
Rogosin [27]).

It is well known that, for ω ∈]1− (2/n),+∞[, the solution u of (1.1) exists,
is unique, and belongs to the Schauder class Cm,α(S[ΩQ]−,Rn). A proof can be
found, for example, in [8, Thm. 4.4] and the argument follows a quite standard
strategy: first, we transform the problem into a periodic one and we prove the
uniqueness of the solution by an energy estimate. Then, we use a periodic
analog of the elastic single layer potential to transform the periodic problem
into a Fredholm integral equation of the second kind, and finally, we obtain the
existence and the regularity of the solution by the properties of the single layer
potential.

We now want the term b(x)u(x) in the boundary condition of (1.1) to
disappear in a suitable way as a certain positive parameter k tends to zero.
Then, we take k0 > 0 and we introduce an analytic map

]− k0, k0[∋ k 7→ b[k] ∈ Cm−1,α(∂ΩQ,Mn(R))

that satisfies the following conditions:

• ξtb[k](x)ξ ≤ 0 for all ξ ∈ Rn, all x ∈ ∂ΩQ, and all k ∈]0, k0[, (1.2)

• det

∫

∂ΩQ

b[k] dσ ̸= 0 for all k ∈]0, k0[, (1.3)

• b[0] = lim
k→0

b[k] = 0, (1.4)

and for a fixed ω ∈]1− (2/n),+∞[ we consider the following problem





div T (ω,Du) = 0 in S[ΩQ]
− ,

u(x+ qej) = u(x) +Bej ∀x ∈ S[ΩQ]−, ∀j ∈ {1, . . . , n},
T (ω,Du(x))νΩQ

(x) + b[k](x)u(x) = g(x) ∀x ∈ ∂ΩQ .
(1.5)

For k ∈]0, k0[ problem (1.5) is a problem of the same kind as (1.1). Thus, for
each k ∈]0, k0[, problem (1.5) has a unique solution u ∈ Cm,α(S[ΩQ]−,Rn), and
we denote it by u[k] to emphasize its dependence on k. On the other hand, for
k = 0 we have b[0] = 0 and the Robin-type traction condition of problem (1.5)
turns into a Neumann-type one. To wit, when k = 0 the boundary condition
of problem (1.5) is

T (ω,Du(x))νΩQ
(x) = g(x) ∀x ∈ ∂ΩQ

(because b[0] = 0). The resulting pure traction problem may be not solvable if
certain compatibility conditions are not satisfied (cf. [10, Prop. 4.2]).

1.2 The main result

Our aim is to study the asymptotic behavior of the solution u[k] of problem
(1.5) as k > 0 approaches zero. More precisely, we plan to apply the Func-
tional Analytic Approach of [7] and the periodic elastic single layer potential
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v−q [ω, ·] (see Section 2) to represent the solution in terms of convergent power
series in suitable Banach spaces. To succeed, however, we need an additional
assumption on the function k 7→ b[k]. By conditions (1.2) and (1.4) and by the
real analyticity of the function k 7→ b[k] we see that there exists l ∈ N \ {0}
such that

• k 7→ k−lb[k] is real analytic from ]− k0, k0[ to Cm−1,α(∂ΩQ,Mn(R)),

• the matrix function b̃ := lim
k→0

k−lb[k] belongs to Cm−1,α(∂ΩQ,Mn(R))

and is not 0,

• ξtb̃(x)ξ ≤ 0 for all ξ ∈ Rn and all x ∈ ∂ΩQ.

We shall further assume that

det

∫

∂ΩQ

b̃ dσ ̸= 0. (1.6)

Then, with conditions (1.2)–(1.4) and (1.6) we have the following Theorem 1,
whose proof we present in the forthcoming sections.

Theorem 1. There exist a sequence {(µ̂j , ĉj)}j∈N in Cm−1,α(∂ΩQ,Rn)0×Rn

and a real number k# ∈]0, k0[ such that

u[k](x) =

+∞∑

j=0

v−q [ω, µ̂j ](x)k
j+

1

kl

+∞∑

j=0

ĉjk
j +Bq−1x

∀x ∈ S[ΩQ]−, ∀k ∈]0, k#[ ,
(1.7)

where for all k ∈]− k#, k#[ the series
∑+∞

j=0 v
−
q [ω, µ̂j ](x)k

j converges normally

in Cm,α
q (S[ΩQ]−,Rn) and

∑+∞
j=0 ĉjk

j converges normally in Rn.

Equation (1.7) shows that u[k] (which is defined only for k ∈]0, k0[) can be
represented in terms of power series which converge in a whole neighborhood
of the degenerate value k = 0. From (1.7), we see, for example, that

klu[k](x)− ĉ0 = k
(+∞∑

j=0

v−q [ω, µ̂j ](x)k
j+l−1+

+∞∑

j=1

ĉjk
j−1 + kl−1Bq−1x

)

∀x ∈ S[ΩQ]− ,∀k ∈]0, k#[ ,

and thus that
∥klu[k]− ĉ0∥∞ = O(k) as k → 0.

We also note that the term Bq−1x in (1.7) shows the effect of the external
loading.

In Corollary 2 we will show how to compute the sequence {(µ̂j , ĉj)}j∈N
solving certain boundary integral equations and we will see that the termBq−1x
appears also in those equations.

Finally, we observe that the Functional Analytic Approach of this paper
has already been used for the analysis of perturbation problems for the Lamé
equations in [5, 6] for bounded domains and in [10,12] for periodic domains.

Math. Model. Anal., 28(3):509–521, 2023.
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2 Preliminaries on periodic potential theory for the Lamé
equations

In order to construct the solution of problem (1.5), we will exploit a periodic
version of potential theory for the Lamé equations. We say that a function f
on S[ΩQ]− is q-periodic if f(x + qz) = f(x) for all x ∈ S[ΩQ]− and z ∈ Zn.
To construct periodic elastic layer potentials, we introduce a periodic analog
of the fundamental solution of L[ω] (cf., e.g., Ammari and Kang [1, Lemma
9.21], [10, Thm. 3.1]). So, let

Γ q
n,ω:=(Γ q,k

n,ω,j)(j,k)∈{1,...,n}2

be the n× n matrix of q-periodic distributions with (j, k) entry defined by

Γ q,k
n,ω,j :=

∑

z∈Zn\{0}

1

4π2|Q||q−1z|2
[
−δj,k+

ω

ω + 1

(q−1z)j(q
−1z)k

|q−1z|2
]
E2πiq−1z

∀(j, k) ∈ {1, . . . , n}2 ,

where E2πiq−1z(x):=e2πi(q
−1z)·x for all x ∈ Rn and z ∈ Zn. Then,

L[ω]Γ q
n,ω =

∑

z∈Zn

δqzIn − 1

|Q|In

in the sense of distributions, where δqz denotes the Dirac measure with mass at
qz. We mention that similar constructions have been used to define a periodic
analog of the fundamental solution for an elliptic differential operator in [7,
Chapter 12] and for the heat equation in Luzzini [23]. We set

Γ q,j
n,ω:=

(
Γ q,j
n,ω,i

)
i∈{1,...,n} ,

which we think as column vectors for all j ∈ {1, . . . , n}. We now introduce the
periodic single layer potential. So, if µ ∈ C0,α(∂ΩQ,Rn), then we denote by
vq[ω, µ] the periodic single layer potential, defined as

vq[ω, µ](x):=

∫

∂ΩQ

Γ q
n,ω(x− y)µ(y) dσy ∀x ∈ Rn .

If µ ∈ C0,α(∂ΩQ,Rn), then vq[ω, µ] is q-periodic and

L[ω]vq[ω, µ] = − 1

|Q|

∫

∂ΩQ

µdσ in Rn \ ∂S[ΩQ]
−.

We set

Vq[ω, µ](x) :=vq[ω, µ](x) ∀x ∈ ∂ΩQ ,

W ∗
q [ω, µ](x) :=

∫

∂ΩQ

n∑

l=1

µl(y)T (ω,DΓ q,l
n,ω(x− y))νΩQ

(x) dσy ∀x ∈ ∂ΩQ .
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If µ∈Cm−1,α(∂ΩQ,Rn), then v−q [ω, µ]:=vq[ω, µ]|S[ΩQ]− belongs to the Schauder

space of q-periodic functions Cm,α
q (S[ΩQ]−,Rn) (equipped with its usual norm)

and the operator
µ 7→ v−q [ω, µ]

is continuous from Cm−1,α(∂ΩQ,Rn) to the space Cm,α
q (S[ΩQ]−,Rn). More-

over, the operator
µ 7→ W ∗

q [ω, µ]

is continuous from the space Cm−1,α(∂ΩQ,Rn) to itself, and we have

T
(
ω,Dv−q [ω, µ](x)

)
νΩQ

(x) =
1

2
µ(x) +W ∗

q [ω, µ](x) ∀x ∈ ∂ΩQ

for all µ ∈ Cm−1,α(∂ΩQ,Rn).

3 Integral equation formulation of (1.5) and proof of
Theorem 1

First of all, by exploiting the periodic elastic single layer potential and [8,
Thm. 4.4] on the representation of the solution of a Robin-type traction prob-
lem in a periodic domain, we immediately deduce the validity of the following
proposition where we convert problem (1.5) into an integral equation.

Proposition 1. Let k ∈]0, k0[. Let

Cm−1,α(∂ΩQ,Rn)0:=
{
f ∈ Cm−1,α(∂ΩQ,Rn) :

∫

∂ΩQ

f dσ = 0
}
.

Then,

u[k](x) = v−q [ω, µk](x) +
ck
kl

+Bq−1x ∀x ∈ S[ΩQ]− ,

where (µk, ck) is the unique solution in Cm−1,α(∂ΩQ,Rn)0 × Rn of

1

2
µ(x) +W ∗

q [ω, µ](x) + b[k](x)
(
Vq[ω, µ](x) +

c

kl

)
(3.1)

= g(x)− T (ω,Bq−1)νΩQ
(x)− b[k](x)Bq−1x ∀x ∈ ∂ΩQ .

We introduce the operator Λ from ]− k0, k0[ to the space

L(Cm−1,α(∂ΩQ,Rn)0 × Rn, Cm−1,α(∂ΩQ,Rn))

defined by

Λ[k](µ, c)(x) :=
1

2
µ(x) +W ∗

q [ω, µ](x) + b[k](x)Vq[ω, µ](x) + k−lb[k](x)c

∀x ∈ ∂ΩQ ,

for all (µ, c) ∈ Cm−1,α(∂ΩQ,Rn)0 × Rn and for all k ∈] − k0, k0[. We observe
that (3.1) can be rewritten as

Λ[k](µ, c)(x) = g(x)− T (ω,Bq−1)νΩQ
(x)− b[k](x)Bq−1x ∀x ∈ ∂ΩQ .

Math. Model. Anal., 28(3):509–521, 2023.
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Moreover, for k = 0 the linear operator Λ[0] becomes

Λ[0](µ, c)(x)=
1

2
µ(x)+W ∗

q [ω, µ](x) + b̃(x)c ∀x ∈ ∂ΩQ ,

∀(µ, c) ∈ Cm−1,α(∂ΩQ,Rn)0 × Rn ,
(3.2)

and Λ[0] is invertible with bounded inverse in the space

L(Cm−1,α(∂ΩQ,Rn), Cm−1,α(∂ΩQ,Rn)0 × Rn)

(see [8, Lem. 4.2]). Further properties of Λ[k] are presented in the following.

Proposition 2. The following statements hold.

(i) The map from ]−k0, k0[ to L(Cm−1,α(∂ΩQ,Rn)0×Rn, Cm−1,α(∂ΩQ,Rn))
that takes k to Λ[k] is real analytic.

(ii) There exists k1 ∈]0, k0[ such that for each k ∈]−k1, k1[ the linear operator
Λ[k] is invertible with inverse in the space

L(Cm−1,α(∂ΩQ,Rn), Cm−1,α(∂ΩQ,Rn)0 × Rn)

and such that the map from ]− k1, k1[ to the space

L(Cm−1,α(∂ΩQ,Rn), Cm−1,α(∂ΩQ,Rn)0 × Rn)

that takes k to (Λ[k])(−1) is real analytic.

Proof. The validity of (i) follows by the boundedness of the linear operators
W ∗

q [ω, ·] and Vq[ω, ·] and by the real analyticity of k 7→ k−lb[k]. To prove (ii), we
note that since the set of linear homeomorphisms is open in the set of linear and
continuous operators, and since the map that takes a linear invertible operator
to its inverse is real analytic (cf. e.g., Hille and Phillips [18, Thms. 4.3.2 and
4.3.4]), there exists k1 ∈]0, k0[ such that the map that takes k to Λ[k](−1) is
real analytic from ]−k1, k1[ to L(Cm−1,α(∂ΩQ,Rn), Cm−1,α(∂ΩQ,Rn)0×Rn).
⊓⊔

By Proposition 2, we represent the solutions of the integral equation (3.1)
by means of real analytic maps.

Corollary 1. Let (µ̂, ĉ) be the real analytic map from ] − k1, k1[ to the space
Cm−1,α(∂ΩQ,Rn)0 × Rn defined by

(µ̂[k], ĉ[k]) := (Λ[k])(−1)D[k]

for all k ∈]− k1, k1[, where

D[k](x) := g(x)−T (ω,Bq−1)νΩQ
(x)−b[k](x)Bq−1x ∀k ∈]−k0, k0[ , x ∈ ∂ΩQ .

Then,
(µ̂[k], ĉ[k]) = (µk, ck)

for all k ∈]0, k1[ and (µ̂[0], ĉ[0]) is the unique solution (µ, c) in the space
Cm−1,α(∂ΩQ,Rn)0 × Rn of

1

2
µ(x) +W ∗

q [ω, µ](x) + b̃(x)c = D[0](x) ∀x ∈ ∂ΩQ . (3.3)
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Proof. By Proposition 2, k 7→ (µ̂[k], ĉ[k]) is real analytic from ] − k1, k1[ to
Cm−1,α(∂ΩQ,Rn)0 × Rn and (µ̂[k], ĉ[k]) = (µk, ck) for all k ∈]0, k1[. Since
(µ̂[0], ĉ[0]):=(Λ[0])(−1)D[0], by equation (3.2), we deduce that (µ̂[0], ĉ[0]) is the
unique solution (µ, c) in Cm−1,α(∂ΩQ,Rn)0 × Rn of equation (3.3). ⊓⊔

Since k 7→ b[k]/kl is real analytic, there exist k̃ ∈]−k0, k0[ and a family {b#j }j∈N

in Cm−1,α(∂ΩQ,Mn(R)) such that b[k] = kl
∑+∞

j=0 b
#
j k

j for all k ∈] − k̃, k̃[,

where the series
∑+∞

j=0 b
#
j k

j converges normally in Cm−1,α(∂ΩQ,Mn(R)) for

all k ∈]− k̃, k̃[. Possibly taking a smaller k̃, we note that

Λ[k](µ, c) = Λ[0](µ, c) +

+∞∑

j=1

(
b#j−lVq[ω, µ](x) + b#j c

)
kj ,

where we understand that b#j−l = 0 if j < l and where the series

+∞∑

j=1

(
b#j−lVq[ω, µ](x) + b#j c

)
kj

converges normally in L(Cm−1,α(∂ΩQ,Rn)0 × Rn, Cm−1,α(∂ΩQ,Rn)) for all

k ∈]− k̃, k̃[. We find convenient to set

Rj(µ, c) := b#j−lVq[ω, µ](x) + b#j c ∀j ∈ N \ {0} ,

R[k](µ, c) :=

+∞∑

j=1

Rj(µ, c)k
j ,

and accordingly Λ[k] = Λ[0] +R[k]. By the Neumann series theorem, possibly
taking again a smaller k̃, we have

(Λ[k])(−1) = (Λ[0])(−1) +

+∞∑

r=1

(−1)r
(
(Λ[0])(−1)R[k]

)r

(Λ[0])(−1) ,

where for all k ∈]− k̃, k̃[ the series converges normally in

L(Cm−1,α(∂ΩQ,Rn), Cm−1,α(∂ΩQ,Rn)0 × Rn) .

For all r ∈ N \ {0}, we have

(
(Λ[0])(−1)R[k]

)r

=

+∞∑

j=1

( ∑

jl1 ,...,jlr∈N\{0}
jl1+...jlr=j

(
(Λ[0])(−1)Rj1

)
· · · · ·

(
(Λ[0])(−1)Rjr

))
kj ,

where for all k ∈]− k̃, k̃[ the series converges normally in the space

L(Cm−1,α(∂ΩQ,Rn), Cm−1,α(∂ΩQ,Rn)0 × Rn) .
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Then, we set L0 := (Λ[0])(−1) and for each j ∈ N \ {0} we define

Lj ∈ L(Cm−1,α(∂ΩQ,Rn), Cm−1,α(∂ΩQ,Rn)0 × Rn)

as

Lj :=

+∞∑

r=1

(−1)r
( ∑

jl1 ,...,jlr∈N\{0}
jl1+···+jlr=j

(
(Λ[0])(−1)Rj1

)
· · ·

(
(Λ[0])(−1)Rjr

))
(Λ[0])(−1).

(3.4)
Accordingly, possibly taking a smaller k̃, one can verify that (Λ[k])(−1) =
(Λ[0])(−1) +

∑+∞
j=1 Ljk

j , where for all k ∈] − k̃, k̃[ the series converges nor-

mally in L(Cm−1,α(∂ΩQ,Rn), Cm−1,α(∂ΩQ,Rn)0 × Rn). Then, we introduce
the sequence {dj}j∈N in Cm−1,α(∂ΩQ,Rn) by setting

d0(x):=g(x)− T (ω,Bq−1)νΩQ
(x) ∀x ∈ ∂ΩQ ,

dj(x) :=− b#j−l(x)Bq−1x ∀x ∈ ∂ΩQ ,∀j ∈ N \ {0} ,

where we understand that b#j−l = 0 if j < l. Possibly shrinking k̃, we note that

D[k] =
∑+∞

j=0 djk
j , where for all k ∈] − k̃, k̃[ the series converges normally in

Cm−1,α(∂ΩQ,Rn). Then, by the real analyticity of k 7→ (µ̂[k], ĉ[k]) and the
expressions for (Λ[k])(−1) and for D[k], we deduce the following.

Corollary 2. Let

(µ̂0, ĉ0) = (Λ[0])(−1)(d0), (µ̂j , ĉj) =
∑

j1,j2∈N
j1+j2=j

Lj1(dj2) ∀j ∈ N \ {0} ,

where L0:=(Λ[0])(−1) and Lj is as in (3.4) for j ∈ N \ {0}. Then, there exists

k2 ∈]0, k1[ such that (µ̂[k], ĉ[k]) =
∑+∞

j=0(µ̂j , ĉj)k
j for all k ∈] − k2, k2[, where

the series converges normally in Cm−1,α(∂ΩQ,Rn)0 ×Rn for all k ∈]− k2, k2[.

We are now able to prove Theorem 1.
Proof of Theorem 1. We already know that for all k ∈] − k2, k2[ the series∑+∞

j=0 ĉjk
j converges normally in Rn and that the series

∑+∞
j=0 µ̂jk

j converges

normally in Cm−1,α(∂ΩQ,Rn)0. Since v−q [ω, ·] is a bounded linear operator

from Cm−1,α(∂ΩQ,Rn)0 to Cm,α
q (S[ΩQ]−,Rn), we deduce that taking a suffi-

ciently small k# ∈]0, k2[ for all k ∈] − k#, k#[ the series
∑+∞

j=0 v
−
q [ω, µ̂j ](x)k

j

converges normally in Cm,α
q (S[ΩQ]−,Rn). Then, the representation formula of

Proposition 1 completes the proof. ⊓⊔

Remark 1. If our focus is on the the leading terms of the series that appear in
(1.7) we can write

u[k](x) = v−q [ω, µ̂0](x) +
ĉ0
kl

+

+∞∑

j=1

v−q [ω, µ̂j ](x)k
j +

1

kl

+∞∑

j=1

ĉjk
j +Bq−1x

∀x ∈ S[ΩQ]− ,∀k ∈]0, k#[ ,
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and note that (µ̂0, ĉ0) is the unique solution in Cm−1,α(∂ΩQ,Rn)0 × Rn

of the equation

1

2
µ̂0(x) +W ∗

q [ω, µ̂0](x) + b̃(x)ĉ0 = g(x)− T (ω,Bq−1)νΩQ
(x) ∀x ∈ ∂ΩQ .

In particular, by arguing as in the proof of [8, Lem. 4.2] and by the identity∫
∂ΩQ

(νΩQ
)jdσ=0 ∀j∈{1, . . . , n} , one verifies that ĉ0=

( ∫
∂ΩQ

b̃ dσ
)−1 ∫

∂ΩQ
gdσ

and that µ̂0 is the unique solution in Cm−1,α(∂ΩQ,Rn)0 of

1

2
µ̂0(x) +W ∗

q [ω, µ̂0](x) =g(x)− T (ω,Bq−1)νΩQ
(x)

− b̃(x)
(∫

∂ΩQ

b̃ dσ
)−1

∫

∂ΩQ

g dσ ∀x ∈ ∂ΩQ .

4 Conclusions

We have used the Functional Analytic Approach to study the Lamé equations in
a periodic domain with a Robin-type boundary condition that turns into a pure
traction one. The change in the boundary condition is obtained multiplying the
Dirichlet-type term by a k-dependent matrix function b[k](·) that vanishes for
k = 0. We have seen that for k > 0 close to 0 the solution can be written as the
sum of two converging power series of k, one being multiplied by the singular
function 1/kl, and a linear function that takes care of the quasi-periodicity
of the solution (and disappears for periodic solutions). The positive natural
number l depends on the vanishing order of the matrix b[k] as k tends to 0.
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