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Abstract. In this article, we propose to solve the three-dimensional time-dependent
Maxwell equations in a singular axisymmetric domain with arbitrary data. Due to the
axisymmetric assumption, the singular computational domain boils down to a subset
of R2. However, the electromagnetic field and other vector quantities still belong
to R3. Taking advantage that the domain is transformed into a two-dimensional
one, by doing Fourier analysis in the third dimension, one arrives to a sequence of
singular problems set in a 2D domain. The mathematical tools of such problems
have been exposed in [4, 19]. Here, we derive a variational method from which we
propose an original finite element numerical approach to solve the problem. Numerical
experiments are also shown to illustrate that the method is able to capture the singular
part of the solution. This approach can also be viewed as a generalization of the
Singular Complement Method to three-dimensional problem.
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ric geometry.

AMS Subject Classification: 65N30; 78M10; 35B65; 35L67.

1 Introduction

There is a need to simulate electromagnetic wave phenomena of increasing
complexity, leading to the development of more general and efficient numerical
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methods. Indeed, a significant number of engineering problems requiring to
simulate numerically devices working with electromagnetic fields have come
out.

This article is part of the efforts made in the framework of non-smooth
problems, that are not necessarily convex curvilinear polyhedra. In these con-
ditions, such domains may contain reentrant edges that generate singularities
in Maxwell’s equations solutions. In the same way, note that a change in the
type of boundary conditions [23, 24] can also generate such singularities, even
in a more regular geometry. From a more intuitive point of view, the term
singularities means that such geometrical features can generate, in their vicin-
ity, very strong electromagnetic fields, that have to be carefully handled and
are often difficult to compute. Moreover, as shown in [5], the impossibility
of correctly handling these singularities may have drastic consequences on the
phenomenon one wants to model.

In this context, many methods have been proposed to compute the solution
to the Maxwell equations. We can mention the edge finite element method,
introduced by Nédélec [31, 32], that has demonstrated efficiency for the static
and eigenvalue problems. More recently, discontinuous Galerkin method has
been introduced [28] and have been extensively studied since then. In [15],
Brenner et al. have also proposed an adaptive finite element method that
works in dimension two.

On the other hand, it is interesting for some applications to have a con-
tinuous approximation of the solutions, that can capture both the curl and
the divergence of the electromagnetic fields, for instance when coupling the
Maxwell equations in other equations, like the Vlasov one, see [6]. But the
latter works only in convex (curvilinear) polyhedra.

Indeed, when one solves Maxwell’s equations in a non-convex domain with
a continuous discretization, the discretized spaces are included in a closed,
strict subspace of the space of real solutions, see the seminal work of [13,14] for
theoretical proofs. Hence, one can not approximate the singular field without a
special treatment, even for static problems [20]. For this reason, an ansatz like
mesh refinement techniques fails. The Singular Complement Method proposed
in [4, 5] is a way to overcome this difficulty by explicitly adding some adapted
singular complements.

However, solving numerically three-dimensional boundary value problems
in a non-convex domain is in substance different from the two-dimensional
case and is often more difficult and more expensive. When it is possible, a
convenient way to reduce the three-dimensional problem to two-dimensional
equations, is to assume that the geometry is invariant by translation or by
rotation. Assuming further that the data are also invariant, the problem can
be reduced to a two-dimensional one. This approach has been widely used,
even for singular problems, see for instance [4, 5, 20].

In this spirit, for an axisymmetric domain, the so-called Fourier Finite El-
ement Method is an efficient way to solve problems in three-dimensional ax-
isymmetric domains, even for other equations, see for instance [11] for Stokes
equations. The method uses the Fourier expansion in one space direction as-
sociated to a finite element approach in the other two space dimensions, see
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among others [16,24,26,30] or [27] for interface problems.

In this paper, we also consider a geometrical reduction of Maxwell’s equa-
tions in a singular axisymmetric geometry, in which the three-dimensional time-
dependent Maxwell equations can be reformulated as geometrically simpler
models. Essentially, this uses the fact that the azimuthal direction is orthogo-
nal to the singularities and so does not ”see them”. Hence, it is worth to reduce
the three dimensional problem to a series of two dimensional ones, that can be
solved even if the geometry is singular.

More precisely, we consider the three-dimensional time-dependent Maxwell
equations in a singular axisymmetric domain. Due to the axisymmetric as-
sumption, the singular computational domain is reduced to a subset of R2.
However, we assume that the data are arbitrary, namely not necessarily ax-
isymmetric. Hence, the electromagnetic field and other vector quantities still
belong to R3. Taking advantage that the domain is transformed into a two-
dimensional one, by doing Fourier analysis in the third dimension, one arrives
to a sequence of singular problems set in a 2D domain. We then derive a varia-
tional formulation from which we propose a finite element method to solve the
problem and numerically compute the solution.

This paper is organized as follows: in a first section, we recall the Maxwell
equations and their formulations in an axisymmetric domain. Then, we present
the principle of the 2D space reduction, based on the use of a Fourier transform
in θ. This reduces 3DMaxwell’s equations to a series of 2DMaxwell’s equations,
depending on the Fourier variable k. This will allow us to compute the 3D
solution by solving several 2D problems, each one depending on k. Even if
the solution remains singular for each k in the 2D domain, we will be able to
decompose it into a regular and a singular part (see Section 4). The regular part
belongs to a regular space and will be computed by a standard finite element
method. The singular part, that belongs to a finite-dimensional subspace,
will be handled following the same principle as in [4]. This is the subject
of Section 5. The numerical method to solve the time-dependent problem is
developed in Section 6 for both electric and magnetic fields. In the Section 7,
numerical examples are proposed to illustrate the feasibility of the method.

In the remainder of the article, we write vector fields or spaces with boldface.
In a similar way, names of function spaces of scalar fields usually begin by an
italic letter (for instance, L2(Ω) = L2(Ω)3 or L2(Ω)2).

2 Geometry setting and Maxwell’s equations

2.1 The Maxwell equations

In this article, we consider an axisymmetric bounded and simply connected Lip-
schitz domain Ω in R3. Its boundary is denoted by Γ and n is the unit outward
normal to Γ . We also denote by c and ε0 the speed of light and the dielectric
permittivity respectively. Hence, the evolution of a time-dependent electro-
magnetic field E(x, t),B(x, t) propagating in vacuum is governed by Maxwell’s
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equations:

∂E

∂t
− c2curl B = − 1

ε0
J, (2.1)

∂B

∂t
+ curl E = 0,

div E =
ρ

ε0
, (2.2)

div B = 0 , (2.3)

where ρ(x, t) and J(x, t) are the charge and current densities, that depend on
the space variable x and on the time variable t. As it well known, the divergence
constraints (2.2)–(2.3) are satisfied at any time t if they are satisfied at the
initial time t = 0, and provided that the charge conservation equation holds
for the E-field. However, in the discrete case, these properties sometimes do
not pass to the numerical approximation. We can deal with this problem by
introducing the Lagrange multipliers of the constraints (2.2)–(2.3), as proposed
in [6].

These equations are supplemented with appropriate boundary conditions.
In this article, we assume that the boundary Γ is a perfect conductor, so that
the electromagnetic field satisfies

E(x, t)× n = 0 and B(x, t) · n = 0 on the boundary Γ , (2.4)

but one can extend our results to the case of non homogeneous materials (see
[22]), or impose a Silver-Müller absorbing boundary condition on a part of the
boundary, see for instance [4, 5] or [10].

Remark 1. For the sake of simplicity, we only consider homogeneous materials.
However, the case of non-homogeneous materials can be handled in a similar
way, under the conditions that the decomposition into regular and singular
parts (introduced in Section 4) can be performed. This is for example the case
for several material media, with different constant dielectric permittivities and
magnetic permeabilities, see for instance [7].

Last, initial conditions are provided, for instance at initial time t = 0

E(x, 0) = E0 and B(x, 0) = B0,

where E0 andB0 only depend on the variable x and satisfies the divergence con-
ditions (2.2)–(2.3) and the boundary conditions (2.4). Existence and unique-
ness of this problem is well known [29], and deeply studied for instance in [3].

2.2 Formulation in an axisymmetric domain

From now on, we assume that the domain Ω is an axisymmetric one, limited
by the surface of revolution Γ . We denote by ω and γb their intersections with
a meridian half-plane, as depicted in Figure 1.

The boundary ∂ω := γ corresponds to γa ∪ γb, where either γa = ∅ when γb
is a closed contour (i.e., Ω does not contain the axis) or γa is the segment of the
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Figure 1. Example of 3D domain Ω, and its corresponding 2D intersection with meridian
half-plane ω.

axis lying between the extremities of γb. The natural coordinates for this do-
main are the cylindrical coordinates (r, θ, z), with the basis vectors (er, eθ, ez).
A meridian half-plane is defined by the equation θ =constant, and (r, z) are
Cartesian coordinates in this half-plane.

However, even if we assumed symmetry of revolution for the domain Ω,
we do not assumed such a symmetry for the data. Consequently, the problem
can not be reduced to a two-dimensional one by assuming that derivative with
respect to the azimuthal variable θ vanishes, i.e. ∂/∂θ = 0, as made for example
in [4]: we have to continue to deal with a three-dimensional problem.

Taking this remark into account, it is natural to rewrite the Maxwell equa-
tions (2.1)–(2.3) simply by replacing the operators div and curl by their cylin-
drical counterparts in the cylindrical coordinates (r, θ, z), defined by

divu =
1

r

∂

∂r
(rur) +

1

r

∂uθ

∂θ
+

∂uz

∂z
,

curl u =

(
1

r

∂uz

∂θ
−∂uθ

∂z

)
er+

(
∂ur

∂z
− ∂uz

∂r

)
eθ +

1

r

(
∂

∂r
(ruθ)−

∂ur

∂θ

)
ez.

Similarly, the gradient operator in cylindrical coordinates is expressed as

grad f =
∂f

∂r
er +

1

r

∂f

∂θ
eθ +

∂f

∂z
ez.

Following [6], it is more efficient if one wishes to use nodal finite element meth-
ods, for instance for charge particle simulations as in the context of Vlasov-
Maxwell computations, to eliminate the magnetic field B (respectively the elec-
tric field E) from Equations (2.1)–(2.3). Maxwell’s equations reduce to two
second-order wave equations for each field separately:

∂2E

∂t2
+ c2curl curlE = − 1

ε0

∂J

∂t
, (2.5)

∂2B

∂t2
+ c2curl curlB =

1

ε0
curl J , (2.6)

the constraints equations, namely divergence and boundary conditions, still
holding. Moreover, we have to add initial conditions for ∂E

∂t and ∂B
∂t , since we
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are dealing with a second order problem. We obtain them in a direct way from
the Maxwell equations as

∂E

∂t
(t = 0) = c2curl B0 −

1

ε0
J(t = 0) ,

∂B

∂t
(t = 0) = −curl E0 .

One can also had terms related to the divergence of the fields, yielding the
so-called augmented formulations:

∂2E

∂t2
+ c2(curl curlE− graddivE) = − 1

ε0

∂J

∂t
− c2

ε0
grad ρ, (2.7)

∂2B

∂t2
+ c2(curl curlB− grad divB) =

1

ε0
curl J , (2.8)

supplemented with initial and boundary conditions.

2.3 Variational formulations in 3D

Let us now introduce the variational formulations of the problem, which can be
applied for a given (convex or not) domain Ω. For this purpose, we define the
usual function spaces with classical notations. In the text, names of function
spaces of scalar fields usually begin by an italic letter, whereas they begin by a
bold letter for spaces of vector fields (for instance, L2(Ω) = L2(Ω)3 or L2(Ω)2).
The usual norm and scalar product of L2(Ω) are denoted by ∥ · ∥0 and (·, ·)
respectively. We shall also need to use the following Sobolev spaces and norms

H(curl , Ω) = {v ∈ L2(Ω), curl v ∈ L2(Ω)} , ∥v∥2curl = ∥v∥20 + ∥curl v∥20 ,
H(div , Ω) = {v ∈ L2(Ω), divv ∈ L2(Ω)} , ∥v∥2div = ∥v∥20 + ∥divv∥20 ,
H1(Ω) = {v ∈ L2(Ω), gradv ∈ L2(Ω)} , ∥v∥21 = ∥v∥20 + ∥gradv∥20 .

We introduce analogously the spaces for the curl and div operators

H0 (curl ;Ω) = {v ∈ H (curl ;Ω) : v× n|Γ = 0} ,
H0 (div ;Ω) = {v ∈ H (div ;Ω) : v · n|Γ = 0} ,

so that electric and magnetic field naturally belongs to the spaces

X (Ω) = H0 (curl ;Ω) ∩H (divv;Ω) , Y (Ω) = H (curl ;Ω) ∩H0 (divv;Ω) .

In practice, we use a result from [21,34], that claims that the spaces X (Ω) and
Y (Ω) are compactly embedded in L2(Ω). In these conditions, for a connected
boundary Γ , one can equivalently define a scalar product and the related norm
on X (Ω) (respectively on Y (Ω)) by

a (u,v) := (curl u, curl v) + (divu,divv) , ∥u∥X = ∥u∥Y := a (u,v)
1/2

.

In other words, this means that the L2-norm is uniformly bounded by the X
and the Y norm, for elements belonging to X (Ω) or Y (Ω). This is the so-
called Weber inequality, that basically expresses that in X (Ω) or in Y (Ω),
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the semi-norm u −→ (∥curl u∥20 + ∥divu∥20)1/2 is a norm equivalent to the
canonical one.

We are now in a position to derive the (augmented) variational formulations
associated to problems (2.5)–(2.6) or (2.7)–(2.8). Let us derive it from the first
one. As usual, we first take the dot product of Equations (2.5) and (2.6) by
F ∈ X (Ω) and C ∈ Y (Ω), and integrate them over Ω. We then use a Green
formula and add the variational form of the divergence equation for E and
B respectively, to finally obtain the formulation for the vector wave equation
(2.5)–(2.6):
Find E(t) ∈ X (Ω) and B(t) ∈ Y (Ω) such that:

d2

dt2
(E(t),F) + c2 a (E(t),F) =− 1

ε0

(
∂J

∂t
,F

)
+

1

ε0
(ρ,divF) ,∀F ∈ X (Ω) ,

d2

dt2
(B(t),C) + c2 a (B(t),C) =

1

ε0
(curl J,C) ,∀C ∈ Y (Ω) .

This formulation can be similarly derived from problem (2.7)–(2.8). Theoretical
results about these formulations have been established for several years now,
see for instance a summary in [3].

3 Two-dimensional space reduction

As the data we consider are not axisymmetric, one can not use that all deriva-
tives in the θ direction vanish. This means that one can not perform ∂/∂θ = 0
to reduce the 3D space problem to a 2D space one. However, one can use the
cylindrical symmetry of the domain Ω to characterize the scalar and vector
fields defined on it through their Fourier series in θ, the coefficients of which
being functions defined on ω.

Note that such a technique together with the Fourier-Laplace transform
is also used for stability analysis of numerical schemes [17] solving Maxwell
equations. Moreover, since the time dependent part of the problem is not
explicitly involved in this dimension reduction, we do not mention the time
variable in the Fourier series, which can be easily added. For example, we
will consider, for a given function w(r, θ, z) or for a vector field w(r, θ, z), the
following Fourier expansions

w (r, θ, z) =
1√
2π

∑
k∈Z

wk (r, z) eikθ, w (r, θ, z) =
1√
2π

∑
k∈Z

wk (r, z) eikθ ,

and the related truncated Fourier expansions of w and w at order N , that is

w[N ] (r, θ, z)=
1√
2π

N∑
k=−N

wk (r, z) eikθ, w[N ] (r, θ, z)=
1√
2π

N∑
k=−N

wk (r, z) eikθ.

(3.1)
In the sequel, we will also need the following weighted Lebesgue space

L2
r(ω) :=

{
w measurable on ω :

∫∫
ω

|w(r, z)|2 rdrdz < ∞
}

Math. Model. Anal., 28(3):487–508, 2023.
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that will be the space of Fourier coefficients (at all modes) of functions in
L2 (Ω). At the same time, let us also define the space of relevant Fourier
coefficients for the electromagnetic fields. It is easy to check that, for w ∈
H1 (Ω), resp. w ∈ L2 (Ω) such that ∆w ∈ L2 (Ω) , it holds

gradw =
1√
2π

∑
k∈Z

grad kw
keikθ, resp. ∆w =

1√
2π

∑
k∈Z

∆kw
keikθ ,

while for w ∈ H (div ;Ω), resp. H (curl ;Ω), one has

divw =
1√
2π

∑
k∈Z

div kw
keikθ resp. curlw =

1√
2π

∑
k∈Z

curl kw
keikθ.

In the expressions above, the operators for each mode k are defined as

grad k :=
∂w

∂r
er +

ik

r
weθ +

∂w

∂z
ez; ∆kw :=

1

r

∂

∂r

(
r
∂w

∂r

)
−k2

r2
w+

∂2w

∂z2
;

div kw :=
1

r

∂ (rwr)

∂r
+

ik

r
wθ +

∂wz

∂z
; (curl kw)r :=

ik

r
wz −

∂wθ

∂z
;

(curl kw)θ :=
∂wr

∂z
− ∂wz

∂r
; (curl kw)z :=

1

r

(
∂ (rwθ)

∂r
− ikwr

)
.

Concerning the regularity of w and of the components ofw, as explained in [12],
it only depends on the regularity of the Fourier components of wk and wk, for
k ∈ Z. As a consequence, a function v belongs to X(Ω) if and only if, for all
k ∈ Z, its Fourier coefficients vk belong to the space X(k)(ω) defined by

X(k)(ω) = {vk ∈ L2
r(ω), curl kv

k ∈ L2
r(ω) ,div kv

k ∈ L2
r(ω) ,v

k × n|γb
= 0} .

In a similar way, one introduces the space Y(k)(ω) for the Fourier coefficients
of elements of Y(Ω), namely

Y(k)(ω) = {vk ∈ L2
r(ω), curl kv

k ∈ L2
r(ω) ,div kv

k ∈ L2
r(ω) ,v

k · n|γb=0} .

Let us recall an important and useful property concerning these spaces, proved
in [19] (see also [18] for the Poisson problem), that will be used throughout the
numerical method derived in the next sections. We have

Proposition 1. The spaces X(k)(ω) and Y(k)(ω) are independent of k, for
|k| ≥ 2.

This property will allow us to compute the singular subspaces only for the
modes |k| ≤ 2, while the modes ±2 will be use to compute all the higher modes
|k| > 2.

3.1 Variational formulation in 2D for each k

We now apply the principle of dimension reduction described above to reduce
the 3D equations to a series of 2D formulations, the solutions of which are the
Fourier coefficients (Ek, Bk), for each mode k.
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More precisely, one uses the linearity of the Maxwell equations together
with the orthogonality of the different Fourier modes in L2(ω). This implies
that the Fourier coefficients (Ek,Bk) of the 3D electromagnetic field (E,B) is
solution to similar formulations set in the 2D domain ω, with the operators
curl k and div k. For convenience, let us introduce the operator ak(·, ·)

ak(u,v) = (curl ku, curl kv) + (div ku,div kv) . (3.2)

We get that each mode Ek is solution to the following variational formulation:

Find Ek(t) ∈ X(k)(ω) such that, for all F ∈ X(k)(ω):

d2

dt2

(
Ek(t),F

)
+ c2 ak

(
Ek(t),F

)
= − 1

ε0

(
∂tJ

k,F
)
+

1

ε0

(
ρk,div kF

)
, (3.3)

where ρk and Jk denote the Fourier coefficients of the charge and current
density ρ and J respectively, that depend (in space) only on (r, z).

In the same way, for the magnetic field B(t), one gets that its Fourier
coefficients Bk(t) verify the variational formulation, for each mode k:

Find Bk(t) ∈ Y(k)(ω) such that, for all C ∈ Y(k)(ω):

d2

dt2

(
Bk(t),C

)
+ c2 ak

(
Bk(t),C

)
=

1

ε0

(
curl kJ

k,C
)
. (3.4)

Now, concerning the the truncation error of the Fourier expansion, a mathe-
matical analysis has been proposed in [19,33], the interested reader is referred
to these references. For short, it is proved there that the truncated solution
E[N ], as defined in (3.1), converges toward E as N−2s, the value of s > 1/2

depending on the regularity of E(t) and ∂E(t)
∂t . Similar results have been proved

for the convergence of B[N ] toward B.

4 Decomposition in regular and singular parts

So far, as for instance in [30], we have considered a geometrical reduction of
Maxwell’s equations in an axisymmetric geometry, in which the three-dimensio-
nal Maxwell equations can be reformulated as a geometrically simpler model.
However, the geometrical singularities remain in the two-dimensional domain
ω (see Figure 1), and we have now to deal with. For our purpose here, we
rely on theoretical results proved in [1], for the case k = 0, namely the full
axisymmetric case, and in [19] for the general case. For the self-content of
the article, we briefly recall, without proof, some useful results that help to
understand the construction of the numerical method.

We first consider, for each mode k, the weighted Sobolev space H1
r(ω) that

contains functions vk ∈ L2
r(ω) such that grad kv

k ∈ L2
r(ω). Now, we introduce,

for each Fourier mode k, the regular subspaces XR
(k)(ω) and YR

(k)(ω), defined
by:

XR
(k)(ω) := X(k)(ω) ∩H1

r(ω) and YR
(k)(ω) := Y(k)(ω) ∩H1

r(ω).

These subspaces are regular, in the sense that they coincide to the spaces
of solutions in the case of a regular domain. Using now that XR

(k)(ω) and

Math. Model. Anal., 28(3):487–508, 2023.
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YR
(k)(ω) are closed subspaces of X(k)(ω) and Y(k)(ω) respectively, we deduce

the following decomposition

X(k)(ω) = XR
(k)(ω)⊕XS

(k)(ω) and Y(k)(ω) = YR
(k)(ω)⊕YS

(k)(ω) ,

where XS
(k)(ω) and YS

(k)(ω) are singular subspaces, equal to {0} if the domain
Ω (or equivalently ω) is regular.

As a second step, we have to characterize these singular spaces. For a
two-dimensional axisymmetric domain, it was also proved (see the references
above), that they are of finite dimension, the dimension of which depending on
the number NS of singularities in the domain ω. More precisely, we have the
following result (see Figure 2).

Figure 2. Local coordinates near a reentrant edge (left) and a conical point (right). For
clarity, the index j has been dropped.

Proposition 2. The singular spaces XS
(k)(ω) and YS

(k)(ω) are of finite dimen-
sion, namely

� For k = 0,

dimYS
(k)(ω) := NB = number of reentrant edges,

dimXS
(k)(ω) := NE = NB + number of conical points with vertex

angle > π/β⋆, β⋆ ≃ 1.3731.

� For k ̸= 0,

dimYS
(k)(ω):=NB=dimXS

(k)(ω):=NE=number of reentrant edges.

Resulting from these properties, one can decompose, for each mode k, the
electromagnetic field Ek,Bk into a regular part and a singular one, namely

Ek(t) = Ek
R(t) +Ek

S(t), Bk(t) = Bk
R(t) +Bk

S(t) . (4.1)

Moreover, since the singular spaces are of finite dimension, one can introduce
their respective basis (xk

S,j)j=1,NE
and (yk

S,j)j=1,NB
for a given Fourier mode k.
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Using now that these basis are time independent, one can express the singular
parts Ek

S(t) and Bk
S(t) as

Ek
S(t) =

NE∑
j=1

µk
E,j(t)x

k
S,j , Bk

S(t) =

NB∑
j=1

µk
B,j(t)y

k
S,j ,

where µk
E,j(t) and µk

B,j(t) are smooth functions in time (at least continuous,
cf [2]). As a consequence, the decomposition (4.1) of the electromagnetic, that
will be useful for the numerical method, can be finally expressed, for each k,

Ek(t) = Ek
R(t)⊕

j=NE∑
j=1

µk
E,j(t)x

k
S,j , Bk(t) = Bk

R(t)⊕
j=NB∑
j=1

µk
B,j(t)y

k
S,j . (4.2)

The last part consists in characterizing and computing the static basis xk
S,j and

yk
S,j . From a numerical point of view, remark that, due to the Proposition 1,

it will be sufficient to compute them only for k = −1, 0, 1, 2. As these basis
are not time-dependent, the computations will be carried out only once as an
initialization procedure.

5 Computation of singular basis, for |k| ≤ 2

In this section, we briefly recall for completeness, the method used to compute
the singular basis xk

S,j , 1 ≤ j ≤ NE and yk
S,j , 1 ≤ j ≤ NB . Details can be found

in [9]. For each Fourier mode indexed by k ∈ Z, and for a given singularity
indexed by j, 1 ≤ j ≤ NB , the electric and magnetic singular basis xk

S,j and

yk
S,j solve respectively the following variational formulation
ak

(
xk
S,j ,v

)
=0, ∀v∈XS

(k)(ω),

xk
S,j × n|γb

= 0,

xk
S,j · n|γa = 0,

{
ak

(
yk
S,j ,v

)
= 0, ∀v ∈ YS

(k)(ω),

yk
S,j · n|γ = 0, γ := γb ∪ γa .

(5.1)

These problems are obviously singular in the two-dimensional domain ω, in the
sense that an attempt to solve them by a classical finite element method will
give zero as a solution. However, the singular basis xk

S,j and yk
S,j computed in

this way are by construction orthogonal to any element of XR
(k)(ω) and YR

(k)(ω)
respectively. This property will be useful to simplify the time-dependent for-
mulations in Section 6.

Following the idea proposed in the full axisymmetric case [4], we introduce
SX
j (respectively SY

j ), the principal part of the singularity j, defined as the

part that makes xk
S,j (respectively yk

S,j) singular, and does not depend on the
Fourier mode k (see [2, 3, 19]), that is,

xk
S,j = xk

S,j,reg + SX
j and yk

S,j = yk
S,j,reg + SY

j .

Above, xk
S,j,reg and yk

S,j,reg denote a regular part of xk
S,j and yk

S,j respectively,
that can be computed by a classical finite element method.
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Considering the neighborhood of a reentrant edge Ej for a given j, we use the
notations of Figure 2-left: in particular, (ρ, ϕ) denotes the local polar coordi-
nates centered at the reentrant edge Ej , the corresponding angle being called
π/α, 1/2 < α < 1, ϕ0 being the angle between the r-axis and the origin of
ϕ. For the conical point C, (ρ, ϕ) are the local polar coordinates centered at
this point, with the origin of ϕ on the z-axis. Hence, the principal part can be
expressed, for the electric and magnetic case respectively

SX
j = − rj

aj
αjρ

αj−1

sin((αj − 1)ϕj − ϕj,0)
0

cos((αj − 1)ϕj − ϕj,0)

 ,

SY
j = − rj

aj
αjρ

αj−1

 cos ((αj − 1)ϕj − ϕj,0)
0

− sin ((αj − 1)ϕj − ϕj,0)

 ,

the difference between the two expressions arising from the boundary condi-
tions. Above, the term rj/aj helps us to impose the boundary condition on
the axis r = 0, and can be viewed as a well-adapted cut-off function.
Note, that in the electric case only, and for the particular case k = 0 cor-
responding to the full axisymmetric case, there exists an additional conical
singularity (C in Figure 2) in the neighborhood of a conical vertex with an
aperture π/β greater than π/β⋆ for β⋆ ≃ 1.3731. In the magnetic case, there
is no conical singularity. Details can be found in [2]. Using these results, one
computes the regular part of the singular electric basis xk

S,j,reg by solving the
variational formulation, for each j,

ak
(
xk
S,j,reg,v

)
= −ak

(
SX
j ,v

)
∀v ∈ XR

(k)(ω),

xk
S,j,reg × n|γb

= −SX
j × n|γb

,

xk
S,j,reg · n|γa

= 0,

and similarly for the singular magnetic basis yk
S,j,reg{

ak
(
yk
S,j,reg,v

)
= −ak

(
SY
j ,v

)
∀v ∈ YR

(k)(ω),

yk
S,reg · n|γ = −SY

j · n|γ .

Note that the right-hand side of these equations, in both electric and magnetic
cases, can be obtained by computing the analytic expressions of curl kS

X
j and

div kS
X
j , involved in ak

(
SX
j ,v

)
, and the same for the magnetic case, replacing

SX
j by SY

j , see details in [9].

6 Solving the time-dependent problem

In what follows, we first present the case of the magnetic field formulation. The
electric field formulation is similar and will be briefly exposed later.

For this purpose, we consider the variational formulation (3.4), in which we
substitute the decomposition of the magnetic field (4.2) in regular and singular
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parts. Using that the singular basis yk
S,j are time-independent, and denoting

by ′′ the second derivative in time, we get

d2

dt2

(
Bk

R(t),C
)
+

NB∑
j=1

(µk
B,j)

′′ (yk
S,j ,C

)
+ c2 ak

(
Bk

R(t),C
)

+ c2
NB∑
j=1

µk
B,j(t) ak

(
yk
S,j ,C

)
=

1

ε0

(
curl kJ

k,C
)
,∀C ∈ YR

(k)(ω) .

In addition, we add to the space of test functions YR
(k)(ω) the functions

(yk
S,j)j=1,NB

. This yields the NB additional equations (1 ≤ i ≤ NB)

d2

dt2

(
Bk

R(t),y
k
S,i

)
+

NB∑
j=1

(µk
B,j)

′′ (yk
S,j ,y

k
S,i

)
+ c2 ak

(
Bk

R(t),y
k
S,i

)

+ c2
NB∑
j=1

µk
B,j(t) ak

(
yk
S,j ,y

k
S,i

)
=

1

ε0

(
curl kJ

k,yk
S,i

)
,∀yk

S,i∈YS
(k)(ω).

Moreover, using the orthogonality for each k of YR
(k)(ω) and YS

(k)(ω) with
respect to the equivalent scalar product ak(·, ·) defined by (3.2), as recalled
in (5.1), we can eliminate the corresponding terms in the formulations above.
This variational formulation is finally expressed as

Find (Bk
R,µ

k
B) ∈ YR

(k)(ω)× RNB such that

(
∂2Bk

R(t)
∂t2 ,C

)
+

NB∑
j=1

(µk
B,j)

′′ (yk
S,j ,C

)
+ c2 ak

(
Bk

R(t),C
)

=
1

ε0

(
curl kJ

k,C
)
, ∀C ∈ YR

(k)(ω),

(
∂2Bk

R(t)
∂t2 ,yk

S,i

)
+

NB∑
j=1

(µk
B,j)

′′(yk
S,j ,y

k
S,i

)
+ c2

NB∑
j=1

µk
B,j(t) ak

(
yk
S,j ,y

k
S,i

)
=

1

ε0

(
curl kJ

k,yk
S,i

)
, ∀yk

S,i ∈ YS
(k)(ω).

(6.1)

From a computational point of view, it is worth to rewrite the bilinear form
ak (·, ·) involved above, depending on the values of k. Performing a simple
integration by parts shows that

ak (u,v) = a0 (um,vm) + k2
(um

r
,
vm

r

)
+ (curluθ, curl vθ) + k2

(uθ

r
,
vθ
r

)
+ ıkB (u,v) + ıkC (u,v) ,

where a0(·, ·) denotes the operator ak(·, ·) for k = 0 (namely in the ”full”
axisymmetric case), um := (ur, uz) and the vector curl of a scalar field w is
defined by

curlw := −∂zwer + r−1∂r (rw) ez .
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In addition, the two bilinear forms B (u,v) and C (u,v) are defined by

B (u,v) :=

∫
γb

(um · n) v̄θ − uθ (v̄m · n) dγ

C (u,v) :=

∫ ∫
ω

2 (uθv̄r − urv̄θ)
dω

r
.

Note that the term B (u,v) vanishes as soon u · n = v · n = 0, that is the
case for the magnetic field, due to the perfect conductor boundary condition.
The same will be also true if u× n = v× n = 0, that will be the case for the
electric field. In addition, the term C (u,v) is not singular despite the presence
of 1/r in the integral. Indeed, only on the boundary γa one may have r = 0,
but uθ = vθ = 0 (that is in practice Bk

θ or Ek
θ for the electric case) due the

symmetry condition on the axis γa.

Starting from this variational formulation, we are now ready to derive a
finite element approximation. We first introduce a finite element partition of
the domain ω, and we denote by Th the mesh of ω made of triangles Kh, h being
the size of the mesh. We actually used the P2 finite element approximation, so
that the approximation space for the vector fields is made of functions which are
component-wise P2-conforming on the triangulation. Let YR,h

(k) (ω) ⊂ YR
(k)(ω)

be the space of discretized test functions of dimension Nh.

Let now Bk,h(t) = Bk,h
R (t) +

∑NB

j=1 µ
k,h
B,j(t)y

k,h
S,j be the discrete solution.

After discretization in space, the semi-discretized variational formulation is
written (with the addition of the index h) in the same way as (6.1). It can be
expressed equivalently as a linear system:

d2

dt2
MrrB

k
R + Mk

rsµ
k
B

′′
+ c2Kk

rrB
k
R =

1

ε0
Rk

rrJ
k, (6.2)

d2

dt2
Mk

srB
k
R + Mk

ssµ
k
B

′′
+ c2Kk

ssµ
k
B =

1

ε0
Rk

srJ
k, (6.3)

where Mrr denotes the mass matrix that does not depend to the Fourier mode
k, Mk

rs is a (Nh, NB) rectangular matrix coming from the integral over ω of the

product of the NB singular functions yk,h
S,j by the basis functions of YR,h

(k) (ω),

Mk
sr being its transpose. Similarly, the matrix Kk

rr is associated to the term

ak

(
Bk

R(t),C
)
Rk

rr coming from the source term with curl kJ
k, and µk

B stand-

ing for the vector of RNB of entries (µk
B,j). Finally, Mk

ss and Kk
ss are the

“singular” mass and stiffness matrices of dimension (NB , NB), associated to
the term

(
yk
S,j ,y

k
S,i

)
and ak

(
yk
S,j ,y

k
S,i

)
respectively. For these singular matri-

ces, the computation must be carried out precisely in the neighborhood of the
singularities by using a quadrature formula of high order.

We then perform a time discretization involving a second-order explicit
(leap-frog) scheme. Here the notation Xn (resp. Xn+1) stands for a variable
X at time tn = n∆t (resp. tn+1 = (n + 1)∆t), where ∆t is the time-step.
Fn, Gn, Hn is the set of quantities known at time tn for each equation of the
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scheme (6.2)–(6.3), which can be rewritten as

MrrB
k,n+1
R +Mk

rsµ
k,n+1
B = F k,n, (6.4)

Mk
srB

k,n+1
R +Mk

ssµ
k,n+1
B = Gk,n. (6.5)

To solve this linear system, a convenient way is to decouple µk,n+1
B and the

unknown Bk,n+1
R as proposed in [5] for a two-dimensional Cartesian Maxwell

system of equations, in the case of NB = 1. The method developed here is more
general, since it is also adapted to a domain with NB ≥ 1. For this purpose,
we simply substitute (6.4)−Mk

rs(Mk
ss)

−1(6.5) to obtain a system where µk,n+1
B

does no appear anymore. It remains now to invert this system to compute
Bk,n+1

R , and then, at the corresponding time, the value µk,n+1
B by solving (6.5).

Compared to the system one would obtained in a regular domain, the ad-
ditional effort is essentially the computation of the matrix (Mk

ss)
−1. Mk

ss being
a symmetric definite positive matrix (by construction) of dimension (NB , NB),
i.e. a few units (and often NB = 1), (Mk

ss)
−1 is very easy to compute once and

for all, for any mode k, |k| ≤ 2.

For the sake of completeness, we conclude this section with a brief presen-
tation of the electric case, that can be basically treat similarly to the mag-
netic case. Here, we consider the variational formulation (3.3) and also substi-
tute the decomposition of the electric field (4.2) in regular and singular parts.
Correspondingly, we add to the space of test functions XR

(k)(ω) the functions

(xk
S,j)j=1,NE

. Using again arguments of orthogonality, we obtain the following
variational formulation:

Find (Ek
R,µ

k
E) ∈ XR

(k)(ω)× RNE such that

(
∂2Ek

R(t)
∂t2 ,F

)
+

NE∑
j=1

(µk
E,j)

′′ (xk
S,j ,F

)
+ c2 ak

(
Ek

R(t),F
)

= − 1
ε0

(
∂Jk

∂t ,F
)
+

1

ε0

(
ρk,div kF

)
, ∀F ∈ XR

(k)(ω),

(
∂2Ek

R(t)
∂t2 ,xk

S,i

)
+

NE∑
j=1

(µk
E,j)

′′(xk
S,j ,x

k
S,i

)
+ c2

NE∑
j=1

µk
E,j(t) ak

(
xk
S,j ,x

k
S,i

)
= − 1

ε0

(
∂Jk

∂t ,xk
S,i

)
+

1

ε0

(
ρk,div k x

k
S,i

)
, ∀xk

S,i ∈ XS
(k)(ω).

From this variational formulation, the finite element approximation is defined
by introducing the space of discretized test functions XR,h

(k) (ω) ⊂ XR
(k)(ω). Here

again, we choose P2-conforming finite elements. Denoting

Ek,h(t) = Ek,h
R (t) +

NE∑
j=1

µk,h
E,j(t)x

k,h
S,j

the discrete solution, we obtain the semi-discretized variational formulation,
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that can be expressed by the following linear system:

d2

dt2
MrrE

k
R + Mk

rsµ
k
E

′′
+ c2Kk

rrE
k
R =− 1

ε0

d

dt
MrrJ

k +
1

ε0
Lk
rrρ

k,

d2

dt2
Mk

srE
k
R + Mk

ssµ
k
E

′′
+ c2Kk

ssµ
k
E =− 1

ε0

d

dt
Mk

srJ
k +

1

ε0
Lk
srρ

k .

The notations used being the same as for Bk,h(t), whereas the additional ma-
trices Lk

rr and Lk
sr are associated to the term with divergence. As this system

is very similar to (6.2)–(6.3), the time discretization is derived in the same way,
and the solution is obtained correspondingly.

7 Numerical results

In this section, we present numerical results of singular field computations to
illustrate the method. For the sake of simplicity, we will restrict ourselves to
a domain with only one singular point. Hence, we will consider a 3-D top hat
domain Ω with a reentrant circular edge, that corresponds, for a given θ, to
an L-shaped 2-D domain ω with a reentrant corner. To compute the singular
basis or time-dependent solutions, we introduce an unstructured mesh of ω
made up of triangles, with no particular refinement near the reentrant corner.
An example of such a mesh is presented in Figure 3.

Figure 3. The typical mesh for a L-shaped domain ω.

We then approximate the variational formulations presented in the sections
above by building a finite element method with FreeFem++ package [25], which
implements a finite element method in space. As mentioned above, we recall
that we actually used a P2 finite element approximation in space, whereas the
time discretization is performed by a second-order explicit scheme.

In addition, note that for a given geometry and for a given Fourier mode k,
the singular bases xk

S,j and yk
S,j are computed during the initialization step, to-

gether with the additional regular-singular and singular-singular matrices like
Mk

rs or Mk
ss. More generally, the computational complexity of the algorithm

basically depends on the orders of finite element and time discretization used,
our approach can be used for a Pk finite element (k ≥ 1), and for a time dis-
cretization scheme of order p ≥ 1. For instance, if we denote byQ the number of
quadrature points used for integration, the generation of the stiffness and mass
matrix (need to be generated only once) are in O(QNh). Similarly, assembling
the element right-hand sides for 2N + 1 Fourier modes is in O((2N + 1)QNh)
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(N denoting the order of the truncated Fourier expansion, see (3.1)). The com-
putational complexity also depends on the iterative method used for solving
the final linear system of equations, that is the matrix Mrr −Mk

rs(Mk
ss)

−1Mk
sr.

However, for a chosen space and time-dependent method, in our case k = 2
and p = 2, we can evaluate the computational “additional effort” required by
our discrete scheme, compared to the same scheme used in the standard way.
Hence, the matrices Mk

rs,Mk
ss and Mk

sr depend on the Fourier mode k, and the
computational complexity of the assembling is in O(Nh). Further, updating the
values of the singular coefficients µk

E,j(t) and µk
B,j(t) requires O(1) operations

per time-step. Therefore, the additional memory requirements, and computing
effort, are relatively small, the complexity of the method and the memory
requirements being better than that of the 3D methods.

Finally, it can be interesting to note what parts of subproblems can be
solved in parallel. Clearly, the electric and magnetic problems can be solved
separately (and so, in parallel), since we have considered Maxwell’s equations
written separately as two independent second-order wave equations. The sin-
gular basis xk

S,j and yk
S,j , computed once for all, can be also solved in parallel,

and independently for each singularity k. The time dependent part of the
method can not be (easily) parallelized, for a given mode k, but since there is
no coupling between the different modes (i.e., for different values of k), they
can also be solved in parallel, as independent problems. and B are independent
and can be solved separately. Basis xs and ys can also be solved separately,
and also for each singularity.

7.1 Computation of the singular basis

We will present here, as an example, numerical results obtained in the compu-
tation of magnetic basis yk

S,j for several values of k. The computation of the

electric basis xk
S,j can be dealt in a similar way.

As recalled in Proposition 1, it is sufficient to compute these basis only
for the modes k = −1, 0, 1, 2, while the modes k = 2 or k = −2 will be
use to compute all the higher modes |k| > 2. For this reason, we illustrate the
computational method here by showing the numerical results obtained for these
values of k. For this purpose, we follow the procedure presented in Section 5.

In Figure 4, we depicted the real part of the z-component for y−1
S and

y0
S , and the r-component for y1

S and y2
S , obtained by solving the variational

formulation (5.1), with a standard finite element method. Remember that they
are complex quantities, as soon as k ̸= 0. As one can see, the method is able
to capture the singular behavior of the solution near the reentrant corner of ω
(edge in Ω), whereas a conforming finite element method can not yield such
a result. In addition, the results are not noisy, even though the mesh is not
particularly refined near the edge.

Note that the mode k = 0 is a particular case that corresponds to the ”fully”
axisymmetric case. In [4, 8] we have proposed other ways to derive a method
that can capture the singular solution. It is interesting (reassuring!) to note
that the two approaches give the same results.
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a) b)

c) d)

Figure 4. a) ℜ(y−1
S,z), z-component of the singular basis for k = −1, b) y0

S,z ,

z-component of the singular basis for k = 0, c) ℜ(y1
S,r), r-component of the singular basis

for k = 1, d) ℜ(y2
S,r), r-component of the singular basis for k = 2.

Figure 5. Case k = 0 - Top: B0(t1) and B0
R(t1), for t1 < tI . Bottom: B0(t2) and

B0
R(t2), for t2 > tI .

Figure 6. B1(t1) and B1
R(t1), for t1 < tI (case k = 1), z-component.
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Figure 7. B1(t2) and B1
R(t2), for t2 > tI (case k = 1), r-component.

Figure 8. B1(t2) and B1
R(t2), for t2 > tI (case k = 1), r-component.

7.2 Time-dependent case

This subsection is a follow-up of the previous one, to give an example of
time-dependent case. Hence, we will concentrate on the magnetic case. We
consider the same L-shaped domain ω as above, on which a perfectly con-
ducting boundary condition is imposed, and we want to numerically compute
Bk(t) = Bk

R(t) + µk
B(t)y

k
S , where, for each k, µk

B(t) is a smooth function in
time and yk

S is the singular basis already computed.

We are interested in computing the magnetic fieldBk(t) created by a current
loop. Then, initial conditions are set to zero, and a current is defined as J(t) =
10 sin(λt)eθ, with a frequency λ/2π = 2.5GHz. The support of this current is
a little disc centered around the middle of the domain. This current generates
a wave which propagates circularly around the current source. Physically, as
long as the wave has not reached the reentrant corner, the field is smooth.

Let tI be the impact time, then, if one writes Bk(t) = Bk
R(t) + µk

B(t)y
k
S ,

µk
B(t) = 0 for all t lower than tI , and Bk(t) and Bk

R(t) coincide. On the other
hand, for t > tI , µk

B(t) ̸= 0 (and so µk
B(t)y

k
S is) and the total field differs from

its regular part.

This behavior is illustrated on Figures 5–8 for k = 0 and k = 1. Similar
results are obtained for other values of k. Note that, for |k| > 2, the singular
basis used is y2

S , as explained above.

8 Conclusions

In this article, we have presented a numerical method to solve the three-
dimensional time-dependent Maxwell equations in a non-smooth and non con-

Math. Model. Anal., 28(3):487–508, 2023.



506 F. Assous and I. Raichik

vex axisymmetric domain, with arbitrary data.

Using the axisymmetric assumption, the singular computational was re-
duced to a subset of R2, even if the electromagnetic field remain in R3. By
performing a Fourier transform in the third dimension, the problem can be
reduced to a sequence of singular problems set in a 2D domain.

Then, one has used a splitting of the space of solutions with respect to
regularity, in a regular subspace, which is equal to the entire space of solu-
tions when the domain is smooth or convex, and a singular subspace that has
been characterized. Consequently, we have derived a variational formulation
from which an original finite element numerical approach, based on standard
Lagrange finite elements, was developed to solve these problems.

Numerical experiments have also been shown to illustrate that the method
is able to capture the singular part of the solution. This approach can also
be viewed as a generalized Singular Complement Method. Finally, note that
this approach is easy to implement, as it can be included in already existing
computational codes, without having to rewrite them entirely, and for a small
additional computational cost.
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