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Abstract. In this study, we obtain asymptotic expansions for eigenvalues and eigen-
functions of the one–dimensional Sturm–Liouville equation with one classical Dirich-
let type boundary condition and two-point nonlocal boundary condition. We analyze
the characteristic equation of the boundary value problem for eigenvalues and de-
rive asymptotic expansions of arbitrary order. We apply the obtained results to the
problem with two-point nonlocal boundary condition.
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1 Introduction

Consider the following one-dimensional Sturm–Liouville equation

−u′′(t) + q(t)u(t) = λu(t), t ∈ [0, 1], (1.1)

where the real-valued function q ∈ C[0, 1]; λ = s2 is a complex spectral param-

eter and s = x + ıy; x, y ∈ R. We will use notation Q(t) = 1
2

∫ t

0
q(τ)dτ and

q0 := 2
∫ 1

0
|q(τ)| dτ .

■
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Figure 1. Domain Cs.

Remark 1. In this article, s ∈ Cs := Rs ∪C+
s ∪C−

s , where Rs := R−
s ∪R+

s ∪R0
s,

R−
s := {s = x+ ıy ∈ C : x = 0, y > 0}, R+

s := {s = x+ ıy ∈ C : x > 0, y = 0},
R0

s := {s = 0}, C+
s := {s = x + ıy ∈ C : x > 0, y > 0} and C−

s := {s =
x + ıy ∈ C : x > 0, y < 0}. Then a map λ = s2 is the bijection between Cs

and Cλ := C [36] (see Figure 1).

In this study, we shall investigate Sturm–Liouville Problem (SLP) that consists
of Equation (1.1) on [0, 1] with one classical (local) Dirichlet type Boundary
Condition (BC)

u(0) = 0, (1.2)

another two-point Nonlocal Boundary Condition (NBC) [5, 22,23]

(Case 1) u′(1) = γu(ξ), ξ ∈ [0, 1], (1.31)

(Case 2) u′(1) = γu′(ξ), ξ ∈ [0, 1), (1.32)

(Case 3) u(1) = γu(ξ), ξ ∈ [0, 1), (1.33)

where γ ∈ R. In Case 1 and Case 3 for ξ = 0 we have the same problem
as in the case γ = 0. A more comprehensive list can be found in the survey
article [33]. In the (classical) case γ = 0 we have two local BCs.

We denote: ak := kπ in Cases 1, 2; ak := (k − 1/2)π in Case 3 and
Ik :=

(
ak, ak+1

)
, k ∈ N.

Asymptotic formulas for eigenvalues and eigenfunctions for Sturm–Liouville
equation (1.1) with local BCs are investigated in the classical books [17,18,38].
These results were generalized for tasks with retarded argument [3, 21, 24, 27]
and for some other local BCs [1, 20] and Sturm–Liouville Problem (SLP) with
eigenparameter in BCs [7, 9, 11, 12, 13]. Asymptotical analysis of eigenvalues
and eigenfunctions of SLPs with periodic BCs was obtained in [2, 6, 10].

Nonlocal Boundary Value Problems (BVP) are widely used for mathemat-
ical modelling of various processes of physics, ecology, chemistry and industry,
when it is impossible to determine the boundary values of the unknown func-
tion. The bibliography on the subject of nonlocal BVPs is very extensive and
we refer to the list of the works in [8,14,33]. Characteristic curves and Green’s
functions for problems with NBCs and q ̸≡ 0 were investigated in [25, 26, 32].
Until this time, there were only few works about asymptotic properties of eigen-
values and eigenfunctions with potential function q(x) in Equation (1.1) and
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NBCs. We will note papers [28, 34, 35] where the asymptotic properties are
studied for some NBCs.

In [28], under the condition q ∈ C[0, 1], for sufficiently large k and |γ| < 1
it is derived that the asymptotic expansions

sk = xk +O(k−1), uk(t) = − sin(xkt)x
−1
k +O(k−2) (1.4)

are valid for eigenvalues and eigenfunctions, respectively, for the SLP (1.1),
(1.2), (1.33), where xk, k ∈ N, are the positive roots of sinx − γ sin(ξx) = 0.
Under the condition q ∈ C1[0, 1], it is obtained that the asymptotic expansions

sk = xk +Q1(xk)x
−1
k +O(k−2), (1.5)

uk(t) = − sin(xkt)x
−1
k +

(
Q(t)− tQ1(xk)

)
cos(xkt)x

−2
k +O(k−3) (1.6)

are valid for eigenvalues and eigenfunctions, respectively, for the SLP (1.1)–
(1.2), (1.33), where

Q1(s) :=
(
Q(1) cos s− γQ(ξ) cos(ξs)

)(
cos s− γξ cos(ξs)

)−1
.

We will generalize formulas (1.4)–(1.6) for q ∈ Cr[0, 1], where r ∈ N, for BC
(1.33), and will derive analogous formulas for BCs (1.31),(1.32).

Spectral asymptotics of eigenvalues and eigenfunctions of SLP with Dirich-
let BC (1.2) and integral NBC

u(1) = γ

∫ β

α

u(t)dt, γ ∈ R, [α, β] ⊂ [0, 1],

have been investigated recently [34]. For sufficiently large k it is derived that
the asymptotic expansions (1.4) are valid for all γ ∈ R , where xk = πk, k ∈ N.
Under the condition q ∈ C1[0, 1], it is obtained that the asymptotic formulas
(1.4)–(1.5) are valid, where Q1(x) = Q(1)+(−1)k+1γ cos(βx)+(−1)kγ cos(αx).
In [34] asymptotical expansions for equation (1.1) with conditions u(0) = 0,
u′(0) = −1 were derived for all r ∈ N. We will use them to write the asymptotic
formulas for the functions describing the characteristic equations in the case of
BC (1.2)–(1.3).

The investigation of SLP with two-points NBC (1.3) we started in [35],
where Neumann BC u′(0) = 0 were used instead of Dirichlet BC (1.2). More
about non-trivial solutions of local and nonlocal Neumann boundary-value
problems one can find in [16] and in [15] for parameter-dependent higher or-
der problems. We investigated a characteristic equation of BVP and derive
asymptotic expansions of arbitrary order if q ∈ Cr[0, 1]. We will try to ob-
tain analogous formulas in the case of Dirichlet BC. Many of the formulations
and proofs are similar, but the specific functions and the first terms of the
asymptotic expansions differ. We will try to compare these two cases.

The article is organized as follows. The statement of the problem and a
literature review are given in Section 1. In Section 2, we present results about
solution of Initial Value Problem (IVP) and formulas for its asymptotics. In
Section 3, some results about the case q ≡ 0 are presented. In Section 4, we
analyze the characteristic equation of the BVP (1.1)–(1.3). In Section 5, we
investigate the distribution of eigenvalues and obtain asymptotic expansions for
eigenvalues and eigenfunctions. Also, we calculate normalized eigenfunctions.
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2 Solution of Initial Value Problem and its asymptotics

In this section, we present some statements about solution of Initial Value
Problem (IVP). These statements were proved in [34]. We will use them for
investigation asymptotic expansions for SLP (1.1)–(1.3). Additionally, we in-
troduce some notation related to our asymptotical analysis of this problem.

Let λ = s2, s ∈ Cs and ωs(t) be a solution of Equation (1.1) satisfying the
initial conditions

ωs(0) = 0, ω′
s(0) = −1.

According to [18, Theorem 1.1 in Chapter I], this IVP determines a unique
solution of (1.1) on [0, 1]. The function ωs(t) = ω(t, s) is an analytic (holomor-
phic) function of s. We will use notation for derivatives ω′

s(t) := ∂ω(t, s)/∂t,

(ωs)
(l)
s (t, s) := ∂lω(t, s)/∂sl, (ω′

s)
(l)
s (t, s) := ∂l+1ω(t, s)/(∂t∂sl).

Under the condition that q ∈ Cr[0, 1], r ∈ N0 := N ∪ {0}, asymptotic
expansions may be obtained for ωs(t) [34]. We define functions p 0

1 (t) = −1,

p0i+1(t) = −1

2

∫ t

0

q(τ)p0i (τ) dτ−
i∑

j=2

(qp0j−1)
(i−j)(t) + (−1)i(qp0j−1)

(i−j)(0)

2i−j+2
(2.1)

for i = 1, r.

Lemma 1. (See [34, Lemma 7].) Let s ∈ Cs and q ∈ Cr[0, 1]. Then for |s| ≥ q0
we have the asymptotic expansions

(ωs)
(l)
s (t, s) = −

r+1∑
j=1

plj(t) cos

(
st+

π

2
(j − l)

)
s−j +O

(
s−(r+2)e(r+2)|y|t),

(ω′
s)

(l)
s (t, s) = −

r∑
j=0

p̄ l
j(t) cos

(
st+

π

2
(j − l)

)
s−j +O

(
s−(r+1)e(r+2)|y|t) (2.2)

for l ∈ N0, where pki (t) = (1 − i)pk−1
i−1 (t) − tpk−1

i (t), i = 1, r + 1, p̄ k
0 (t) =

−tp̄ k−1
0 (t), p̄ k

i (t) = (1− i)p̄ k−1
i−1 (t)− tp̄ k−1

i (t), i = 1, r, k ∈ N, p̄ 0
i (t) = p0i

′(t)−
p0i+1(t), i = 1, r, p̄ 0

0 (t) = 1, and p0j (t) is calculated by (2.1).

Now we will consider real λ. If s ∈ R−
s , i.e., s = ıy, y > 0, q ∈ C[0, 1], then

ωıy(t) = − sinh(yt)y−1 +O
(
y−2eyt

)
= −y−1eyt/2 +O

(
y−2eyt

)
,

ω′
ıy(t) = − cosh(yt) +O

(
y−1eyt

)
= −eyt/2 +O

(
y−1eyt

)
. (2.3)

If s ∈ R+
s , i.e., s = x, x > 0, q ∈ C[0, 1], then

ωx(t) = − sin(xt)x−1 +O
(
x−2

)
, ω′

x(t) = − cos(xt) +O
(
x−1

)
.
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We define functions (n1, . . . , nm are nonnegative integers)

Rm+1(t, x) = −
∑

n1+···+nm=l, j>0,
j+n1+2n2+···+mnm=m+1

Qn1
1 (x) · · ·Qnm

m (x)

n1! · · ·nm!
plj(t) cos

(
xt+

π

2
(j − l)

)
,

R̄m(t, x) = −
∑

n1+···+nm=l, j≥0
j+n1+2n2+···+mnm=m

Qn1
1 (x) · · ·Qnm

m (x)

n1! · · ·nm!
p̄ l
j(t) cos

(
xt+

π

2
(j − l)

)
,

m = 0, r.

Corollary 1. (See [34, Corollary 2].) Let x ∈ R+
s , δ ∈ R, q ∈ Cr[0, 1], Qj(x),

j = 1, r are bounded functions. If s = x+ δ, δ =
∑r

j=1 Qj(x)x
−j +O(x−(r+1)),

then we have the following asymptotic expansions

ωs(t) =

r+1∑
j=1

Rj(t, x)x
−j +O

(
x−(r+2)

)
, ω′

s(t) =

r∑
j=0

R̄j(t, x)x
−j +O

(
x−(r+1)

)
.

Now, we write explicit formulas in the cases q ∈ C[0, 1] and q ∈ C1[0, 1].

Lemma 2. (See [28, Lemma 2, Lemma 3], [34, Lemma 5].) Let s ∈ Cs and
q ∈ C[0, 1]. Then there exists q0 > 0 such that for |s| ≥ q0, we have the
asymptotic expansions

ωs(t)=− sin(st)s−1 +O
(
s−2e|y|t

)
, (ωs)

′
s(t, s)=− t cos(st)s−1 +O

(
s−2e|y|t

)
,

(ωs)
′′
s (t, s) = t2 sin(st)s−1 +O

(
s−2e|y|t

)
,

ω′
s(t) = − cos(st) +O

(
s−1e|y|t

)
, (ω′

s)
′
s(t, s) = t sin(st) +O

(
s−1e|y|t

)
.

These formulas hold uniformly for 0 ≤ t ≤ 1.

Corollary 2. (See [34, Corollary 1].) Let x ∈ R+
s , δ ∈ R, q ∈ C[0, 1]. If

s = x+ δ, δ = O(x−1), then we have the following asymptotic expansions:

ωs(t) = − sin(xt)x−1 +O
(
x−2

)
, ω′

s(t) = − cos(xt) +O
(
x−1

)
.

Lemma 3. (See [34, Lemma 8].) Let s ∈ Cs and q ∈ C1[0, 1]. Then for
|s| ≥ q0, we have the asymptotic expansions

ωs(t) = − sin(st)s−1 +Q(t) cos(st)s−2 +O
(
s−3e3|y|t

)
,

(ωs)
′
s(t, s) = −t cos(st)s−1 +

(
1− tQ(t)

)
sin(st)s−2 +O

(
s−3e3|y|t

)
,

(ωs)
′′
s (t, s) = t2 sin(st)s−1 + t

(
2− tQ(t)

)
cos(st)s−2 +O

(
s−3e3|y|t

)
,

ω′
s(t) = − cos(st)−Q(t) sin(st)s−1 +O

(
s−2e3|y|t

)
,

(ω′
s)

′
s(t, s) = t sin(st)− tQ(t) cos(st)s−1 +O

(
s−2e3|y|t

)
.

Remark 2. (See [35, Lemma 10].) For solution ωs(t) of equation (1.1) satisfying
the initial conditions

ωs(0) = 1, ω′
s(0) = 0 (2.4)



Asymptotic Analysis of Sturm–Liouville Problem with NBCs 313

in the case q ∈ C1[0, 1] we have the asymptotic expansions

ωs(t) = cos(st) +Q(t) sin(st)s−1 +O
(
s−2e3|y|t

)
,

(ωs)
′
s(t, s) =− t sin(st) + tQ(t) cos(st)s−1 +O

(
s−2e3|y|t

)
,

(ωs)
′′
s (t, s) =− t2 cos(st)− t2Q(t) sin(st)s−1 +O

(
s−2e3|y|t

)
,

ω′
s(t) =− s sin(st) +Q(t) cos(st) +O

(
s−1e3|y|t

)
,

(ω′
s)

′
s(t, s) =− st cos(st)−

(
1 + tQ(t)

)
sin(st) +O

(
s−1e3|y|t

)
.

As we can see, the asymptotic formulas for these two IVP are slightly different.

Corollary 3. (See [34, Corollary 3].) Let x ∈ R, δ ∈ R, q ∈ C1[0, 1], Q1(x) is
bounded function. If s = x + δ, δ = Q1(x)x

−1 + O(x−2), then we have the
following asymptotic expansions

ωs(t) = − sin(xt)x−1 +
(
Q(t)− tQ1(x)

)
cos(xt)x−2 +O

(
x−3

)
,

ω′
s(t) = − cos(xt)−

(
Q(t)− tQ1(x)

)
sin(xt)x−1 +O

(
x−2

)
.

Remark 3. (See [35, Corollary 3].) Let the conditions of Corollary 3 are satis-
fied. Then for IVP with (2.4) we have the following asymptotic expansions

ωs(t) = cos(xt) +
(
Q(t)− tQ1(x)

)
sin(xt)x−1 +O

(
x−2

)
,

ω′
s(t) =− x sin(xt) +

(
Q(t)− tQ1(x)

)
cos(xt) +O

(
x−1

)
.

Example 1. If q ∈ C2[0, 1], then we can calculate the first functions plj and p̄lj :

p 0
1 = −1, p 0

2 = Q(t), p 0
3 = − 1

2 (Q(t))2 + 1
4q(t) +

1
4q(0),

p 1
1 = t, p 1

2 = 1− tQ(t), p 2
1 = −t2, (2.5)

p̄ 0
0 = 1, p̄ 0

1 = −Q(t), p̄ 0
2 = 1

2 (Q(t))2 + 1
4q(t)−

1
4q(0),

p̄ 1
0 = −t, p̄ 1

1 = tQ(t), p̄ 2
0 = t2, (2.6)

and expresions

R1 = − sin(xt), R2 =
(
Q(t)− tQ1(x)

)
cos(xt),

R3 = −
(
p 0
3 (t)− p 1

2 (t)Q1(x) +
1
2p

2
1 (t)(Q1(x))

2
)
sin(xt)− p 1

1 (t)Q2(x) cos(xt),

R̄0 = − cos(xt), R̄1 = −
(
Q(t)− tQ1(x)

)
sin(xt),

R̄2 = −
(
p̄ 0
2 (t) + p̄ 1

1 (t)Q1(x) +
1
2 p̄

2
0 (t)(Q1(x))

2
)
cos(xt)− p̄ 1

0 (t)Q2(x) sin(xt).

So, we have explicit expressions for R3 and R̃2 in the case r = 2, too, and

ωs(t) = R1(t, x)x
−1 +R2(t, x)x

−2 +R3(t, x)x
−3 +O

(
x−4

)
, (2.7)

ω′
s(t) = R̄0(t, x) + R̄1(t, x)x

−1 + R̄2(t, x)x
−2 +O

(
x−3

)
. (2.8)
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3 Properties of a spectrum in the case q ≡ 0

In this section, we present the results of articles [22,23] about eigenvalues of SLP
(1.1)–(1.3) in the case q(t) ≡ 0. The spectrum of this problem has countably
many eigenvalues. Negative eigenvalues exist for γ > 0 only. A unique negative
eigenvalue exists: in Cases 1, 3 for γ > 1/ξ; in Case 2 for γ > 1. Also, λ = 0 is
eigenvalue: in Cases 1, 3 for γ = 1/ξ; in Case 2 for γ = 1.

Let us define a Constant Eigenvalue (CE) as the eigenvalue λ that does not
depend on the parameter γ ∈ R for fixed ξ. Constant eigenvalues exist only
for rational numbers ξ = m/n ∈ (0, 1), m,n ∈ N, gcd(m,n) = 1, and those
eigenvalues λk = π2q2k, k ∈ N, are given by: qk = n(k − 1/2) for m ∈ Neven,
n ∈ Nodd in Case 1, qk = n(k − 1/2) for m,n ∈ Nodd in Case 2, qk = nk in
Case 3. All CE are simple.

All nonconstant (that depend on the parameter γ ∈ R) eigenvalues λ = s2,
s ∈ Cs, are γ-points of the Characteristic Function (CF) γ : Cs → R [36]
γ(s) = Z(s)/Pξ(s), where

Z(s) = cos s, Pξ(s) =
sin(ξs)

s
, (3.11)

Z(s) = cos s, Pξ(s) = cos(ξs), (3.12)

Z(s) =
sin s

s
, Pξ(s) =

sin(ξs)

s
. (3.13)

For fixed γ ∈ R the roots of this meromorphic function describe nonconstant
eigenvalues. All zeroes of the functions Z(s) and Pξ(s) are real, simple and
belong to sets:

Ẑ ={zl = π(l − 1/2), l ∈ N}, Zξ ={pk = πk/ξ, k ∈ N}, (3.21)

Ẑ ={zl = π(l − 1/2), l ∈ N}, Zξ ={pk = π(k − 1/2)/ξ, k ∈ N}, (3.22)

Ẑ ={zl = πl, l ∈ N}, Zξ ={pk = πk/ξ, k ∈ N}. (3.23)

We denote the set of all CE as Cξ = Ẑ ∩ Zξ. All poles of CF are of the first

order and belong to Pξ = Zξ ∖ Ẑ = Zξ ∖ Cξ [5]. Nonconstant eigenvalues can
be complex [4, 5, 30,37].

In the case q ≡ 0 the characteristic equation for SLP (1.1)–(1.3) is

− cos s+ γs−1 sin(ξs) = 0, (3.31)

− cos s+ γ cos(ξs) = 0, (3.32)

−s−1 sin s+ γs−1 sin(ξs) = 0. (3.33)

Lemma 4. Let λk = (sk)
2, k ∈ N, be eigenvalues of the problem (1.1)–(1.2),

(1.31) in the case q ≡ 0. Then exists K ∈ N such that for fixed γ ∈ R all
eigenvalues λk, k ≥ K, are positive, simple and sk = xk ∈ Ik−1 for all k ≥ K.

Proof. If x is multiple positive eigenvalue, then two equalities

γ sin(ξx) = x cosx, ξγ cos(ξx) = x sinx+ cosx
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(a) u′(1) = γu(ξ) (b)u′(1)= γu′(ξ), |γ| < 1 (c) u(1) = γu(ξ), |γ| < 1

Figure 2. Real CF (Dirichlet BC) and positive eigenvalues.

are valid. From this system we get

ξ2γ2 = x2
(
1− (1− ξ2) cos2 x

)
+ x sin(2x) + cos2 x.

If x ≥ 9ξ−2/4 ≥ 1, then we estimate

|γ|2 ≥ x2 + ξ−2
(
x sin(2x) + cos2 x

)
≥ x2 − ξ−2(1 + x) ≥ x2/9 ≥ (x/π)2.

So, all eigenvalues in the angle |γ| < x/π for x ≥ 9ξ−2/4 are positive and
simple. CE points are the first-order poles of CF. Eigenvalues corresponding to
these points are positive and simple. Since CF has zeros at points π(k − 1/2),
k ∈ N, we have |xk − π(k − 1/2)| < π in this domain. ⊓⊔

The graph of Real CF (see [36]) γ : Rs → R in Case 1 is presented in Figure 2(a).
In the angle |γ| < x/π we have positive simple eigenvalues only.

Lemma 5. (See [28, Lemma 4].) Let |γ| < 1, 0 < ξ < 1, β ≥ 0. If sinx −
γξβ sin(ξx) = 0, then there exists κ > 0 such that | cosx|−|γ|| cos(ξx)| ≥ κ > 0.

Lemma 6. (See [28, Lemma 5].) Let |γ| < 1, 0 < ξ < 1, β ≥ 0. If cosx −
γξβ cos(ξx) = 0, then there exists κ̃ > 0 such that | sinx|−|γ|| sin(ξx)| ≥ κ̃ > 0.

Remark 4. These two lemmas are valid for β = ∞ (in this case ξβ = 0).

In Figure 2(b) and Figure 2(c) we see that for |γ| < 1 all eigenvalues are
positive and simple. Now we present some properties of equation

f(s) := cos s− γ cos(ξs) = 0, (3.42)

f(s) := sin s− γ sin(ξs) = 0, (3.43)

s ∈ Cs, ξ ∈ [0, 1].

Remark 5. The equation sin s−γ sin(ξs) = 0, |γ| < 1, in Case 3 was investigated
in [19,28,31].

Lemma 7. If |γ| < 1, all roots of Equation (3.4) are real and simple.

Math. Model. Anal., 28(2):308–329, 2023.
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Proof. The lemma is valid for ξ = 0. Let ξ ̸= 0, y ̸= 0. If s = x + ıy, then
cos(x + ıy) = cosx cosh y − ı sinx sinh y. So, Equation (3.42) is equivalent to
the system

cosx cosh y = γ cos(ξx) cosh(ξy), sinx sinh y = γ sin(ξx) sinh(ξy).

From these two equations we derive

1 > γ2 =
cosh2 y

cosh2(ξy)
cos2 x+

sinh2 y

sinh2(ξy)
sin2 x ≥ sin2 x+ cos2 x = 1.

This contradiction shows that s = x, y = 0. If x is not a simple root, then

f(x) = cosx− γ cos(ξx) = 0, −f ′(x) = sinx− ξγ sin(ξx) = 0,

and

1 = sin2 x+ cos2 x = γ2
(
cos2(ξx) + ξ2 sin2(ξx)

)
≤ γ2 < 1.

This contradiction shows real roots are simple. The proof for Equation (3.43)
is analogous. ⊓⊔

Lemma 8. If |γ| < 1, then Equation (3.4) has infinitely many (countable)
positive roots xk, k ∈ N, and xk ∈ Ik.

Proof. The lemma is valid for ξ = 0 or γ = 0. For definiteness, we take
0 < γ < 1. Lemma 7 states that all roots are real. Then Equation (3.42) is
equivalent to

x = (−1)k arcsin
(
γ cos(ξx)

)
+ π(k − 1/2), k ∈ N. (3.5)

Since ∣∣∣((−1)k arcsin
(
γ cos(ξx)

))′∣∣∣ = γξ| sin(ξx)|√
1− γ2 cos2(ξx)

≤ γξ ≤ γ < 1,

we have unique solution xk of Equation (3.5) for every k ∈ N by the Banach
Fixed-Point theorem, and

|xk − π(k − 1/2)| =
∣∣ arcsin (γ cos(ξx))∣∣ ≤ arcsin γ < arcsin 1 = π/2,

i.e. xk ∈ (ak, ak+1). The proof for Equation (3.43) is analogous. ⊓⊔

Additionaly we prove a few simple estimates for function f (see (3.4)).

Lemma 9. The following inequality

|f(s)| ≥ sinh |y| − |γ| cosh(ξy) (3.6)

is valid.
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Proof. We estimate

| cos s− γ cos(ξs)| ≥
∣∣| cos s| − |γ cos(ξs)|

∣∣ ≥ | cos s| − |γ| | cos(ξs)|,
| sin s− γ sin(ξs)| ≥

∣∣| sin s| − |γ sin(ξs)|
∣∣ ≥ | sin s| − |γ| | sin(ξs)|.

Then, using properties

sinh |y| ≤ | sin s| ≤ cosh y, sinh |y| ≤ | cos s| ≤ cosh y

we get (3.6). ⊓⊔

We note that for |γ| < 1 we have

lim
y→+∞

(
sinh y − |γ| cosh(ξy)

)
e−y = 1

2 (1− |γ| · ⌊ξ⌋) ≥ 1
2 (1− |γ|) > 0.

Corollary 4. If |γ| < 1, then there exists B > 0 such that

|f(s)| ≥ 1
4 (1− |γ|)e|y| for |y| ≥ B.

Lemma 10. The following inequalities

| cos s− γ cos(ξs)| ≥ (| cosx| − |γ| | cos(ξx)|) cosh y, (3.72)

| sin s− γ sin(ξs)| ≥ (| sinx| − |γ| | sin(ξx)|) cosh y (3.73)

are valid.

Proof. If s = x + ıy, then Re cos s = cosx cosh y and Re sin s = sinx cosh y.
We estimate

| cos s− γ cos(ξs)| ≥ |Re cos s− γRe cos(ξs)| = | cosx cosh y

− γ cos(ξx) cosh(ξy)| ≥ | cosx| cosh y − |γ| | cos(ξx)| cosh(ξy)
≥ | cosx| cosh y − |γ| | cos(ξx)| cosh y,

because cosh(ξy) ≤ cosh y for ξ ∈ [0, 1]. The proof of (3.73) is the similar. ⊓⊔

4 Characteristic equation for problem with two-point
boundary condition

Substituting ωs(t) into (1.3) we get the characteristic equation

h(s) := ω′
s(1)− γωs(ξ) = 0, (4.11)

h(s) := ω′
s(1)− γω′

s(ξ) = 0, (4.12)

h(s) := ωs(1)− γωs(ξ) = 0. (4.13)

The set of eigenvalues of the BVP (1.1),(1.2), (1.3) coincides with the set
{λ : λ = s2, h(s) = 0}.
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We will use notation ρ: ρ = 0 in Cases 1, 2; ρ = 1 in Case 3 and introduce
functions:

hl
0(s) := −p̄ l

0 cos(s− π
2 l), l ∈ N0, (4.2)

in Case 1, and

hl
j(s) := γplj(ξ) cos

(
ξs+ π

2 (j − l)
)
− p̄ l

j(1) cos
(
s+ π

2 (j − l)
)
, (4.31)

hl
j(s) := γp̄ l

j(ξ) cos
(
ξs+ π

2 (j − l)
)
− p̄ l

j(1) cos
(
s+ π

2 (j − l)
)
, (4.32)

hl
j(s) := γplj(ξ) cos

(
ξs+ π

2 (j − l)
)
− plj(1) cos

(
s+ π

2 (j − l)
)
, (4.33)

where j = 1, r in Case 1, j = 0, r in Case 2, j = 1, r + 1 in Case 3, l ∈ N0.

In this article, we will need some expressions of these functions for l = 0, 1, 2.
Using the formulas (2.5)–(2.6) for plj and p̄lj we get

h0
0(s) =− cos s, h0

1(s) =−Q(1) sin s+ γ sin(ξs), (4.41)

h0
0(s) =− cos s+ γ cos(ξs), h0

1(s) =−Q(1) sin s+ γQ(ξ) sin(ξs), (4.42)

h0
1(s) =− sin s+ γ sin(ξs), h0

2(s) = Q(1) cos s− γQ(ξ) cos(ξs), (4.43)

h0
2(s) =− γQ(ξ) cos(ξs) + 1

4

(
2
(
Q(1)

)
2 + q(1)− q(0)

)
cos s, (4.51)

h0
2(s) =− 1

4γ
(
2
(
Q(ξ)

)
2 + q(ξ)− q(0)

)
cos(ξs)

+ 1
4

(
2
(
Q(1)

)
2 + q(1)− q(0)

)
cos s, (4.52)

h0
3(s) =

1
4γ

(
2
(
Q(ξ)

)
2 − q(ξ)− q(0)

)
sin(ξs)

− 1
4

(
2
(
Q(1)

)
2 − q(1)− q(0)

)
sin s, (4.53)

h1
0(s) = sin s, h2

0(s) = cos s, (4.61)

h1
0(s) = sin s− γξ sin(ξs), h2

0(s) = cos s− γξ2 cos(ξs), (4.62)

h1
1(s) =− cos s+ γξ cos(ξs), h2

1(s) = sin s− γξ2 sin(ξs), (4.63)

h1
1(s) =−Q(1) cos s+ γξ cos(ξs), (4.71)

h1
1(s) =−Q(1) cos s+ γξQ(ξ) cos(ξs), (4.72)

h1
2(s) =

(
1−Q(1)

)
sin s− γξ

(
1− ξQ(ξ)

)
sin(ξs). (4.73)

Lemma 11. Let s ∈ Cs and q ∈ Cr[0, 1]. Then for |s| ≥ q0 we have the
asymptotic expansions

h(l)(s) =

r+ρ∑
j=ρ

hl
j(s)s

−j +O(s−(r+1+ρ)e(r+2)|y|), l ∈ N0. (4.8)
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Proof. Function h is an analytic function of parameter s ∈ Cs and

h(l)(s) = (ω′
s)

(l)
s (1, s)− γ(ωs)

(l)
s (ξ, s), (4.91)

h(l)(s) = (ω′
s)

(l)
s (1, s)− γ(ω′

s)
(l)
s (ξ, s), (4.92)

h(l)(s) = (ωs)
(l)
s (1, s)− γ(ωs)

(l)
s (ξ, s), (4.93)

l ∈ N0. Substituting (2.2) into (4.9) we get

h(l)(s) = γ

r∑
j=1

plj(ξ) cos(ξs+
π
2 (j − l))s−j

−
r∑

j=0

p̄ l
j(1) cos(s+

π
2 (j − l))s−j +O(s−(r+1)e(r+2)|y|), (4.101)

h(l)(s) = γ

r∑
j=0

p̄ l
j(ξ) cos(ξs+

π
2 (j − l))s−j

−
r∑

j=0

p̄ l
j(1) cos(s+

π
2 (j − l))s−j +O(s−(r+1)e(r+2)|y|), (4.102)

h(l)(s) = γ

r+1∑
j=1

plj(ξ) cos(ξs+
π
2 (j − l))s−j

−
r+1∑
j=1

plj(1) cos(s+
π
2 (j − l))s−j +O(s−(r+2)e(r+2)|y|). (4.103)

We look for terms at s−j and get expressions (4.2)–(4.3). ⊓⊔

In the case r = 0 the last term is O(s−1e|y|) (Cases 1, 2) or O(s−2e|y|)
(Case 3) (see Lemma 2) and we have

h(l)(s) = hl
ρ(s)s

−ρ +O(s−1−ρe|y|), l ∈ N0, (4.11)

where

hl
0(s) =− (−1)l cos(s− π

2 l), (4.121)

hl
0(s) =− (−1)l cos(s− π

2 l) + γ(−1)lξl cos(ξs− π
2 l), (4.122)

hl
1(s) =− (−1)l sin(s− π

2 l) + γ(−1)lξl sin(ξs− π
2 l). (4.123)

If q ∈ C1[0, 1], then we have

h(l)(s) = hl
ρ(s)s

−ρ + hl
1+ρ(s)s

−1−ρ +O
(
s−2−ρe3|y|

)
, l ∈ N0, (4.13)

where

hl
1(s) =− (−1)lQ(1) sin(s− π

2 l) + γ(−1)lξl sin(ξs− π
2 l), (4.141)

hl
1(s) =− (−1)lQ(1) sin(s− π

2 l) + γ(−1)lξlQ(ξ) sin(ξs− π
2 l), (4.142)

hl
2(s) =− (−1)l

(
l −Q(1)

)
cos(s− π

2 l)

+ γ(−1)lξl−1
(
l − ξQ(ξ)

)
cos(ξs− π

2 l). (4.143)
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Remark 6. Asymptotic expansions (4.8), (4.11) and (4.13) are valid for SLP
with Neumann BC with ρ = −1 in Cases 1, 2; ρ = 0 in Case 3. Expressions
for the functions hl

j(s) were found in [35].

Analytic functions H := h(s)sρ, M := h(s)s1+ρ have the same nonzero
roots as function h and

H(l)(s) = H l
0(s) +O

(
s−1e|y|

)
, M (l)(s) = M l

−1(s) · s+O
(
e|y|

)
, (4.15)

where M l
−1(s) = H l

0(s) = hl
ρ(s), l ∈ N0.

Function H0
0 (s) = H̄0

0 (s) + Ĥ0
0 (s) (see (4.4)), where

H0
0 (s) =− cos s, H̄0

0 (s) = − cos s, Ĥ0
0 (s) = 0, (4.161)

H0
0 (s) =− cos s+ γ cos(ξs), H̄0

0 (s) = − cos s, Ĥ0
0 (s) = γ cos(ξs), (4.162)

H0
0 (s) =− sin s+ γ sin(ξs), H̄0

0 (s) = − sin s, Ĥ0
0 (s) = γ sin(ξs). (4.163)

Lemma 12. Assume that |γ| < 1 in Cases 2, 3. Function H0
0 has only simple

nonnegative roots xk: k ∈ N in Cases 1, 2; k ∈ N0 in Case 3. The root x0 = 0.
Positive roots xk ∈ Ik, k ∈ N. More precisely, xk = π(k − 1/2) in Case 1.

Proof. In Case 1 the proof is obvious. In Cases 2, 3 the proof follows from
Lemma 7 and Lemma 8. ⊓⊔

If s ∈ R−
s , i.e., s = ıy, y > 0, q ∈ C[0, 1], then (see (2.3))

H̃(y) := −h(ıy) = ey/2 +O
(
y−1ey

)
, (4.171,2)

H̃(y) := −h(ıy) = y−1ey/2 +O
(
y−2ey

)
. (4.173)

Let to consider positive eigenvalues, q ∈ Cr[0, 1]. In this case, (4.10) is valid
with s = x > 0 (y = 0) and functions M l

j , j = −1, r − 1, l ∈ N0, are bounded

and from (4.11) we have M (l)(x) = O(x), l ∈ N0 or

h(l)(x) = O(x−ρ), l ∈ N0. (4.18)

We investigate equation M(x+ δ) = 0, δ ∈ R, with additional condition

|h1
ρ(x)| ≥ κ > 0. (4.19)

We note that this condition is equivalent to |M1
−1(x)| ≥ κ > 0. For real

s = x > 0 from (4.17) we have

M(x) = M0
−1(x) · x+O(1). (4.20)

Lemma 13. If x is such that M0
−1(x) = 0 and δ = o(1), then δ = O

(
x−1

)
.

Proof. If x + δ is the root of function M , then from (4.20) we have equality
(x+ δ)M0

−1(x+ δ)+O(1) = 0 or M0
−1(x+ δ) = O

(
(x+ δ)−1

)
= O

(
x−1

)
. Since

M0
−1(x+ δ) = M0

−1(x) +M1
−1(x)δ + δ2

∫ 1

0

∫ 1

0

M2
−1(x+ ξτδ)ξdξdτ
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we get (
M1

−1(x) +O(δ)
)
δ = O

(
x−1

)
.

If |M1
−1(x)| ≥ κ > 0 and δ = o(1), then from this formula we have δ = O

(
x−1

)
.

Lemma is proved. ⊓⊔

Let’s denote the function

Q1(x) = −h0
1+ρ(x)

(
h1
ρ(x)

)−1
. (4.21)

If functions Q1, . . . , Qk−1 are defined, then we can find functions

zl(x) =
∑

n1+...+nk−1=i, j≥0,

j+n1+2n2+...+(k−1)nk−1=l

−hi+1
j+ρ(x)(h

1
ρ(x))

−1Q
n1
1 (x)···Q

nk−1
k−1 (x)

(i+1)n1!···nk−1!
, (4.22)

l = 1, k − 1 and function

Qk(x) =
∑

n1+...+nk−1=l, j>0,

j+n1+2n2+...+(k−1)nk−1=k

−h0
j+ρ(x)(h

1
ρ(x))

−1 l!z
n1
1 (x)···z

nk−1
k−1 (x)

n1!···nk−1!
. (4.23)

If q ∈ Cr[0, 1], then in such way we can find all Qj(x), j = 1, r, and they are
bounded functions.

Lemma 14. If q ∈ Cr[0, 1], h0
ρ(x) = 0 and δ = o(1), then we have asymptotic

expansion

δ =

r∑
j=1

Qj(x)x
−j +O

(
x−(r+1)

)
. (4.24)

Proof. Formula (4.24) is valid for r = 0. So, δ = O
(
x−1

)
. If r = 1, then

substituting (4.13) and (4.18) expressions into equality

0 = h(x+ δ) = h(x) + h′(x)δ + h′′(x+ θδ)δ2/2, θ ∈ [0, 1],

we have h1
ρ(x)x

−ρδ = −h0
1+ρ(x)x

−1−ρ + O
(
x−2−ρ

)
, i.e., δ = Q1(x)x

−1 +

O
(
x−2

)
, where Q1 is defined by (4.21).

Finally, suppose that δ =
∑k−1

j=1 Qj(x)x
−j +O

(
x−k

)
, k = 2, r. Substituting

(4.8) in the case y = 0 and (4.18) expressions into equality

0 = h(x+ δ) = h(x) + δ

k−1∑
i=0

h(i+1)(x)
δi

(i+ 1)!
+

h(k+1)(x+ θδ)

(k + 1)!
δk+1, θ ∈ [0, 1],

we derive recursive formulas (4.22) and (4.23). The full proof of general formula
(4.24) one can find in [34,35]. ⊓⊔

Remark 7. We can use the functions Qj(x), j = 1, r in Corollary 1.
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Corollary 5. If q ∈ C1[0, 1], then

Q1(x) =
Q(1) sinx− γ sin(ξx)

sinx
, (4.251)

Q1(x) =
Q(1) sinx− γQ(ξ) sin(ξx)

sinx− γξ sin(ξx)
, (4.252)

Q1(x) =
Q(1) cosx− γQ(ξ) cos(ξx)

cosx− γξ cos(ξx)
. (4.253)

Remark 8. Expression for Q1 in Case 3 was proved in [28].

Remark 9. For SLP with the Neumann BC [35] we have the following

Q1(x) =
Q(1) cosx− γ cos(ξx)

cosx
, (4.261)

Q1(x) =
Q(1) cosx− γQ(ξ) cos(ξx)

cosx− γξ cos(ξx)
, (4.262)

Q1(x) =
Q(1) sinx− γQ(ξ) sin(ξx)

sinx− γξ sin(ξx)
. (4.263)

Corollary 6. If q ∈ C2[0, 1], then

Q2(x) =− h0
2+ρ(x)

(
h1
ρ(x)

)−1 − h0
1+ρ(x)

(
h1
ρ(x)

)−1
z1(x), (4.27)

z1(x) =− h1
1+ρ(x)

(
h1
ρ(x)

)−1 − 1
2h

2
ρ(x)

(
h1
ρ(x)

)−1
Q1(x)

where functions h0
1+ρ, h

0
2+ρ, h

1
ρ, h

2
ρ, h

1
1+ρ are calculated in (4.4)–(4.7).

This explicit formula (4.27) for function Q2(x) allows to calculate the term
at x−2

k in the asymptotic expansion of real eigenvalues when q ∈ C2[0, 1]. In
Case 3 such asymptotic expansion was announced in [28, see Remark 7] and
only formula (4.263) was derived. Formula (2.7) allows to find asymptotic
expansion for corresponding eigenfunctions.

The formula (4.23) allows find the asymptotic expansion (4.24) for all
r ∈ N0, because all Qk can be calculated using hl

j(x), and for hl
j(x) we have

explicit formulas (4.2)–(4.3), where functions plj(t) and p̄lj(t) can be calculated
by recursive formulas (2.1) and recursive formulas in Lemma 1. Unfortunately,
if r > 1, then the formulas are very complicated (see, for example, (4.27),
(4.5), (2.5)–(2.6) in the case r = 2), and all results for q > 2 are useful only in
a theoretical sense, proving that such asymptotic expansions exist.

5 Spectral asymptotics for eigenvalues and eigenfunctions
for problem with two-point boundary condition

In this section, we investigate eigenvalues for SLP (1.1)–(1.3).

Lemma 15. Real eigenvalues of the SLP (1.1)–(1.3) are bounded from below.
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Proof. From (4.17) we have limy→+∞ H̃(y) = +∞. Then there exists a y0 > 0

such that H̃(y) > 0 for y > y0. Therefore, h(ıy) ̸= 0 for y > y0. Accordingly,
−y20 ≤ λ for negative λ. ⊓⊔

Corollary 7. The number of negative eigenvalues of problem (1.1)–(1.3) is finite
(maybe zero).

(a) Dsk (b) Dλk

Figure 3. Domain Dsk and Dλk.

In this section, we assume that |γ| < 1 in Cases 2, 3. Let us denote domain
Dk = {s ∈ C : |x| ≤ ak, |y| ≤ ak}, Dsk = Cs ∩Dk, k ∈ N (k > 1 in Cases 1, 2),
and a contour Γsk = Cs ∩ ∂Dk (see Figure 3(a)).

Remark 10. The corresponding contour Γλk in the plane Cλ = C will be the
boundary of the domain Dλk (see Figure 3(b)). The contour Γλk belongs to
two parabolas (see also Figure 1).

Lemma 16. The function H : R+
s → R has at least one positive root in the

interval Ik for large k.

Proof. For positive x we have formula (see (4.15))

H(x) = H̄0
0 (x) + Ĥ0

0 (x) +O(x−1).

In Case 2 we have H̄0
0 (x) = − cosx, Ĥ0

0 (x) = γ cos(ξx) and ak = πk, k ∈ N.
So, in this case H̄0

0 (a2l) = −1, H̄0
0 (a2l−1) = 1. Whereas |Ĥ0

0 (x) + O
(
x−1

)
| =

|γ cos(ξx)+O
(
x−1

)
| < 1 for large x, therefore H(a2l−1) > 0, H(a2l) < 0. Then

from Intermediate Value Theorem at least one root of the function H(x) lies in
each interval Ik =

(
ak, ak+1

)
, K < k ∈ N for large K. In Cases 1, 3 the proof

is similar. ⊓⊔

Corollary 8. The SLP (1.1)–(1.3) have infinitely many ( countable) positive
eigenvalues.

Lemma 17. There exists q1 > 0 such that all eigenvalues of problem (1.1)–
(1.3) in the domain {s ∈ Cs: |s| > q1} are positive and, more precisely, there
exists only one positive root of function H(s) in each interval Ik for sufficiently
large k.
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Proof. We consider formula (4.15) for l = 0:

H(s) = H0
0 (s) +O

(
s−1e|y|

)
, (5.1)

where

H0
0 (s) =− cos s, (5.21)

H0
0 (s) =− cos s+ γ cos(ξs), (5.22)

H0
0 (s) =− sin s+ γ sin(ξs). (5.23)

We claim that |H0
0 (s)| ≥ Ae|y| for s ∈ Γsk for sufficiently large k.

First of all in Case 1 the proof of this inequality is the same as in Case 2 with
γ = 0. On the vertical part of contour Γsk we have s = ak + ıy, y ∈ [−ak, ak],
k ∈ N. In Case 3 cos ak = 0 and from Lemma 6 (with β = ∞) it follows that
| sin ak|− |γ| | sin(ξak)| ≥ κ̃ > 0. Then using the inequality (3.73) in Lemma 10
we estimate

|H0
0 (s)| = | − sin s+ γ sin(ξs)| ≥

(
| sin ak| − |γ| | sin(ξak)|

)
cosh y ≥ κ̃e|y|/2.

In Case 2 we use Lemma 5 (with κ > 0) and the inequality (3.72) in Lemma 10:

|H0
0 (s)| = | − cos s+ γ cos(ξs)| ≥

(
| cos ak| − |γ| | cos(ξak)|

)
cosh y ≥ κe|y|/2.

On the remaining part of contour y = ±ak, 0 ≤ x ≤ ak, from Corol-
lary 4 it follows that there exists B > 0 and |H0

0 (s)| ≥ 1
4 (1 − |γ|)e|y| for

|y| ≥ B. Finally, |H0
0 (s)| ≥ Ae|y| for s ∈ Γsk for sufficiently large k, where

A = min{κ̃/2, κ/2, (1− |γ|)/4}.
Let’s consider formula (5.1). We estimate

|O
(
s−1e|y|

)
| ≤ c1|s|−1e|y| < Ae|y| ≤ |H0

0 (s)|

on the contours Γsk for sufficiently large k. Therefore, by Rouché theorem for
domain Dλk with contour Γλk it follows that the number of zeros of H(s) =
H0

0 (s) +O
(
s−1e|y|

)
and H0

0 (s) are the same inside Γsk for sufficiently large k.
There is exactly one root of the function H0

0 (s) in the domain between
contours Γsk and Γs,k+1 and it belongs to Ik (see Lemma 12). The function H
has root in Ik for sufficiently large k (see Lemma 16). So, the single root of H
in this domain is positive. ⊓⊔

Corollary 9. The function h has one positive root in Ik for large k.

So, there exist q1 > 0 such that roots of functions H(s) and H0
0 (s) are

positive for |s| > q1. If a root s ∈ Ik, then we enumerate these roots as sk
for function H(s) and xk for function H0

0 (s). We note, that xk = (k − 1/2)π,
k ∈ N in Case 1. We have sk ∼ xk ∼ πk (as k → ∞). Then H(sk) =
H0

0 (sk) + O
(
k−1

)
= 0 and limk→∞ H0

0 (sk) = 0. The function H0
0 is analytic

and has one root in Ik. Additionally, |H1
0 (xk)| ≥ κ > 0 (see Lemma 6 in

Cases 2, Lemma 5 in Case 3 and equality |H1
0 (xk)| = | sinxk| = 1 in Case 1).

Therefore, sk → xk as k → ∞ or

sk = xk + o(1) (as k → ∞). (5.3)
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Now we will investigate the distribution of these positive eigenvalues of
problem (1.1)–(1.3), and we leave out the note about sufficiently large k. Now
we consider only real positive s > 0.

Let us denote δk = sk − xk. We have that δk = o(1).

Theorem 1. Let q∈C[0, 1]. For eigenvalues λk=s2k and eigenfunctions uk of
problem (1.1)–(1.3), we have the asymptotic expansions

sk = xk +O
(
k−1

)
, uk(t) = − sin(xkt)x

−1
k +O

(
k−2

)
(5.4)

for sufficiently large k.

Proof. We have δk = o(1) and h0
ρ(xk) = H0

0 (xk) = M0
−1(xk) = 0, |h1

ρ(xk)| =
|H1

0 (xk)| ≥ κ > 0
(
see (4.19)

)
. So, all conditions of Lemma 13 are satisfied,

and it follows δk = O
(
x−1
k

)
= O

(
k−1

)
. Then we apply Corollary 2 and get

uk = ωsk(t) = − sin(xkt)x
−1
k +O

(
x−2
k

)
= − sin(xkt)x

−1
k +O

(
k−2

)
.

⊓⊔

Remark 11. Normalized eigenfunctions are

vk(t) =
√
2 sin(xkt) +O

(
k−1

)
.

Theorem 2. Let q ∈ Cr[0, 1]. For eigenvalues λk = s2k and eigenfunctions uk

of problem (1.1)–(1.3), we have the asymptotic expansions

sk = xk +

r∑
j=1

Qj(xk)x
−j
k +O

(
k−(r+1)

)
, (5.5)

uk(t) =

r+1∑
j=1

Rj(t, xk)x
−j
k +O

(
k−(r+2)

)
(5.6)

for sufficiently large k.

Proof. We have δk = O
(
k−1

)
(see Theorem 1). So, all conditions of Lemma 14

are valid, and it follows

δk =

r∑
j=1

Qj(xk)x
−j
k +O

(
k−(r+1)

)
.

Then we apply Corollary 1 and get

uk = ωsk(t) =

r+1∑
j=1

Rj(t, xk)x
−j
k +O

(
k−(r+2)

)
.

⊓⊔

Math. Model. Anal., 28(2):308–329, 2023.
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Corollary 10. If q ∈ C1[0, 1], then we have the asymptotic expansions

sk = xk +Q1(xk)x
−1
k +O

(
k−2

)
,

uk(t) = R1(t, xk)x
−1
k +R2(t, xk)x

−2
k +O

(
k−3

)
for sufficiently large k, where Q1(x) is defined by (4.25), R1(t, x) = − sin(xt),
R2(t, x) =

(
Q(t)− tQ1(x)

)
cos(xt).

Remark 12. Normalized eigenfunctions are

vk(t) =
√
2 sin(xkt)+

√
2
(
1
4 sin(2xk) sin(xkt)−R2(t, xk)

)
x−1
k +O

(
k−2

)
. (5.7)

Corollary 11. If q ∈ C2[0, 1], then we have the asymptotic expansions

sk = xk +Q1(xk)x
−1
k +Q2(xk)x

−1
k +O

(
k−3

)
, (5.8)

uk(t) = R1(t, xk)x
−1
k +R2(t, xk)x

−2
k +R3(t, xk)x

−2
k +O

(
k−4

)
for sufficiently large k, whereQ1(x), Q2(x) are defined by (4.25),(4.27), R1(t, x),
R2(t, x) and R3(t, x) are calculated in Example 1.

Remark 13. In [28] the asymptotic expansion (in Case 3) was published without
proof. Now we calculate explicit formulas for this case.

Remark 14. For SLP with the Neumann BC the asymptotic expansion (5.5) in
Theorem 2 remains correct, but formulas for functions Qj , j = 1, r, differ from
the Dirichlet case (see Remark 9). Formulas (4.21)–(4.23) for Qk(x) are the
same, but parameter ρ = −1 (Cases 1,2) and ρ = 0 (Case 3) and functions hl

j

differ from the Dirichlet case. Instead the asymptotic expansion (5.6) we have

uk(t) =

r∑
j=0

Rj(t, xk)x
−j
k +O

(
k−(r+1)

)
,

where R0(t, x) = cos(xt), R1(t, x) =
(
Q(t) − tQ1(x)

)
cos(xt) (for more results

with the Neumann BC see [35]).

6 Conclusions

In this paper, we investigated the asymptotic properties of the spectrum and
eigenfunctions for a SLP with Dirichlet and nonlocal two-point boundary con-
ditions. We obtained asymptotic expansions for eigenvalues and normalized
eigenfunctions. Previous works in the literature of the Sturm–Liouville the-
ory are especially for the cases q ∈ C[0, 1] or q ∈ C1[0, 1]. Contrary to the
these previous works, the authors investigate the asymptotics of characteristic
functions, eigenvalues and eigenfunctions for q ∈ Cr[0, 1], where r is arbitrary
positive integer. This paper continues a series of similar studies for problems
with the integral boundary condition [34], or the Neumann condition instead of
the Dirichlet condition [35]. The results obtained in this work can be extended
to differential equations with retarded argument [29].
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[2] E. Başkaya. Periodic and semi-periodic eigenvalues of Hill’s equation with sym-
metric double well potential. TWMS J. App. and Eng. Math., 10(2):346–352,
2020.

[3] A. Bayramov, S. Uslu and S. C. alıs.kan. Computation of eigen-
values and eigenfunctions of a discontinuous boundary value problem
with retarded argument. Appl. Math. Comput., 191(2):592–600, 2007.
https://doi.org/10.1016/j.amc.2007.02.118.
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[15] G. Infante. Positive solutions of systems of perturbed Hammerstein in-
tegral equations with arbitrary order dependence. Philos. Trans. R.
Soc. Lond. Ser. A Math. Phys. Eng. Sci, 379(2191):20190376(1–10), 2021.
https://doi.org/10.1098/rsta.2019.0376.

[16] G. Infante, P. Pietramala and F.A.F. Tojo. Non-trivial solutions of local and
non-local Neumann boundary-value problems. Proc. Roy. Soc. Edinburgh Sect.
A, 146(2):337–369, 2016. https://doi.org/10.1017/S0308210515000499.

[17] A.G. Kostyuchenko and I.S. Sargsjan. Distribution of eigenvalues. Selfadjoint
ordinary differential operators. Nauka, Moscow, 1979. (in Russian)

[18] B.M. Levitan and I.S. Sargsjan. Sturm–Liouville and Dirac operators. Kluwer,
Dordrecht, 1991.

[19] V. Mityushev and P.M Adler. Darcy flow around a two-dimensional
permeable lens. J. Phys. A: Math. Gen., 39(14):3545–3560, 2006.
https://doi.org/10.1088/0305-4470/39/14/004.
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