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the impact of parameters associated with overweight, obesity and diagnosed diabetes
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other than obesity.
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1 Introduction

A large part of the world population lives in countries where overweight and
obesity account [21] for more deaths than malnutrition. Current data reports
that obesity has tripled since 1975 and in 2016, more than 1.9 billion adults
were overweight and of those, more than 650 million were obese [21]. We
defined the body mass index (BMI) as [20]: BMI = weight

height2
. Then, normal-

weight individual is when BMI ∈ [18.6, 24.9], overweight individual is when
BMI ∈ [25, 29.9], obese individual is when BMI ∈ [30, 40] and in complicated
situations over 40.

The root cause of obesity and overweight is an energy imbalance between
calories consumed and calories expended. Changes in diet and physical activity
may be related to environmental and social changes associated with develop-
ment and lack of supportive policies in sectors such as health, agriculture,
transportation, urban planning, environment, food processing, distribution,
marketing and education [21]. We know that overweight and obesity can be
prevented.

There are two types of diabetes and the main difference between the two
types of diabetes is that type 1 diabetes is a genetic disorder that often shows
up early in life, and type 2 is largely diet-related and develops over time [1,16].

There is a relationship between obesity and type 2 diabetes. The likelihood
and severity of type 2 diabetes are related to body mass index (BMI). The risk
of diabetes is seven times higher in obese people than in those with a healthy
weight, and the risk triples in overweight people [16,27].

Ejima et al. [13] presented a mathematical model of the genetic and non-
genetic effects of obesity and showed that homozygous individuals are more
susceptible to both the risk of social contagion and the risk of spontaneous
weight gain. Kim and So-Yeun Kim [17] proposed a mathematical model for
the dynamic of obesity with the presence of psychological and social factors.
Paudel [22] proposed a SIR model for the dynamic of obesity in the southeaster
region of the United States, and discussed the effect of social network on the
spread of obesity among friends and family members. Wang [26] proposed a
mathematical model to simulate the dynamic of social obesity by incorporat-
ing the structures of individual heterogeneity and overeating behaviors. Al-
Tuwairqi and Matbouli [2] proposed two mathematical models to study the
impact of fast food on obesity and the role that exercise plays in weight gain
separately and showed that physical activity has a significant role in reducing
weight. These works contributed to the construction of others models in partic-
ular, Bernard et al. [6] developed a deterministic compartmental model for the
dynamic of obesity and explored the impact of the media on the propagation of
this phenomenon in a constant population. In the modeling of diabetes, we find
works such as the one of Dubey and Goswami [12] who presented a model of di-
abetes and its complications involving the fractional operator with exponential
kernel. Moreover, Sandhya and Kumar [25] proposed a mathematical model for
the study of diabetes mellitus with presence of plasma glucose concentration,
generalized insulin and plasma insulin concentration. Ali et al. [3] adapted two
mathematical models, one with β-cells and one without a β-cell component,
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to determine their ability to predict glucose concentration and determine the
pathways of type 1 diabetes using published data on glucose concentration in
four groups of experimental mice. Anusha and Athithan [4] presented a math-
ematical model of type 2 diabetes and divided the population into susceptible,
unbalanced glucose level (IGL), treatment and restriction populations. Banzi
et al. [5] presented a mathematical model of glucose-insulin dynamic for type 2
diabetes and allowed to investigate the behavior of glucose, insulin, glucagon,
stored insulin and labile insulin in diabetics.

The aim of this paper is to present a mathematical model with ordinary
differential equations that study overweight and obesity in a population and
how it contributes to new cases of diabetes. This paper is organized as follows.
In Section 2, we introduce the model and show the basic properties. In Section
3, we study the basic reproduction number. Section 4 is devoted to numerical
experimentation. We finish the paper with some conclusions in Section 5.

2 Model formulation

Based on the body mass index, we define different compartments: normal-
weight individuals, S, overweight individuals, Ow, obese individuals, Ob and
diabetic individuals, D. It is important to highlight that there are individuals
overweight or obese and it is due to the muscular weight due to sports. In
these specific cases, we assume the weight status to be ideal and the definition
of BMI will be centred on the healthy or unhealthy life of the individual. When
the patient is diagnosed with diabetes, we assume that he improves his lifestyle
to avoid the consequences of this disease, so we do not differentiate in body
weight and there is no cure for diabetes.

Based on the influence that an overweight and obese person can have on
a person who is currently of normal weight (i.e., is in compartment S) and
increase his IBM, we define the transmission rate as:

λo = α∗(Ow + ϵOb)/N,

where α∗ effective contact rate is defined as the contact between an individual
from the Ow and Ob compartments and an individual from S which will exert
a negative effect by changing the lifestyle of the individual from S and N is the
total population. The modification parameter ϵ, i.e., it would be the influence
of obese people, in this case we assume that it is not the same and that an
obese person can influence negatively more than an overweight person. To
find the value of this parameter a study can be made in the population with
the overweight and obese and how they can influence a person who has normal
weight. The rateMS andMD represent the recruitment rate of individuals with
normal-weight and diabetes respectively, that not only take into account births
but also other factors such as immigration. The rate β1 represents the social
pressure that leads an individual of S to an unhealthy lifestyle, this include
excessive consumption of fast food, no physical exercise, sedentary lifestyle,
stress, among others. In order to obtain a value for this parameter β1, we must
carry out a study in the population and in time, because the time to reach
the overlap may vary from person to person. Let δ be the rate of overweight
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individuals who move into the S group (lowering the IBM), which may be
related to a healthy lifestyle or disease. Analogously η will be individuals who
go from obese to overweight. Moreover, γ rate is the rate of individuals who go
from overweight to obese by continuing an unhealthy lifestyle. Parameters δ, η,
γ can be obtained from population studies showing the evolution of overweight
and obesity and in the reverse direction until a normal weight is achieved. The
death rate from natural causes is µ and is the same from any compartment
and we define d as the death rate associated with underweight diseases, mainly
cardiac, and tD represents the modification parameter associated with d for the
obese state. The parameter tD will contain the impact that obesity specifically
has on this mortality with respect to overweight mortality. The parameters α2,
and α3 represent the cases that become diabetics from the compartments that
are linked to the weight of the individuals. The parameter α1 is related to new
cases of diabetics not related to weight, including genetic, racial, hereditary and
other factors and µd is the death rate associated with diabetes. Parameter α1

can be obtained from population-based studies showing the impact of diabetes
where the causative factor is not related to body weight.

Figure 1. Flow diagram of model (2.1)

Figure 1 shows the dynamic diagram of the model and Table 1 the de-
scription of the variables and parameters of the model. This dynamic can be
described by the following system of ordinary differential equations:

dS

dt
=MS + δOw − (λo + µ+ α1 + β1)S,

dOw

dt
=(λo + β1)S + ηOb − (γ + µ+ d+ δ + α2)Ow,

dOb

dt
=γOw − (η + µ+ tDd+ α3)Ob,

dD

dt
=MD + α1S + α2Ow + α3Ob − (µd + µ)D, (2.1)

with the initial conditions

S0 > 0, Ow0 ≥ 0, Ob0 ≥ 0, D0 ≥ 0.
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Table 1. Description of the parameters used in the construction of model (2.1).

Param. Description Value Reference

α2 Development rate of diabetes in overweight
people

0.35 [14,15]

α3 Development rate of diabetes in obese people 0.4 [14,15]

MS Recruitment rate 667.685 [23]

MD Recruitment rate of diabetics 4.1 Assumed

α∗ Effective contact rate 2 Assumed

ϵ, tD Modification parameters 1.17, 1.02 Assumed

γ Transition rate from overweight to obese 0.0015 [6]

η Transition rate from obese to overweight 0.1 [6]

α1 Rate of development of diabetes not associated
with body weight

0.1 Assumed

β1 Rate of social pressure leading to body weight
gain

0.25 Assumed

µ Natural death rate 1/70.5 [18]

d Death rate associated with body weight 0.07 Assumed

µd Death rate associated with diabetes 0.013 Assumed

δ Transition rate from overweight to normal-
weight

0.002 [6]

2.1 Positivity and boundedness of solutions

Now, let us prove the existence and non-negativity of solution of model (2.1)
and find the biologically feasible region.

Existence and non-negativity of solutions

Theorem 1. Let initial data be S(0) = S0 > 0, Ow(0) = Ow0 ≥ 0, Ob(0) =
Ob0 ≥ 0 and D(0) = D0 ≥ 0. Then, the solutions S,Ow, Ob and D of
model (2.1) are positive for all t > 0. Furthermore,

lim
t→∞

supN(t) ≤ (MS +MD)/µ.

Proof. The first equation of model (2.1) is

dS

dt
= MS + δOw − (µ+ α1 + β1 + λo)S.

Consequently,
dS

dt
≥ MS − (µ+ α1 + β1 + λo)S. (2.2)

Math. Model. Anal., 28(4):611–635, 2023.
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The inequality (2.2) can be expressed as

d

dt

[
S(t) exp

{
(µ+ α1 + β1)t+

∫ t

0

λo(s)ds
}]

≥ MS exp
{(

µ+ α1 + β1

)
t+

∫ t

0

λo(s)ds
}
.

Hence, for t∗ > 0,

S(t∗) exp
{
(µ+ α1 + β1)t

∗ +

∫ t∗

0

λo(s)ds
}
− S(0)

≥
∫ t∗

0

MS exp
{
(µ+ α1 + β1)u+

∫ u

0

λo(w)dw
}
du.

So that,

S(t∗)≥S(0) exp
{
−
(
(µ+α1+β1)t

∗+

∫ t∗

0

λo(s)ds
)}

+ exp
{
−
(
(µ+ α1 + β1)t

∗

+

∫ t∗

0

λo(s)ds
)}∫ t∗

0

MS exp
{(

(µ+ α1 + β1)u+

∫ u

0

λo(w)dw
)
du
)}

> 0.

Similarly, it can be shown that Ow(t) ≥ 0, Ob(t) ≥ 0 and D(t) ≥ 0 for all t > 0.
Moreover, we have

dN

dt
= MS +MD − µN − µdD − d(Ow + tDOb).

Then,

MS +MD − (µ+ d+ µd)N ≤ dN

dt
≤ MS +MD − µN,

which gives

MS +MD

µ+ d+ µd
≤ lim

t→∞
inf N(t) ≤ lim

t→∞
supN(t) ≤ (MS +MD)/µ.

So, we have that
lim
t→∞

supN(t) ≤ (MS +MD)/µ.

⊓⊔

The closed set Ω =
{
(S,Ow, Ob, D) ∈ R4

+ : N(t) ≤ (MS +MD)/µ
}
is the

biologically feasible region for model (2.1).

Theorem 2. The solutions of model (2.1) with non-negative initial conditions
exists for all time.

Proof. The right-hand side of model (2.1) is locally Lipschitz continuous, and
this proves the local existence of the solution. The global existence of the
solution follows from priori bound (see Theorem 1). ⊓⊔
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3 Basic reproduction number

In a population composed only with susceptible individuals, the average number
of infections caused by an infected individual is defined as basic reproduction
number ℜ0. In our study, the susceptible compartment is composed of individ-
uals who are currently at a normal weight and we define infected individuals as
overweight and obese individuals, since an interaction with them may provoke
an increase in IBM and S-compartment outflow. If 0 < ℜ0 < 1 the infection
will die out in the long run and if ℜ0 > 1 the infection will be able to spread
in a population [10]. The higher the ℜ0 the more difficult it is to control the
epidemic. The ℜ0 can be affected by several factors, such as the duration of in-
fectivity of the affected patients, the infectivity of the organism and the degree
of contact between the susceptible and infected populations.

The basic reproduction number study is focused on assessing the influence of
a person with an unhealthy weight on a person with a healthy weight. Obesity
in our study can lead to diabetes but diabetes is not curable, it is controllable.
Our interest is to study the disease-free equilibrium point because of its relation
with the basic reproduction number. The disease-free equilibrium point (DFE)
is

ϵ0 =
(
MS/(µ+ α1 + β1), 0, 0, 0

)
(3.1)

which is the point where we have only a number of individuals with normal
weight. To find the basic reproduction number, we use the new generation
matrix method presented in [9, 10,11] where

F =

(
α∗MS/Nk11 α∗ϵMS/Nk11

0 0

)
, V =

(
k12 −η
−γ k13

)
,

are the matrices of the term related to the new cases of overweight or obesity
and transition terms, respectively. Then, for model (2.1) the basic reproduction
number is:

ℜ0 = ρ(FV −1) =
α∗MS(k13 + ϵγ)

Nk11(k12k13 − ηγ)
, (3.2)

where k11 = µ+α1 + β1, k12 = γ + µ+ d+α2 + δ, k13 = η+ µ+ tDd+α3 and
k14 = µ+µD. Now, we study the local and global stability of the infection-free
equilibrium point when we do not have the effect of social pressure (β1 = 0).
This parameter will be studied for its effect on the basic reproduction number
and in the different compartments.

The result presented below (Theorem 3) is obtained using Theorem 2 of [11].

Theorem 3. The DFE (ϵ0) of model (2.1), given by (3.1), is locally asymptot-
ically stable (LAS) if ℜ0 < 1 and unstable if R0 > 1.

The threshold quantity ℜ0 is the basic reproduction number of the overweight
and obese disease. It measures the average number of new disease generated by
a single infectious agent in a fully normal-weight (susceptible) population. Con-
sequently, the disease-free equilibrium of model (2.1) is locally asymptotically
stable (LAS) whenever ℜ0 < 1 and unstable if ℜ0 > 1. This means that over-
weight and obesity can be removed from the community (when ℜ0 < 1) if the
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population sizes of model (2.1) are in the basin of attraction of the disease-free
equilibrium ϵ0.

Now, we prove the global stability of the disease-free equilibrium point.
Following [7], we can rewrite model (2.1) as

dX

dt
= f(X, I),

dI

dt
= G(X, I), G(X, 0R2) = 0,

where X ∈ R2
+ is the vector with diabetics and normal-weight individuals and

I ∈ R2
+ have the compartment related overweight and obese of model (2.1).

The disease-free equilibrium point is now denoted by E0 = (X0, 0R2), where
X0 =

(
MS/(µ+ α1), 0

)
. The conditions (H1) and (H2) below must be satisfied

to guarantee the global asymptotic stability of E0.

(H1) : For
dX

dt
= f(X, 0R2), X0 is globally asymptotically stable,

(H2) : G(X, I) = AIT −G∗(X, I), G∗(X, I) ≥ 0, for (X, I) ∈ Ω,

where A = DIG(X0, 0R2) (DIG(X0, 0R2) is the Jacobian of G at (X0, 0R2))
is a M-matrix (the off-diagonal elements of A are non-negative) and Ω is the
biologically feasible region.

The following theorem shows the global stability of the disease-free equilib-
rium point.

Theorem 4. The fix point E0 is a globally asymptotically stable equilibrium
(G.A.S) of model (2.1) provided that ℜ0 < 1 and that the conditions (H1) and
(H2) are satisfied.

Proof. Let f(X, 0R2) =
(
MS − k11S,MD + α1S

)T
. As f(X, 0) is linear, then

X0 is globally stable. Then, (H1) is satisfied. Let

A =

(
−k12 + α∗ η + ϵα∗

γ −k13

)
,

I = (Ow, Ob), G∗(X, I) = AIT −G(X, I),

G∗(X, I) =

(
G∗

1(X, I)
G∗

2(X, I)

)
=

(
α∗(Ow + ϵOb)

(
1− S/N

)
0

)
.

Since S
N ≤ 1, then 1 − S

N ≥ 0. Thus, G∗(X, I) ≥ 0 for all (X, I) ∈ Ω.
Consequently, E0 is a globally asymptotically stable point. ⊓⊔

Analogous proofs can be found in the bibliographical references [18,23,24].
We will study the joint influence of selected parameters on the basic re-

production number. The selected parameters are α1, β1, α2, α3, η, γ and δ
which are associated with the transition between compartments and the diag-
nosis of diabetes. These parameters are defined in the interval [0, 1] and we
want to study the joint behavior when they lie at the extreme values of the
interval. At the extremes of the interval are the critical behaviors due to which
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can represent all individuals or none and the interesting thing is to study this
epidemiological situation together.

Using the threshold quantity ℜ0, in (3.2), we want to study the impact of
parameters related to the diagnosis of diabetes in overweight (α2) and obese
(α3) individuals on the dynamic of a population and find the conditions that
characterize these effects. Now, we are going to study the possible combinations
in the behavior of these parameters based on the limits. We have

lim
α2→1
α3→0

ℜ0 =
α∗MS

(
η + µ+ tDd+ ϵγ

)
Nk11

(
(γ + µ+ d+ 1 + δ)(η + µ+ tDd)− ηγ

) . (3.3)

If the limit (3.3) is greater than unity, then when α2 → 1 and α3 → 0 it has a
negative impact, that is if

α∗MS

Nk11
>

(γ + µ+ d+ 1 + δ)(η + µ+ tDd)− ηγ

η + µ+ tDd+ ϵγ
.

Now, we study the case when α2 → 0 and α3 → 1. We have

lim
α2→0
α3→1

ℜ0 =
α∗MS(η + µ+ tDd+ 1 + ϵγ)

Nk11
(
(γ + µ+ d+ δ)(1 + η + µ+ tDd)− ηγ

) . (3.4)

Then, if the limit (3.4) is greater than unity, then when α2 → 0 and α3 → 1,
that is when

α∗MS

Nk11
>

(γ + µ+ d+ δ)(1 + η + µ+ tDd)− ηγ

η + µ+ d+ 1 + ϵγ
.

In the case of α1 → 1 and α3 → 1, follows that

lim
α2→1
α3→1

ℜ0 =
α∗MS

(
η + µ+ tDd+ 1 + ϵγ

)
Nk11

(
(γ + µ+ d+ 1 + δ)(η + µ+ tDd+ 1)− γη

) . (3.5)

If the limit (3.5) is greater than unity, then when α2 → 1 and α3 → 1 it has a
negative impact, that is if

α∗MS

Nk11
>

(γ + µ+ d+ 1 + δ)(η + µ+ tDd+ 1)− γη

η + µ+ tDd+ 1 + ϵγ
.

For α2 → 0 and α3 → 0, we have

lim
α2→0
α3→0

ℜT
0 =

α∗MS

(
η + µ+ tDd+ ϵγ

)
Nk11

(
(γ + µ+ d+ δ)(η + µ+ tDd)− γη

) . (3.6)

If the limit (3.6) is greater than unity, then when α2 → 0 and α3 → 0 it has a
negative impact, that is when

α∗MS

Nk11
>

(γ + µ+ d+ δ)(η + µ+ tDd)− γη

η + µ+ tDd+ ϵγ
.
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Let us define the following expressions:

∆D =
α∗MS

Nk11
,

∆D1 =
(γ + µ+ d+ 1 + δ)(η + µ+ tDd)− ηγ

η + µ+ tDd+ ϵγ
, (3.7)

∆D2
=
(γ + µ+ d+ δ)(1 + η + µ+ tDd)− ηγ

γ + µ+ tDd+ 1 + ϵγ
, (3.8)

∆D3
=
(γ + µ+ d+ 1 + δ)(η + µ+ tDd+ 1)− γη

η + µ+ tDd+ 1 + ϵγ
, (3.9)

∆D4
=
(γ + µ+ d+ δ)(η + µ+ tDd)− γη

η + µ+ tDd+ ϵγ
. (3.10)

The following lemma characterizes the impact on the basic reproduction num-
ber of the parameters associated with the diagnosis of diabetes in obese and
overweight individuals.

Lemma 1. 1. The impact when α2 → 1 and α3 → 0 is positive in reducing
overweight and obesity if ∆D < ∆D1 , no impact if ∆D = ∆D1 and nega-
tive if ∆D > ∆D1 .

2. The impact when α2→0 and α3→1 is positive in reducing overweight and
obesity if ∆D<∆D2

, no impact if ∆D = ∆D2
and negative if ∆D>∆D2

.

3. The impact when α2→1 and α3→1 is positive in reducing overweight and
obesity if ∆D<∆D3

, no impact if ∆D = ∆D3
and negative if ∆D > ∆D3

.

4. The impact when α2→0 and α3→0 is positive in reducing overweight and
obesity if ∆D<∆D4

, no impact if ∆D = ∆D4
and negative if ∆D>∆D4

.

Analogously, we perform the same procedure for η and γ. These parameters
are associated with the passage from obese to overweight, a positive situation
and the passage from overweight to obese which means a negative condition
respectively. With the study of these parameters together, we are assessing a
positive and negative condition of exit from the obese compartment. We obtain
the following expressions:

∆O1
=
(µ+ d+ α2 + δ)(α3 + µ+ tDd+ 1)

1 + µ+ tDd+ α3
, (3.11)

∆O2
=(1 + α2 + µ+ d+ δ)(µ+ tDd+ α3)/(α3 + µ+ tDd+ ϵ), (3.12)

∆O3
=
(1 + δ + α2 + µ+ d)(µ+ tDd+ α3 + 1)− 1

1 + µ+ tDd+ α3 + ϵ
, (3.13)

∆O4
=(δ + α2 + µ+ d)(α3 + µ+ tDd)/(µ+ tDd+ α3), (3.14)

and obtain the following lemma.

Lemma 2. 1. The impact when η → 1 and γ → 0 is positive in reducing
overweight and obesity if ∆D < ∆O1

, no impact if ∆D = ∆O1
and nega-

tive if ∆D > ∆O1 .
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2. The impact when η → 0 and γ → 1 is positive in reducing overweight and
obesity if ∆D < ∆O2

, no impact if ∆D = ∆O2
and negative if ∆D > ∆O2

.

3. The impact when η → 1 and γ → 1 is positive in reducing overweight and
obesity if∆D < ∆O3 , no impact if ∆D = ∆O3 and negative if ∆D > ∆O3 .

4. The impact when δ → 0 and γ → 0 is positive in reducing overweight and
obesity if ∆D < ∆O4

, no impact if ∆D = ∆O4
and negative if ∆D > ∆O4

.

Analogously, the process is carried out for γ and δ representing the cases reach-
ing overweight and those reaching normal-weight, which represents a positive
(reaching normal-weight) and a negative (reaching obesity) output from the
overweight individuals compartment and we define the following expressions:

∆O11 =
k13(1 + α2 + µ+ d)− η

k13 + ϵ
, (3.15)

∆O12 =
k13(1 + α2 + µ+ d)

k13
, (3.16)

∆O13 =
k13(2 + d+ α2 + µ)− η

k13 + ϵ
, (3.17)

∆O14
=
k13(d+ α2 + µ)

k13
, (3.18)

and obtain the following lemma.

Lemma 3. 1. The impact when γ → 1 and δ → 0 is positive in reducing
overweight and obesity if ∆D < ∆O11

, no impact if ∆D = ∆O11
and

negative if ∆D > ∆O11
.

2. The impact when γ2→0 and δ→1 is positive in reducing overweight and
obesity if ∆D<∆O12

, no impact if ∆D=∆O12
and negative if ∆D > ∆O12

.

3. The impact when γ→1 and δ→1 is positive in reducing overweight and
obesity if ∆D<∆O13 , no impact if ∆D=∆O13 and negative if ∆D > ∆O13 .

4. The impact when γ→0 and δ→0 is positive in reducing overweight and
obesity if ∆D<∆O14 , no impact if ∆D=∆O14 and negative if ∆D>∆O14 .

Similarly, the process is carried out for η and δ. These parameters represent
positive conditions in our dynamic as they will represent the cases coming out
of obesity and into overweight and those coming out of overweight and reaching
normal-weight respectively. We define the expressions:

∆O21 =
(γ + µ+ d+ α2)(α3 + µ+ tDd+ 1)− γ

1 + µ+ tDd+ α3 + ϵγ
, (3.19)

∆O22
=
(γ + 1 + α2 + µ+ d)(µ+ tDd+ α3)

α3 + µ+ tDd+ ϵγ
, (3.20)

∆O23
=
(γ + d+ α2 + µ+ 1)(µ+ tDd+ α3 + 1)− γ

1 + µ+ tDd+ α3 + ϵγ
, (3.21)

∆O24
=
(γ + α2 + µ+ d)(α3 + µ+ tDd)

µ+ tDd+ ϵγ + α3
, (3.22)

and have the following lemma.
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Lemma 4. 1. The impact when η → 1 and δ → 0 is positive in reducing
overweight and obesity if ∆D < ∆O21

, no impact if ∆D = ∆O21
and

negative if ∆D > ∆O21 .

2. The impact if η→0 and δ→1 is positive in reducing overweight and obesity
only if ∆D<∆O22

, no impact if ∆D=∆O22
and negative if ∆D>∆O22

.

3. The impact when η→1 and δ→1 is positive in reducing overweight and
obesity if ∆D<∆O23

, no impact if ∆D=∆O23
and negative if ∆D>∆O23

.

4. The impact when η→0 and δ→0 is positive in reducing overweight and
obesity if ∆D<∆O24

, no impact if ∆D=∆O24
and negative if ∆D>∆O24

.

Now, we study the impact of the parameter that reports new cases of dia-
betes and is not associated with body weight and the parameter associated
with weight gain due to social pressure. For the different variations of these
parameters. We define the following expressions:

∆O31
=(1 + µ)(k12k13 − ηγ)/(k13 + ϵγ), (3.23)

∆O32
=(2 + µ)(k12k13 − ηγ)/(k13 + ϵγ), (3.24)

∆O33
=µ(k12k13 − ηγ)/(k13 + ϵγ), (3.25)

and have the following lemma.

Lemma 5. 1. The impact when α1 → 1 and β1 → 0 and α1 → 0 and
β1 → 1 is positive in reducing overweight and obesity if ∆Dk11 < ∆O31

,
no impact if ∆Dk11 = ∆O31 and negative if ∆Dk11 > ∆O31 .

2. The impact when α1 → 1 and β1 → 1 is positive in reducing overweight
and obesity if ∆Dk11 < ∆O32

, no impact if ∆Dk11 = ∆O32
and negative

if ∆Dk11 > ∆O32 .

3. The impact when α1 → 0 and β1 → 0 is positive in reducing overweight
and obesity if∆Dk11 < ∆O33

, no impact if ∆Dk11 = ∆O33
and negative if

∆Dk11 > ∆O33 .

We study the asymptotic behavior of the parameters α1, α2, α3, β1, η, γ and δ
using the partial derivatives of ℜ0 with respect to these parameters.

∂ℜ0

∂α1
=

∂ℜ0

∂β1
= − α∗MS(k13 + ϵγ)

Nk211(k12k13 − ηγ)
, (3.26)

∂ℜ0

∂α2
= −α∗MS(k13(k13 + ϵγ))

Nk11(k12k13 − ηγ)2
, (3.27)

∂ℜ0

∂α3
= − α∗MS(ηγ + ϵk13)

Nk11(k12k13 − ηγ)2
, (3.28)

∂ℜ0

∂η
=

α∗MS((k12k13 − ηγ)− (k12 − γ)(k13 + ϵγ))

Nk11(k12k13 − ηγ)2
, (3.29)

∂ℜ0

∂γ
=

α∗MS(ϵ(k12k13 − γη)− (k13 − η)(k13 + ϵγ))

Nk11(k12k13 − ηγ)2
, (3.30)

∂ℜ0

∂δ
= −α∗MS(k13(k13 + ϵγ))

Nk11(k12k13 − ηγ)2
. (3.31)
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The partial derivatives with respect to α1, α2, α3, β1 and δ are uncondition-
ally less than zero. This will mean that any outflow from the weight-related
compartment of individuals to the diabetes compartment will go a long way
in reducing the burden of obesity in the population, as we assume that these
individuals with diabetes will change their lifestyle and control their weight.
The same applies for δ, which represents the improvement in the lives of over-
weight people that brings them to a state of normal-weight. In the case of β1,
we will study the impact directly on the compartments in Section 4 to validate
this result.
We can characterize the behavior of the partial derivatives with respect to the
ℜ0 of the η and γ parameters with the following lemma.

Lemma 6. The parameter associated with the transition from obese to over-
weight, η (overweight to obese, γ) have a positive impact on the basic reproduc-
tion number (ℜ0) in the population (respectively) if

(k12k13 − ηγ)

(k12 − γ)(k13 + ϵγ)
< 1

(
ϵ(k12k13 − ηγ)

(k13 − η)(k13 + ϵγ)
< 1

)
,

no impact if

(k12k13 − ηγ)

(k12 − γ)(k13 + ϵγ)
= 1

(
ϵ(k12k13 − ηγ)

(k13 − η)(k13 + ϵγ)
= 1

)
,

and a detrimental impact if

(k12k13 − ηγ)

(k12 − γ)(k13 + ϵγ)
< 1

(
ϵ(k12k13 − ηγ)

(k13 − η)(k13 + ϵγ)
> 1

)
.

Disease equilibrium points

Model (2.1) can be written in matrix form as:
−(λo + k11) δ 0 0
λo + β1 −k12 η 0

0 γ −k13 0
α1 α2 α3 −k14




S
Ow

Ob

D

 =


−MS

0
0

−MD

 . (3.32)

To find the disease equilibrium points, we solve the system (3.32). Then, the
solution of system is (S∗, O∗

w, O
∗
b , D

∗), where:

S∗ =
MS(k12k13 − ηγ)

A1
, O∗

w =
k13(β1 + λo)MS

A1
, O∗

b =
γ(β1 + λo)MS

A1
,

D∗ =
k13(k11k12 + k12λo − δ(β1 + λo))MD + k13(α1k12 + α2(β1 + λo))MS

k14A1

− ((k11 + λo)ηMD − α3(β1 + λo)MS + α1ηMS)γ

k14A1
,

with A1 = k13(k11k12 + k12λo − δ(β1 + λo))− (k11 + λo)ηγ.
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3.1 Sensitivity index

In this section, we study the impact of the parameters on the threshold quantity,
ℜ0. The sensitivity analysis of the basic reproduction number determines the
relative importance of the parameters present in the basic reproduction number,
such as the parameters of transmission, resistance, recovery, among others.
The sensitivity index can be defined using the partial derivatives, provided
that the variable be differentiable with respect to the parameter under study.
Sensitivity analysis also helps to identify the vitality of the parameter values
in the predictions using the model [8, 19,28].

Definition 1. ( [28]) The normalized forward sensitivity index of a variable,
v, that depends differentiability on a parameter p is defined as:

Υ v
p :=

∂v

∂p
× p

v
.

The sensitivity index of ℜ0 helps to determine the parameters that have an
impact on it. We can characterize the sensitivity index as follows:

� A positive value of the sensitivity index implies that an increase in the
parameter value causes an increase in the basic reproduction number;

� a negative value of the sensitivity index implies that an increase of the
parameter value causes a decrease of the basic reproduction number.

We selected to find the sensitivity index the parameters associated with dia-
betes in overweight and obese (α2 and α3), the parameters γ, η and δ that
will represent the transition in the weight-associated compartments, α1 which
is associated with the diagnosis of diabetes due to factors unrelated to weight
and β1 which is associated with weight gain due to social pressure.

The expressions of the sensitivity indices of the selected parameters are:

Υℜ0
α1

= −α1/k11, (3.33)

Υℜ0

β1
= −β1/k11, (3.34)

Υℜ0
α2

= −α2k13/(k12k13 − ηγ), (3.35)

Υℜ0
α3

= −α3(γη + ϵk13)/(k12k13 − ηγ)(k13 + ϵγ), (3.36)

Υℜ0
η =

η((k12k13 − ηγ)− (k12 − γ)(k13 + ϵγ))

(k12k13 − ηγ)(k13 + ϵγ)
, (3.37)

Υℜ0
γ =

γ(ϵ(k12k13 − γη)− (k13 − η)(k13 + ϵγ))

(k12k13 − ηγ)(k13 + ϵγ)
, (3.38)

Υℜ0

δ = −δk13/(k12k13 − ηγ). (3.39)

Parameters α1, β1, α2, α3 and δ have a negative sensitivity index with respect
to ℜ0, which implies that an increase in these parameters will mean a decrease
in ℜ0. Epidemiologically for parameters α2, and α3 the overweight and obese
are diagnosed with diabetes, here they will require continuous care so that a
successful control will mean among other factors to be a normal-weight. In the
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case of δ this behavior is evident in ℜ0 because it will mean the cases that are
overweight that reach a normal-weight.

The value of the other sensitivity indices studied will depend on the scenario
under study. We use the expressions (3.37) and (3.38) to determine when the
sensitivity indices Υℜ0

η and Υℜ0
γ are negative and obtain the following lemma.

Lemma 7. The sensitivity indices Υℜ0
η and Υℜ0

γ are less than zero, when
k12k13−ηγ

(k12−γ)(k13+ϵγ) < 1 and ϵ(k12k13−ηγ)
(k13−η)(k13+ϵγ) < 1, respectively.

4 Numerical simulations

In this section, we perform computational simulations to validate the proposed
model and make a study of the basic reproduction number and compartments.
We use the fourth-order Runge–Kutta numerical scheme coded in MATLAB
programming language. The data used for the computational simulations are
extracted from the literature or assumed. The values for the parameters used
in the computational simulations are listed in Table 1. The initial conditions
are S0 = 874.1400, Ow0 = 1.2000, Ob0 = 1.5000 and D0 = 100.0000. The
assumed values for the parameters and initial conditions do not represent a
real scenario.

4.1 Basic reproduction number

First, let’s apply Lemmas 1–5 to this scenario. Table 2 shows the values of the
expressions associated with these results for this scenario. For the variations

Table 2. Values of expressions (3.7)–(3.10), (3.11)–(3.14), (3.15)–(3.18), (3.19)–(3.22) and
(3.23)–(3.25).

Values Values

∆D = 0.3667 ∆D1
= 1.0767 ∆D = 0.3667 ∆O1

= 0.9646
∆D2 = 0.0874 ∆O2 = 0.1429
∆D3

= 1.0860 ∆O3
= 0.5062

∆D4 = 0.0861 ∆O4 = 0.9646

∆D = 0.3667 ∆O11
= 0.5977 ∆Dk11 = 0.0486 ∆O31

= 0.4423
∆O12 = 1.9626 ∆O32 = 0.8784
∆O13

= 0.9312 ∆O33
= 0.062

∆O14 = 0.9626

∆D = 0.3667 ∆O21
= 0.9612

∆O12 = 1.9273
∆O13

= 1.9596
∆O14 = 0.9460

of the parameters α2 and α3 using Lemma 1, we have that when α2 tends to
unity and α3 tends to zero and when both parameters are tending to unity the
impact is positive, in the other variations studied it is negative. This shows
that the growth of the parameter α2 associated with the diagnosis of diabetes
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in overweight has a positive impact when varied together with α3 associated
with the diagnosis of diabetes in obese.

We will study what happens when we vary the parameter associated with
obese people who improve their lifestyle and become overweight (η) and the
parameter associated with overweight people who worsen their condition and
become obese (γ).

In the different variations and using Lemma 2, we have that when η tends to
zero and γ tends to unity the impact is negative, the other variants the impact
is positive. This means that a growth in the overweight becoming obese that
is not equilibrium with the behavior of the obese improving and becoming
overweight has a negative effect on the dynamic.

Using Lemmas 3–4 characterizing the variations of the parameters η and
γ with respect to δ always has a positive impact. The interpretation is that
the parameter δ which is associated with overweight individuals who reach
normal-weight has a positive impact on the dynamic when it is varied jointly
with individuals who become obese and others who become obese to overweight.

Regarding the study of the variation of α1 and β1, and using Lemma 5 we
have that when these parameters tend to zero the impact is negative, in the
other variants it is positive. By decreasing the number of cases diagnosed with
diabetes due to other causes and the impact of social pressure together we have
that the number of overweight and obese people may increase.

We can conclude that the parameter δ has a positive influence on the dy-
namic in this study when varied with the other parameters and these results
help in the design of a control strategy because it shows the joint strength of
the parameters under study.

Table 3 shows the derivatives (3.26)–(3.31) and sensitivity indices (3.33)–
(3.39) with respect to the basic reproduction number for this scenario.

Table 3. Values of derivatives (3.26)–(3.31) and sensitivity indices (3.33)–(3.39) with
respect to ℜ0 for the scenario under study.

Parameters Derivative Sensitivity Index

α1 -0.23086 -0.2743
β1 -0.2386 -0.6865
α2 -1.9221 -0.8001
α3 -0.0051 -0.0024
γ 0.0810 1.4451e-04
η -2.0748e-04 -2.4678e-05
δ -0.1921 -0.0046

We can conclude that parameters α1, α2, α3, β1, η and δ have a negative
sensitivity index with respect to the basic reproduction number, which means
that an independent increase in them will result in a decrease of ℜ0. In the
case of η the opposite happens, the sensitivity index is positive and an increase
in this parameter causes an increase in the ℜ0 and for higher α−values the
impact is greater.

Now, we are going to study graphically the behavior of the basic repro-
duction number when we vary these parameters together. The intervals of the



Mathematical Model for the Study of Obesity 627

parameters are η ∈ [0.00028, 0.1], γ ∈ [0.00028, 0.0015], δ ∈ [0.00035, 0.002] (ex-
tracted from [6]), α2 ∈ [0.35, 0.49] α3 ∈ [0.3, 0.53] (extracted from [14, 15]),
α1 ∈ [0.05, 0.7] (assumed) and β1 ∈ [0.1, 0.8] (assumed). The joint variation of
the selected parameters provides us with information on how these parameters
varying together influence the basic reproduction number. Remember that here
Lemmas 1–4 go to the extremes of the interval and now we define intervals for
the parameters discussed with the specialists.

In the joint variation α2 and α3 we have that the highest value is reached
when α2 and α3 reach the lowest values in the intervals under study and when-
ever α3 is taking the lowest value in that interval and α2 growing. The smallest
value is reached when α3 reaches the largest value in the interval and α2 is vary-
ing in its respective interval. This is evidence that α3 has a strong influence on
the dynamic of the model so that obese cases diagnosed with diabetes require
differentiated attention although this variation keeps the ℜ0 less than unity
(see Figures 2a–2b).
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Figure 2. Joint variation of parameters on ℜ0, surfaces and curves.
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For the other variations, the ℜ0 of the parameters under study is always less
than unity, so the variations studied graphically in the scenario under study
do not have a strong influence on ℜ0 (see Figures 3a–3d). We can observe
that when α1 and β1 are taking the lowest value in the intervals studied, it is
when ℜ0 reaches its highest value, which proves Lemma 5, that in this scenario
α1 and β1 are tending to zero negatively affects (see Figures 3c–3d). We can
observe that the variations α2 and α3 are the ones that report the highest
basic reproduction number and close to the unit, so the diagnosis of diabetes
in overweight and obese people must be studied in depth to design some control
strategy.
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Figure 3. Joint variation of parameters on ℜ0, surfaces and curves.

4.2 Compartmental study

We studied a 15-year period to investigate the evolution of diabetes in the
population. Normal-Weight individuals compartment has initially a growth
and then decrease and stabilizes at end of the study. The difference between
the initial value (t = 0) and final (t = 15) is 655.453 (in ten thousand people)
less individuals were reported in this compartment (see Figure 4a).

This will mean that the output of this compartment at the end of the study
is greater and this is negative because we have a reduction in the number of
individuals who will have an adequate weight and who do not have diabetes.
The maximum value reached in this compartment is approximately two years
into the study and was 1308.38.
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Figure 4. Behavior of the compartments of model (2.1) for the scenario under study and
the different alpha-values studied.

In the compartment of overweight individuals we have growth until it sta-
bilizes for this scenario. This means that mainly a large number of individuals
changing their lifestyle are leaving the compartment of normal-weight individ-
uals. This has great consequences on the population because overweight and
obesity not only have an impact on diabetes but also on other diseases such as
coronary heart disease. In this compartment the difference between the number
of individuals at the final and initial time point was 1348.45 (see Figure 4a).
The maximum number of individuals reported in this compartment is 1349.65
at the end of the study.

In individuals with obesity we have at the beginning a decrease in the
number reported and then it starts to grow. This compartment is the one with
the lowest number of cases reported in the study but also the most dangerous
because of the harmfulness of this condition for the health of the individual. In
this case we need to apply strategies to control its growth, since the difference
between the final which represents the largest number of reported cases and
initial value is 2.5961 (see Figure 4b). The greater the weight of the individual,
the greater the probability of suffering from diabetes and other diseases and
the more difficult it is to lose weight.

In the diabetic compartment, we have a growth during the whole study, this
indicates that diabetes has a strong impact on the population. The difference
between the final value which is the highest of the study and the initial value
is 5279.01 and it is a significant amount (see Figure 4c). We can conclude that
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to reduce the impact of diabetes in the population, we must promote a lifestyle
that avoids overweight and obesity.

Diabetes is a disease with great consequences for health and that has no
cure and an important factor is a good lifestyle. In this scenario, the number
of individuals with normal-weight is reduced and the number of overweight,
obese and diabetics increases, this shows that we need strategies to control this
progress as it is detrimental to the individual and to the health system.

We studied the influence directly in the compartments of parameters α1

and β1 that are associated with cases that develop diabetes due to factors not
associated with body weight and social pressure.

In the case of β1, we see that at the beginning and at the end of the
study for the different values studied the impact was not significant mainly in
diabetics. At the intermediate time points we see that the higher β1 results
are worse because normal-weight individuals are reduced (for higher values of
β1 the reduction in those of normal-weight is greater), and overweight, obese
and diabetics individuals increase (for higher values of β1 the increase is more
significant) (see Figures 5a–5d).
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Figure 5. Behavior when β1 = 0.1, 0.25, 0.4, 0.5, 0.8.

Table 4 shows the cumulative number of cases by compartment for the
different β1 at the end of the study. We show that despite the differences not
being significant, the number of individuals with normal-weight decreases and
those who are overweight, obese and diabetic increase as β1 increases.

When we vary α1, we have that in the compartment of individuals with
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Table 4. Number of cases reported by compartments for the different values of β1 at the
end of the study period (15 years).

β1−values Normal-Weight
individuals

Overweight
individuals

Obese in-
dividuals

Diabetic
individuals

0.1 218.781 1349.65 4.09601 5308.57
0.25 218.687 1349.6 4.09616 5319.15
0.4 218.593 1349.71 4.09632 5520.35
0.5 218.529 1349.75 4.09643 5333.89
0.8 218.338 1349.87 4.09679 5348.33

normal-weight, we have that initially the lower α1 values report a higher number
of individuals with that weight, then decreases starting to decrease for the
lower α1 values and at the end of the study the higher α1 values report a
higher number of cases but without a significant difference. It is important
to highlight the initial behavior for the values of α1 = 0.7 (highest of the
values studied) that has a decrease unlike the behavior of the other values of
α1 studied (see Figure 6a). These results may provide information to reduce
the impact of diabetes in the population, since hereditary, racial and genetic
factors also greatly influence the reporting of new cases of diabetes.

0 5 10 15

Time (years)

200

400

600

800

1000

1200

1400

N
u
m

b
e
r 

o
f 
in

d
iv

id
u
a
ls

 (
x
 1

0
0
0
0
)

Normal-Weight individuals (Different 
1
)

1
=0.05

1
=0.1

1
=0.3

1
=0.5

1
=0.7

(a) Variation of α1, Normal-Weight
individuals

0 5 10 15

Time (years)

0

500

1000

1500

N
u
m

b
e
r 

o
f 
in

d
iv

id
u
a
ls

 (
x
 1

0
0
0
0
)

Overweight individuals (Different 
1
)

1
=0.05

1
=0.1

1
=0.3

1
=0.5

1
=0.7

(b) Variation of α1, Overweight indi-
viduals

0 5 10 15

Time (years)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

N
u
m

b
e
r 

o
f 
in

d
iv

id
u
a
ls

 (
x
 1

0
0
0
0
)

Obese Individuals (Different 
1
)

1
=0.05

1
=0.1

1
=0.3

1
=0.5

1
=0.7

(c) Variation of α1, Obese individuals

0 5 10 15

Time (years)

0

1000

2000

3000

4000

5000

6000

7000

N
u
m

b
e
r 

o
f 
in

d
iv

id
u
a
ls

 (
x
 1

0
0
0
0
)

Diabetic Individuals (Different 
1
)

1
=0.05

1
=0.1

1
=0.3

1
=0.5

1
=0.7

(d) Variation of α1, Diabetic individ-
uals

Figure 6. Behavior when α1 = 0.05, 0.1, 0.3, 0.5, 0.7.

In the case of diabetics, it is important to highlight that the asymptotic
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behavior changes at the beginning of the study, for higher values we have a
convex behavior and for the lower ones slightly concave, and for higher than α1

a lower number of diabetic cases are reported at the beginning. After 5 years
of study, the behavior of diabetics tends to increase the number of cases (see
Figure 6d).

In the case of the overweight, the behavior tends to grow and then stabilizes,
reporting a greater number of overweight cases for values less than α1. In the
obese initially we see a decrease and then we have a growth behavior, where
for values less than α1 the number of reported cases with obesity is greater.

Table 5 shows the values reported by each compartment for the different
values of α1. In this case we have that for values greater than α1 the number
of cases with normal-weight is greater, the number of overweight and obese is
reduced and the number of diabetes increases significantly.

Table 5. Number of cases reported by compartments for the different values of α1 at the
end of the study period (15 years).

α1−values Normal-Weight
individuals

Overweight
individuals

Obese in-
dividuals

Diabetic
individuals

0.05 218.601 1375.26 4.18056 5261.64
0.1 218.687 1349.65 4.09616 5319.15
0.3 219.358 1245.21 3.74334 5520.21
0.5 221.071 1134.37 3.34948 5785.53
0.7 225.227 1008.93 2.88069 6031.67

We can conclude that both diagnosis of diabetes and the influence of social
pressure on overweight and obesity have an influence on the dynamic. We
must take into account that the behavior for the different values of α1 was
more significant in the compartments. To achieve a control strategy with the
aim of reducing diabetes in the population, we recommend paying attention
to parameter α1, because we show that factors other than obesity can report
significant numbers of diabetics.

5 Conclusions

In this paper, we presented a mathematical model to study obesity and over-
weight and their relationship with diabetes. The model allows to study the
behavior of normal-weight, overweight and obese individuals and their interac-
tions and the influence of social factors (social pressure). Using the next gen-
eration matrix method we found the basic reproduction number and showed
the global stability of the disease-free equilibrium point. We calculated the
sensitivity indices with respect to the basic reproduction number for the pa-
rameters associated with the transition between the normal-weight, overweight
and obese compartments and those associated with diabetes. We presented
theoretical results to characterize the joint variation of these parameters and
identified the sign of the sensitivity index on ℜ0. To validate the model, we
performed computational simulations with data from the literature and other
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assumed data validated by specialists. We checked the theoretical results and
found that the parameter associated with the transition from overweight to
obese has a positive sensitivity index, which means that a growth in this pa-
rameter causes a growth in ℜ0.

In the study of the compartments, we found that the normal-weight com-
partment has a significant decrease and the overweight, obese and diabetic
compartments have an increase. These results show the need for a control
strategy to control obesity and consequently diabetes.

We studied the impact on the dynamics of the parameters β1 and α1 and
found that the parameter α1 gives a volatile behavior to the compartments
of individuals with normal weight and its variation causes a more significant
effect on the compartments compared to the variation of β1. In particular,
the growth of parameter α1 will increase the number of diabetic cases. Thus,
factors other than obesity and overweight also have an impact on the number
of diabetic cases.

In our work, we limit ourselves to the study of the negative impact of over-
weight and obesity on people of normal weight and define the transmission rate.
We must take into account that the opposite effect (i.e., those of normal weight
may contribute to help the obese and overweight) may also have an influence
but this is not the current focus of our work. To obtain some parameters such
as those related to transitions, development of diabetes and the influence of
social factors on overweight require population-based studies.

These results provide information for the construction of a control strat-
egy with the aim of reducing obesity and overweight and diabetes. In future
work, we will use the model to study scenarios with different demographic and
industrial characteristics, we will propose an optimal control model with the ob-
jective of reducing overweight and obesity in the population and consequently
the impact of diabetes.
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