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Abstract. The main aim of this paper is to propose new mathematical models for
simulation of biosensors and to construct and investigate discrete methods for the
efficient solution of the obtained systems of nonlinear PDEs. The classical linear dif-
fusion operators are substituted with nonlocal fractional powers of elliptic operators.
The splitting type finite volume scheme is used as a basic template for the introduc-
tion of new mathematical models. Therefore the accuracy of the splitting scheme
is investigated and compared with the symmetric Crank-Nicolson scheme. The de-
pendence of the approximation error on the regularity of the solution is investigated.
Results of computational experiments for different values of fractional parameters are
presented and analysed.
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1 Introduction

Mathematical modelling is actively used for simulation of complex biochemical
processes and to optimize devices in various applications. Basic mathemati-
cal models are well described in [1], see extended lists of references presented
therein.

In this paper we are studying a particular class of models which are used
to simulate smart biosensors. Obtained results can be used in analysis of
many similar important devices, such as smart medical bioreactors. See e.g.,
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[19] where reaction-diffusion equations with nonlocal boundary conditions are
solved to investigate PID-controlled bioreactors, and [5, 11], where a modified
nonlocal feedback controller is used to control the production of drugs in simple
bioreactors.

In most models described above, linear transport processes (diffusion and
convection) and nonlinear chemical reactions are investigated. In order to anal-
yse processes with memory, mathematical models of a new type are proposed,
they mostly use fractional derivative techniques to describe nonlocal transport
dynamics [20,22,25].

There exists a similar approach when the memory effects are simulated by
considering the fractional power of elliptic operators Aα. We should note that
these operators can be defined in a non-unique way. In this paper we use the
spectral definition (see papers [2,3,13,15,16] and more references therein). An
important class of new problems is obtained when parabolic problems with
fractional power elliptic operators are considered [24, 26, 27]. Non-standard
effects of nonlocal diffusion processes are investigated numerically for some
important applied diffusion-reaction models, see [4, 8, 21,27].

In this paper we are interested in a generalized model of biosensors, when
the classical diffusion operator is replaced by the fractional power diffusion
operators. Such models present additional possibilities in solving inverse prob-
lems when the concentrations of different substrates are reconstructed from
measurements of the electric current generated on the surface of the electrode.

The rest of the paper is organized in the following way. In Section 2,
the mathematical problem is formulated. A standard model of biosensors is
defined as a system of diffusion-reaction PDEs with appropriate initial and
boundary conditions. The model is supplemented with additional information
on electric current, this information is used if the inverse problem is being
solved. The symmetric Crank-Nicolson finite volume scheme is constructed
and investigated in Section 3. The most important part of the theoretical
analysis of the symmetric finite volume scheme shows how the accuracy of the
discrete solution depends on the regularity of the boundary conditions for the
substrates. Some recommendations on how to preserve the classical second
order accuracy in time of the Crank-Nicolson schemes are proposed.

In Section 4, a splitting type finite volume scheme is constructed, with
a symmetric Crank-Nicolson type scheme as a basis. The accuracy of both
schemes is compared. The presented results of computational experiments also
confirm the second order accuracy in time for the splitting scheme.

In Section 5, three new mathematical models for simulation of biosensors
are proposed. The main difference between classical and new mathematical
models is in the description of diffusion transport – classical linear diffusion
operators are substituted with nonlocal fractional power elliptic operators. The
new operators are defined by applying the spectral method. The splitting
type finite volume scheme is used as a basic template for the introduction of
new mathematical models. Results of computational experiments for different
values of fractional parameters are presented and analysed. While in the first
two models the nonlocal diffusion processes are resolved by FFT algorithms, in
the third (most general) model the nonlocal fractional power elliptic operators
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are approximated by using the local rational operators. The BURA (Best
Uniform Rational Approximation) polynomials are computed with different
efficient algorithms. Some final conclusions are done in the last section.

2 Problem statement

A classical model of biosensors can be formulated as a system of diffusion-
reaction PDEs [1]:

∂Sl

∂t
= DSe

∂2Sl

∂x2
− VmaxSl

KM +
∑m

k=1 Sk
, l = 1, . . . ,m, 0 < x < d, t > 0,

∂Sl

∂t
= DSb

∂2Sl

∂x2
, l = 1, . . . ,m, d < x < d+ a, t > 0,

∂Pl

∂t
= DPe

∂2Pl

∂x2
+

VmaxSl

KM +
∑m

k=1 Sk
, l = 1, . . . ,m, 0 < x < d, t > 0, (2.1)

∂Pl

∂t
= DPb

∂2Pl

∂x2
, l = 1, . . . ,m, d < x < d+ a, t > 0,

Sl(x, 0) = 0, Pl(x, 0) = 0, l = 1, . . . ,m,

DSe
∂Sl

∂x

(
0, t

)
= 0, Pl(0, t) = 0, l = 1, . . . ,m,

Sl(d+ a, t) = sl, Pl(d+ a, t) = 0, l = 1, . . . ,m, (2.2)

where Sl are the concentrations of different substrates, Pj are products of
enzyme reactions, sl are concentrations of the substrates on the injection part
of the boundary, Vmax is the maximal enzymatic rate. We assume that each
substrate has the same Michaelis-Menten constant KM .

We note that the enzyme-catalyzed reaction is taking place in a porous
enzyme-loaded microreactor (0 ≤ x < d) and no chemical reactions take place
outside of it (d < x < d+a). The classical diffusion in space takes place in both
layers, but the effective diffusion coefficients can be different in the enzyme and
bulk space regions.

The classical merge conditions are specified at the boundary of two regions
x = d for t > 0 and and all components l = 1, . . . ,m:

Sl(d− 0, t) =Sl(d+ 0, t), DSe
∂Sl

∂x

(
d− 0, t

)
= DSb

∂Sl

∂x

(
d+ 0, t

)
, (2.3)

Pl(d− 0, t) =Pl(d+ 0, t), DPe
∂Pl

∂x

(
d− 0, t

)
= DPb

∂Pl

∂x

(
d+ 0, t

)
.

We note that in many applications of biosensors the direct mathematical
problems are not as interesting as various types of inverse problems. As an
example let us assume that the concentrations of substrates on the boundary
sl, l = 1, . . . ,m are not known and should be reconstructed from additional
measurements of the electric current generated on the surface of the electrode
at x = 0:

I(tk) =

m∑
l=1

clDPe
∂Pl

∂x

(
0, tk

)
, 0 < t1 < . . . < tK = T. (2.4)
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We also assume that the other parameters are known. Another interesting
inverse problem would be the determination of the fractional power from the
biosensor response, since that allows us to find an appropriate value of this
parameter, based on experimental data, as well as to investigate the dependence
of the fractional power on the choice of substrates, enzymes and other biosensor
parameters.

The measured information is usually perturbed by noise, e.g.,

Ĩ(t) = I(t)(1 + σX), or Ĩ(t) = I(t) + σX,

where X is a Gaussian random variable. In this paper we restrict our analysis
to direct problems and are interested in new mathematical models which are
based on nonlocal diffusion operators. Our aim is to obtain a wider class of
mathematical models of biosensors in order to solve the formulated applied
inverse problems more efficiently.

3 Finite-volume symmetric discrete scheme

The uniform spatial mesh ω̄h is defined as

ω̄h = {xj : xj = jh, j = 0, . . . , J}, xJd
= d, xJ = d+ a.

To make notation more convenient, we also consider a uniform time mesh:

ω̄t = {tn : tn = nτ, n = 0, . . . , N}, tN = T.

Let Sn
k,j , P

n
k,j be numerical approximations to the exact solutions Sk(xj , t

n),
Pk(xj , t

n), k = 1, . . . ,m of the problem (2.1)–(2.3) at the grid point (xj , t
n).

By using the finite volume method we define the following discrete diffusion
operators:

AhSS =


−DSe

2
h

S1−S0

h , j = 0,

− 1
h

(
DS,j+ 1

2

Sj+1−Sj

h −DS,j− 1
2

Sj−Sj−1

h

)
, j = 1, . . . , J − 2,

− 1
h

(
DSb

−SJ−1

h −DSb
SJ−1−SJ−2

h

)
, j = J − 1

and

AhPP =


− 1

h

(
DPe

P2−P1

h −DPe
P1

h

)
, j = 1,

− 1
h

(
DP,j+ 1

2

Pj+1−Pj

h −DP,j− 1
2

Pj−Pj−1

h

)
, j = 2, . . . , J − 2,

− 1
h

(
DPb

−PJ−1

h −DPb
PJ−1−PJ−2

h

)
, j = J − 1.

Here, DS,j− 1
2
= DSe, DP,j− 1

2
= DPe for j = 1, . . . , Jd and DS,j+ 1

2
= DSb,

DP,j+ 1
2
= DPb for j = Jd, . . . , J − 1.

It is important to note, that AhS is defined for vectors satisfying the ho-
mogeneous boundary condition SJ = 0. This assumption is done in order to
use the Fourier transform for an implementation of obtained discrete schemes.
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This approach is important for the definition of nonlocal fractional powers of
elliptic operators Aα, 0 < α < 1. Then the nonhomogeneous boundary condi-
tions Sl(d + a, t) = sl should be included into the discrete scheme as specific
additional source terms. These are non-local functions, due to the non-locality
of fractional diffusion.

The Crank-Nicolson scheme. In this subsection we define a linearized
symmetric discrete scheme. First, for a new time level n > 0 we apply the
predictor-corrector method and solve the linearized discrete saturation equa-
tions:

S
n− 1

2 ,i

l − Sn−1
l

0.5τ
+AhSS

n− 1
2 ,i

l = −
VmaxS

n− 1
2 ,i−1

l

KM +
∑m

k=1 S
n− 1

2 ,i−1

k

+ δj,J−1
DSb

h2
S
n− 1

2

l,J ,

l = 1, . . . ,m, i = 1, 2, (3.1)

where S
n− 1

2

l = 1
2 (S

n
l + Sn−1

l ) and Vmax = 0, j = Jd + 1, . . . , J . Iterations are
defined as:

S
n− 1

2 ,0

l = Sn−1
l , S

n− 1
2

l = S
n− 1

2 ,2

l .

For each component l and fixed iteration number i the obtained linear system
of equations is solved efficiently by using the standard factorization algorithm.

After solving Equations (3.1), the discrete approximations of the product
Pn
l equations are formulated:

P
n− 1

2

l − Pn−1
l

0.5τ
+AhPP

n− 1
2

l =
VmaxS

n− 1
2

l

KM +
∑m

k=1 S
n− 1

2

k

, l = 1, . . . ,m, (3.2)

where P
n− 1

2

l = 1
2 (P

n
l + Pn−1

l ). Again the standard factorization algorithm is
used to solve these systems of linear equations.

Convergence analysis of the constructed finite volume scheme is done by
using well established techniques (examples are described in [9, 18]).

Theorem 1. For a sufficiently small τ ≤ C1, where the constant C1 does not
depend on space mesh step h, the scheme (3.1)–(3.2) is unconditionally sta-
ble. If solutions of the differential problem (2.1)–(2.2) are sufficiently smooth
functions, then the discrete solutions of the scheme (3.1)–(3.2) converge in the
maximum norm with second order accuracy in space and time.

Remark 1. The stability of the finite volume scheme (3.1) and the convergence
rate of iterations can be improved if we use the following predictor-corrector
type iterative algorithm:

S
n− 1

2 ,i

l − Sn−1
l

0.5τ
+AhSS

n− 1
2 ,i

l = −
VmaxS

n− 1
2 ,i

l

KM +
∑m

k=1 S
n− 1

2 ,i−1

k

+ δj,J−1
DSb

h2
S
n− 1

2

l,J .

The requirement in Theorem 1 that the solution of the differential problem
(2.1)–(2.2) should be sufficiently regular is nicely illustrated by considering
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two different regimes of boundary conditions. For the first case, the boundary
conditions (2.2) for the saturation of Sl are injected in a non-continuous way
at t = 0:

Sl(d+ a, t) = sl, t > 0, Sl(d+ a, 0) = 0. (3.3)

For the second case, the boundary conditions are introduced continuously:

Sl(d+ a, t) = sl ×min(t, 1), t > 0. (3.4)

In the computational experiments we consider the system with m = 3 com-
ponents and use the following typical values of physical, chemical and geometric
characteristics [1]:

Vmax,l =5× 10−(9−l), KM = 1× 10−4, l = 1, 2, 3,

DSe =DSb = 4.5× 10−6, DPe = DPb = 4.5× 10−6,

s1 =3.88574, s2 = 11.65712, s3 = 5.25716,

d =0.02 cm, a = 0.04 cm, T = 400s.

In order to use the same physical parameters for all mathematical models of
biosensors considered in this paper, we assume that diffusion coefficients are
the same in both regions. Still, for the last model, we consider a general case
with different values of diffusion coefficients.

We investigated the accuracy of the discrete scheme (3.1)–(3.2) with respect
to the size of time step τ . In all experiments with different solvers the space
mesh sizes are fixed to N = 999, the test problem is solved until T = 400 with
different time steps. The electric current I(tk) generated on the surface of the
electrode at x = 0 was sampled every second tk = k.

Table 1 gives the errors e(τ) of the discrete solution for the Crank-Nicolson
scheme (3.1)–(3.2) in the maximum norm and the experimental convergence
rates ρ(τ), for a sequence of decreasing time steps τ :

e(τ) = max
k=1,...,400

∣∣∣I(tk)− Iτ (tk)
∣∣∣, ρ(τ) = log2

(
e(2τ)

/
e(τ)

)
,

where the reference solution I(tk) is computed by using a very small time step
τ = 0.002. Then the integration error introduced by the discrete scheme can
be measured accurately.

Table 1. Errors ej(τ) and experimental convergence rates ρj(τ), j = 1, 2 for the discrete
solution of the Crank-Nicolson scheme (3.1)–(3.2) for a sequence of time steps τ and two
different regimes (3.3) and (3.4) of boundary conditions.

τ e1(τ) ρ1(τ) e2(τ) ρ2(τ)

0.25 4.90896 — 0.0236383 —
0.125 2.43052 1.014 0.0059078 2.000
0.0625 1.19066 1.030 0.0014752 2.001
0.03125 0.57057 1.061 0.0003670 2.006
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It follows from the presented results, that the accuracy of the Crank-
Nicolson discrete scheme (3.1)–(3.2) agrees well with the theoretical prediction:
the accuracy is reduced to the first order for discontinuous boundary conditions
(3.3) and it is restored to the optimal second order for the regularized contin-
uous regime of boundary conditions (3.4).

4 The symmetric splitting scheme

In this section, we use the techniques proposed in [6,8], where diffusion-reaction
parabolic problems with the fractional power elliptic operators are solved. We
start from the symmetric finite volume scheme (3.1)–(3.2). We approximate
the nonlinear reaction and linear diffusion processes separately:

S
n− 2

3 ,i

l,j − Sn−1
l,j

1
2τ

= −
Vmax

1
2

(
S
n− 2

3 ,i−1

l,j + Sn−1
l,j

)
KM +

∑m
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1
2
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S
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3 ,i−1

k,j + Sn−1
k,j

) , (4.1)

l = 1, . . . ,m, i = 1, 2, j = 0, . . . , Jd,

S
n− 2

3 ,0
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l,j , S

n− 2
3

l,j = S
n− 2

3 ,2

l,j ,

P
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3
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l,j

1
2τ
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3
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KM +

∑m
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1
2

(
S
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3
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) , (4.2)
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3
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3

l

τ
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3
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3

l

2
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h2

S
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3
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3

l,J

2
,

l = 1, . . . ,m, (4.3)

P
n− 1

3
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n− 2

3

l

τ
+AhP

P
n− 1

3

l + P
n− 2

3

l

2
= 0, l = 1, . . . ,m, (4.4)

Sn,i
l,j − S

n− 1
3

l,j
1
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1
2
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Sn,i−1
l,j + S

n− 1
3

l,j

)
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k=1

1
2

(
Sn,i−1
k,j + S

n− 1
3

k,j

) , (4.5)

l = 1, . . . ,m, i = 1, 2, Sn,0
l,j = S

n− 1
3

l,j , j = 0, . . . , Jd,

Pn
l,j − P

n− 1
3

l,j
1
2τ

=
Vmax

1
2

(
Sn
l,j + S

n− 1
3

l,j

)
KM +

∑m
k=1

1
2

(
Sn
k,j + S

n− 1
3

k,j

) , l = 1, . . . ,m, j = 0, . . . , Jd,

(4.6)

The convergence analysis of the constructed splitting finite volume scheme
can be done by using well established techniques. The main difference in com-
parison to the analysis of symmetric Crank-Nicolson scheme is that the splitting
error should be taken into account for the obtained error estimates (see [10,18]).

Theorem 2. For a sufficiently small τ ≤ C2, where the constant C2 does not
depend on space mesh step h, the scheme (4.1)–(4.6) is unconditionally sta-
ble. If solutions of the differential problem (2.1)–(2.2) are sufficiently smooth
functions, then the discrete solutions of the scheme (4.1)–(4.6) converge in the
maximum norm with second order accuracy in space and time.
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The requirement that the solution of the differential problem must be suf-
ficiently regular is again nicely seen in experimental results by considering two
different regimes of boundary conditions.

Table 2 gives the errors e2(τ) of the discrete solution for the splitting scheme
(4.1)–(4.6) and the experimental convergence rates ρ2(τ), for a sequence of
decreasing time steps τ . Here we consider only the regularized continuous
regime of boundary conditions.

Table 2. Errors e2(τ) and experimental convergence rates ρ2(τ) for the discrete solution
of the splitting scheme (4.1)–(4.6) for a sequence of time steps τ and continuous regime of
the boundary conditions.

τ e2(τ) ρ2(τ)

0.25 4.3350 —
0.125 1.0838 1.9999
0.0625 0.2709 2.0001
0.03125 0.067735 1.9998

It follows from the presented results, that the accuracy of the splitting
discrete scheme agrees with the theoretical prediction, it is equal to the second
order for the regularized continuous regime of boundary conditions.

Still the global error of the solution of the splitting scheme (4.1)–(4.6) is
larger than the integration error of the Crank-Nicolson type discrete scheme
(3.1)–(3.2).

5 Fractional powers of elliptic operators

In this section, we assume that the diffusion coefficients are constant in both
regions of the domain:

DSe = DSb = DS , DPe = DPb = DP .

Let us define the following diffusion operators:

AhSS =


− 2

h
S1−S0

h , j = 0,

− 1
h

(
Sj+1−Sj

h − Sj−Sj−1

h

)
, j = 1, . . . , J − 2,

− 1
h

(
−SJ−1

h − SJ−1−SJ−2

h

)
, j = J − 1

and

AhPP =


− 1

h

(
P2−P1

h − P1

h

)
, j = 1,

− 1
h

(
Pj+1−Pj

h − Pj−Pj−1

h

)
, j = 2, . . . , J − 2,

− 1
h

(
−PJ−1

h − PJ−1−PJ−2

h

)
, j = J − 1.
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Next, we define two inner products for discrete functions S and P , they
take into account the appropriate homogeneous boundary conditions:

(Sl, Sk)S = Sl,0Sk,0
h

2
+

J−1∑
j=1

Sl,jSk,jh, (Pl, Pk)P =

J−1∑
j=1

Pl,jPk,jh.

It is easy to see that discrete operators AhS and AhP are self-adjoint and
positive definite. Thus they admit two systems of eigenfunctions ΦSj and ΦPj

with corresponding eigenvalues λSj > 0 and λPj > 0, such that:

AhSΦSj = λSjΦSj , j = 0, . . . , J − 1,

AhPΦPj = λPjΦPj , j = 1, . . . , J − 1.

Then the fractional powers of operators AhS and AhP are defined as:

Aα
hSS =

J−1∑
j=0

λα
Sj(S, ΦSj)SΦSj , Aα

hPP =

J−1∑
j=1

λα
Pj(P,ΦPj)PΦPj ,

where the fractional power parameter 0 < α < 1.
It is easy to see that Aα

hS , Aα
hP are also self-adjoint and positive definite

operators.
We define the first modified biosensor model, where instead of linear diffu-

sion equations (4.3), (4.4), nonlocal diffusion equations are used:

S
n− 1

3

l − S
n− 2

3

l

τ
+DSAα

hS

S
n− 1

3

l + S
n− 2

3

l

2
=

DS

h2
A(α−1)

hS δj,J−1

S
n− 1

3

l,J + S
n− 2

3

l,J

2
,

l = 1, . . . ,m,

P
n− 1

3

l − P
n− 2

3

l

τ
+DPAα

hP

P
n− 1

3

l + P
n− 2

3

l

2
= 0, l = 1, . . . ,m.

The obtained linear equations can be solved efficiently by using the FFT
algorithm. For completeness of the model we present the eigenvectors ΦSj and
ΦPj and corresponding eigenvalues λSj , λPj explicitly:

ΦSk,j = cos
(
π
(j − 0.5)k

J

)
, λSj =

4

h2
sin2

(π
2

(j − 0.5)

J

)
, k, j = 1, . . . , J,

ΦPk,j = sin
(
π
kj

J

)
, λPj =

4

h2
sin2

(π
2

j

J

)
, k, j = 1, . . . , J − 1.

Computational experiments. Our main aim is to investigate how the so-
lution of the mathematical model of biosensors depends on the fractional power
parameter α. In Figure 1, the graphs of the electric current (2.4) function are
presented for three different values of α.

It follows from the presented results that the value of the fractional pa-
rameter has a strong influence on the dynamics of the electric current. The
current reaches the stationary value later and these absolute values are larger
for decreased values of parameters α.
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t

0

2000

4000

6000

8000

I(
t)

alpha= 1

alpha= 0.95

alpha= 0.9

Figure 1. The dynamics of the electric current function I(t) for three fractional orders:
a) α = 1, b) α = 0.95, c) α = 0.9.

The second generalized model of biosensors is based on a direct usage of
the operators AhS and AhP :

S
n− 1

3

l − S
n− 2

3

l

τ
+Aα

hS

S
n− 1

3

l + S
n− 2

3

l

2
= A

(α−1)
hS

DSb

h2
δj,J−1

S
n− 1

3

l,J + S
n− 2

3

l,J

2
,

l = 1, . . . ,m, (5.1)

P
n− 1

3

l − P
n− 2

3

l

τ
+Aα

hP

P
n− 1

3

l + P
n− 2

3

l

2
= 0, l = 1, . . . ,m. (5.2)

In the case of constant diffusion coefficients the system of eigenvectors re-
mains the same and only trivial changes in computation of corresponding eigen-
values should be done. The FFT algorithm is used to solve the Equations (5.1)
and (5.2).

Computational experiments. Again our aim is to investigate how the so-
lution of the biosensor mathematical model depends on the fractional power
parameter α. In Figure 2, the graphs of the electric current (2.4) function are
presented for three different values of α.

It follows from the presented results that the dynamics of the electric current
has a different dependence on the value of the fractional parameter. The current
reaches the stationary value faster but these absolute values are smaller for
decreased values of parameters α.

The third mathematical model of biosensors is tailored to a general case of
non-constant diffusion coefficients. In order to solve it we apply the algorithm
which gives an approximation of the solutions of the nonlocal diffusion equa-
tions (5.1)–(5.2). This algorithm uses the method which is proposed in [6, 7].
It is based on rational approximations of nonlocal operators. As an example
we analyse the Equation (5.2) for a product function. Let us introduce a new
function:

P̃
n− 1

2

l =
1

2

(
P

n− 1
3

l + P
n− 2

3

l

)
.
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Figure 2. The dynamics of the electric current function I(t) for three fractional orders:
a) α = 1, b) α = 0.9, c) α = 0.8.

Then (5.2) can be rewritten in the following modified form:

P̃
n− 1

2

l = (Ih + 0.5τAα
h)

−1P
n− 2

3

l . (5.3)

Next we approximate the nonlocal operator (Ih+0.5τAα
h)

−1, by a local rational
operator:

(Ih + 0.5τAα
h)

−1 ≈ rM (Ah),

where a function rM (z) is defined as:

rM (λ) = pM (λ)/qM (λ)

with polynomials pM and qM of the same degree M . As a practical imple-
mentation of this approach a few efficient methods can be used. Most of them
are variants of the well-known BURA (Best Uniform Rational Approximation)
method (for a detailed description and theoretical analysis of these algorithms
see [12, 14, 17]). There, rM is a best rational approximation of the function:
f(λ) = 1/(1 + 0.5τλα), λ ∈ [λmin, λmax].

A very accurate approximation r̃M of the required rational function rM
can be computed by applying the BRASIL algorithm, which is based on the
barycentric rational formula [17]. In computational experiments done in [7]
we used a free and open-source implementation of this algorithm in Python.
We note that there are more implementations for the construction of BURA
approximations, see e.g. [23].

The constructed rational function rM can be written in a partial fraction
decomposition form [8]:

r̃M (λ) = c0 +

M∑
j=1

cj
λ− dj

.
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Then the following scheme is constructed to compute the approximation of the
solution of Equation (5.3):

P̃
n− 1

2

l =
(
c0I +

M∑
j=1

cj
(
AhP − djI

)−1
)
P

n− 2
3

l .

Its implementation is efficient if all coefficients dj are non-positive. The results
of stability and accuracy analysis obtained in [7] confirm that this requirement
is satisfied for the given class of equations when the BRASIL algorithm is used
to define rational approximations.

As an additional bonus of this algorithm we note that all (M +1) subprob-
lems are independent and can be solved in parallel.

6 Conclusions

A new class of mathematical models of biosensors is proposed. The fractional
powers of elliptic operators are used to simulate the nonlocal diffusion process.
This generalization also covers the classical mathematical models, it is sufficient
to use a special value of the fractional parameter α = 1.

The new models are introduced for systems of parabolic problems by consid-
ering discrete approximations of the classical models of biosensors. As a basic
template we use the splitting scheme since this approach is quite flexible and
allows us to take into account non-homogeneous boundary conditions. This
point is important when the spectral definition of fractional powers of elliptic
operators is applied.

The accuracy of the proposed splitting schemes is investigated for non-
regular solutions of the differential mathematical models. The obtained theo-
retical results allow us to formulate recommendations on how to inject bound-
ary conditions in simulations of real biosensors.

Results of computational experiments are presented and analysed when
different values of fractional power parameters are used for new mathematical
models of biosensors.
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