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aInstitute of Data Science and Digital Technologies, Vilnius University

Akademijos g. 4, LT-08412 Vilnius, Lithuania

bDepartment of Applied Mathematics, Kaunas University of Technology

Studentu̧ g. 50, LT-51368 Kaunas, Lithuania

cVilnius Gediminas Technical University
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1 Introduction and problem statement

In this paper, the difference eigenvalue problem

ui−1 − 2ui + ui+1

h2
+ λui = 0, i = 1, 2, . . . , N − 1, (1.1)

u0 = γ1[α, u], uN = γ2[β, u], (1.2)

where h = 1
N , γ1 and γ2 are constants,

[v, w] = h
(v0w0 + vNwN

2
+

N−1∑
i=1

viwi

)
(1.3)

is considered.
From theoretical point of view, this problem is a difference analog of the

differential eigenvalue problem

d2u

dx2
+ λu = 0, x ∈ (0, 1), (1.4)

u(0) = γ1

∫ 1

0

α(x)u(x)dx, u(1) = γ2

∫ 1

0

β(x)u(x)dx, (1.5)

where α(x) and β(x) are the known functions.
As far as it is known for the authors, the nonlocal conditions (1.5) for

the first time were formulated in the paper [7] for one dimensional parabolic
equation considering mathematical models in thermoelasticity and thermody-
namics.

In [12,17,22] the differential eigenvalue problem with multipoint boundary
conditions

u(0) = 0, u(1) =

m∑
k=1

αku(ηk), (1.6)

instead of the integral conditions (1.5) was considered.
The results of the investigation of the structure of spectrum were applied

for the study of the existence and multiplicity of the nodal solution for the
second-order nonlinear differential equations.

One of the main purposes of these investigations, is to determine the con-
ditions under which the spectrum of the corresponding eigenvalue problem
contains only real eigenvalues. The typical restrictions are

αk > 0, ∥α∥ =

(
m∑

k=1

α2
k

)
< 1.

See [33] for further extension to the case of integral conditions.
We note, that the eigenvalue problems (1.4)–(1.5) or (1.4)–(1.6) can be

analyzed using elementary method. However, as noted in [12, 17], the corre-
sponding eigenvalue theory is incomplete. The main reason is that the linear
operators are no longer symmetric with respect to nonlocal boundary condi-
tions (1.5)–(1.6).
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We note that the difference problem (1.1)–(1.2) usually occurs when the dif-
ferential equations of various types with nonlocal conditions (1.5) are solved by
the finite difference method. In this sense the spectrum analysis of the problem
(1.1)–(1.2) could be interpreted as one of main approaches for the investigation
of stability of difference schemes and convergence of iterative methods. From
the seventies and eighties of last century intensive investigation of differential
equations with nonlocal conditions should be admitted. This process was stim-
ulated by formulation of new mathematical models with nonlocal conditions in
various areas of science and technology. The review of such models is provided
in many papers (see, f.e. [8,18,30]). The investigation and methods of solution
of differential equations with nonlocal conditions became one of the modern
trends in the theory of differential equations and numerical analysis.

The structure of spectrum of difference eigenvalue problem with various
types of nonlocal conditions was started to analyze in connection with investi-
gation of stability of difference schemes for parabolic equations [3, 13].

Stability of the difference scheme for one-dimensional linear parabolic equa-
tion with nonlocal integral conditions

∂u

∂t
=
∂2u

∂x2
+ f(x, t), 0 < x < 1,

u(0, t) =

∫ 1

0

α(x)u(x, t)dx+ µ1(t), u(1, t) =

∫ 1

0

β(x)u(x, t)dx+ µ2(t)

was investigated in many papers without the study of spectrum structure of
corresponding eigenvalue problem (1.1)–(1.2) ( see, f.e. [1,6] and the references
therein). The other approach oh investigation of this stability is the spectrum
structure of the matrix of difference equation system [3, 15, 19, 24, 25]. One
of the purposes of our investigations is to compare of these two approaches
of analyzing the stability conditions. We note that for proof of stability it is
necessary to determine the conditions under which the inequality Reλ ≥ 0 is
satisfied.

As separate mathematical task the difference eigenvalue problem with non-
local conditions was investigated in [2, 23, 28] (see also the review article [30]).
Some recent results are presented in the papers [2, 5, 10,20,21,29,31,33].

The main purpose of the present paper is to provide new statements on
the structure of spectrum of difference eigenvalue problem (1.1)–(1.2) and to
apply these results for the investigation of stability of difference schemes. The
theoretical results were supplemented by numerical experiment.

The structure of the paper is as following. In Section 2, we provide new
theoretical results on the structure of spectrum for the problem (1.1)–(1.2) de-
pending on the properties of variable coefficients αi and βi , i = 0, N . These
theoretical statements we append in Section 3 by the results of numerical ex-
periment. Further, in Section 4, the results of investigation of the structure of
spectrum are interpreted and applied for the analysis of stability of difference
schemes. Section 5 is intended to concluding remarks.
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2 Difference eigenvalue problem: theory

Let the following assumptions are satisfied:
H1. |γ1αi| ≤ M1 < ∞, |γ2βi| ≤ M1 < ∞, i = 0, N .
H2. Grid step h ≤ 1/(2γkM1), k = 1, 2.

Then we write down the eigenvalue problem (1.1)–(1.2) in the equivalent
matrix form. With this aim from the conditions (1.2) we express u0 and uN

by other unknowns

u0 = γ1h

N−1∑
i=1

α̃iui, uN = γ2h

N−1∑
i=1

β̃iui, (2.1)

where

α̃i =
1

D

(
αi −

γ2hαiβN

2
+

γ2hαNβi

2

)
, β̃i =

1

D

(
βi −

γ1hβiα0

2
+

γ1hαiβ0

2

)
,

D =

∣∣∣∣1− 1
2γ1hα0 − 1

2γ1hαN

− 1
2γ2hβ0 1− 1

2γ2hβN

∣∣∣∣ .
If assumptions H1 and H2 are satisfied, then D ≥ 1− hM1 > 0.

Putting expressions (2.1) for u0 and uN into equation (1.1), when i = 1 and
i = N − 1, we get

Au = λu,

where

A =

h−2


2− hα̃1 −1− hα̃2 −hα̃3 . . . . . . −hα̃N−2 −hα̃N−1

−1 2 −1 . . . . . . 0 0
0 −1 2 . . . . . . 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . −1 2 −1

−hβ̃1 −hβ̃2 −hβ̃3 . . . −hβ̃N−3 −1−hβ̃N−2 2−hβ̃N−1


(2.2)

Now we get the following conclusion:

Corollary 1. If the assumptions H1 and H2 are fulfilled, then the difference
eigenvalue problem (1.1)–(1.2) is equivalent to the eigenvalue problem for the
matrix A defined by formula (2.2).

Particularly, it means that under the assumptions H1 and H2 the difference
eigenvalue problem (1.1)–(1.2) has N − 1 eigenvalues.

Now, we will prove some statements on spectrum structure for the eigen-
value problem (1.1)–(1.2).

Theorem 1. If (i) αi = 0, i = 0, N , (ii) [β, 1] < 1, βi ≥ 0, i = 0, N ,
then all eigenvalues of difference eigenvalue problem (1.1)–(1.2) are positive
and different for 0 ≤ γ2 ≤ 1.

Math. Model. Anal., 28(3):522–541, 2023.
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Proof. When λ > 0 in the Equation (1.1), then 1 − 1
2λh

2 < 1. Let us find
firstly such eigenvalues λ > 0 of the problem (1.1)–(1.2), for which more strict
inequality is fulfilled: ∣∣∣∣1− 1

2
λh2

∣∣∣∣ < 1. (2.3)

Taking into account inequality (2.3), we introduce new unknown s instead of
λ in Equation (1.1)

1− 1

2
λh2 = cos(sh), s > 0. (2.4)

From here it follows

λ =
4

h2
sin2

(
sh

2

)
, s > 0.

Solution of Equation (1.1), fulfilling the condition u0 = 0 is

ui = c sin(sxi), xi = ih, i = 0, N,

where c = const. Putting this expression to the nonlocal condition (1.2) and
requiring that ui ̸≡ 0 we get

sin(s) = γ2[β, sin(sx)].

Let us define the function

Φ(s) = sin(s)− γ2[β, sin(sx)].

If the equation Φ(s) = 0 has a solution sk, then

λk =
4

h2
sin2

(
skh

2

)
(2.5)

is the eigenvalue of the problem (1.1)–(1.2). Φ(s) is continuous, periodic func-
tion with the period 2πN . Thereby, if Φ(sk) = 0, then

Φ(2πN − sk) = −Φ(sk) = 0.

Further,

Φ
((

k−1

2

)
π
)
=sin

((
k−1

2

)
π
)
−γ2

[
β, sin

((
k − 1

2

)
πx
)]

> 1−γ2[β, 1],

where k = 1, 3, 5, . . .. Analogously,

Φ
((

k +
1

2

)
π
)
< −1 + γ2[β, 1], k = 1, 3, 5, . . .

So, in every interval Ik =
((
k − 1

2

)
π,
(
k + 1

2

)
π
)
, k = 1, 2, . . . , N − 1, equation

Φ(s) = 0 has at least one solution. From here it follows, that in every interval Ik,
k = 1, N − 1 the roots are different, also different are eigenvalues λk, calculated
by formula (2.5). So, we get N − 1 different eigenvalues

0 < λ1 < λ2 < . . . < λN−1 <
4

h2
,

i.e., we obtained all eigenvalues of the (N − 1)-th order matrix A, and at the
same time eigenvalues of the problem (1.1)–(1.2). ⊓⊔
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Remark 1. Using the analogous methodology the positive eigenvalues for the
differential or difference problems to the problem (1.4)–(1.5) were obtained
in [14,22].

The following theorem is proved analogously.

Theorem 2. If (i) βi = 0, i = 0, N , (ii) [α, 1] < 1, αi ≥ 0, i = 0, N ,
then all eigenvalues of difference eigenvalue problem (1.1)–(1.2) are positive
and different for 0 ≤ γ1 ≤ 1.

Proof. Analogously as for Theorem 1, the solution of the problem (1.1) with
the condition uN = 0 is

ui = c

(
cos(sih)− cos(s)

sin(s)
sin(sih)

)
, i = 0, N,

where s is defined by the equality (2.4). Putting this expression of ui into the
condition (1.2), we get

1 = γ1[α, cos sx]−
cos (s)

sin (s)
γ1[α, sin sx]

or sin(s) = γ1[α, sin(s − sx)]. The further proof coincides with the proof of
Theorem 1. ⊓⊔

Lemma 1. The negative eigenvalue of the difference eigenvalue problem (1.1)–
(1.2), if it exists, is expressed by the formula

λk = − 4

h2
sinh

(
skh

2

)
, (2.6)

where sk > 0 is the root of the equation

D(s) :=

∣∣∣∣ 1− γ1[α, cosh(sx)] −γ1[α, sinh(sx)]

cosh(s)− γ2[β, cosh(sx)] sinh(s)− γ2[β, sinh(sx)]

∣∣∣∣ = 0. (2.7)

Proof. When λ < 0, then 1 − λh2

2 > 1 and there is a possibility to introduce
the new unknown s > 0 instead of λ according to the formula

1− 1

2
λh2 = cosh(sh).

From here (2.6) follows. Putting the general solution

ui = c1 cosh(sih) + c2 sinh(sih)

of the Equation (1.1) to the conditions (1.2) we get two equations

c1 = c1γ1[α, cosh(sx)] + c2γ1[α, sinh(sx)],

c1 cosh(s) + c2 sinh(s) = c1γ2[β, cosh(sx)] + c2γ2[β, sinh(sx)]

in respect of c1 and c2. This system has nontrivial solution (c1, c2), if and only
if the determinant of it equals to zero, i.e., the equality (2.7) is satisfied. ⊓⊔

Math. Model. Anal., 28(3):522–541, 2023.
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Theorem 3. The difference eigenvalue problem (1.1)–(1.2) has no negative
eigenvalue if any of three following conditions: (i) αi = 0, γ2βi ≤ 0, i = 0, N ,
(ii) βi = 0, γ1αi ≤ 0, i = 0, N , (iii) γ2βi = cγ1αi ≤ 0, c > 0 are satisfied.

Proof. Let us take the first assumption. With this assumption we get from
(2.7)

D(s) = sinh(s)− γ2[β, sinh(sx)].

As s > 0, γ2βi ≤ 0, it follows from here, that D(s) > 0, thus equation D(s) = 0
has no positive roots s > 0.

Analogously, if the assumption (ii) is fulfilled, then we get from (2.7) that

D(s) =(1− γ1[α, cosh(sx)]) sinh(s) + γ1[α, sinh(sx)] cosh(s)

= sinh(s)− γ1[αi, sinh(sx)] > 0,

when s > 0, γ1αi ≤ 0. So, D(s) = 0 has no positive roots s > 0.
Now, we take assumption (iii). It follows from (2.7)

D(s) = sinh(s)− sinh(s)γ1[α, cosh(sx)]− cγ1[α, sinh(sx)]

+ cosh(s)γ1[α, sinh(sx)]= sinh(s)−γ1[α, sinh(s−sx)]−cγ1[α, sinh(s)] > 0,

when s>0, γ1αi≤0, c > 0. Equation D(s)=0 has no positive roots s > 0. ⊓⊔

In the paper [20], there are investigated the conditions of various type,
under which the negative eigenvalues exist.

We admit, that considering the structure of spectrum of any eigenvalue
difference problem with nonlocal conditions, much of information could be re-
ceived after detailed analysis of the conditions of existence or nonexistence of
the eigenvalue λ = 0. Let us carry out this for the problem (1.1)–(1.2).

Lemma 2. [24]. The number λ = 0 is an eigenvalue of the difference eigen-
value problem (1.1)–(1.2) if and only if

γ1γ2 ([α, x][β, 1]− [β, x][α, 1]) + γ1[α, 1− x] + γ2[β, x]− 1 = 0. (2.8)

Based on this lemma, we formulate few conclusions on the properties of
spectrum of problem (1.1)–(1.2).

In general, formula (2.8) describes the hyperbola in the coordinate plane
(γ1, γ2). Depending on concrete values of αi and βi this hyperbola might turn
(degenerate) to line or two lines intersect each other by steep angle.

Two branches of hyperbola divide whole coordinate plane to three un-
bounded area or two areas when characteristic curve (2.8) describes the line.
The part of coordinate plane to which the point of origin of coordinates belongs
we mark as S0, the rest parts of the plane are denoted as S1 and S2 (Figure 1).

So, in the point of origin of coordinates (γ1 = 0, γ2 = 0) allN−1 eigenvalues
of the eigenvalue problem (1.1)–(1.2) are positive (the boundary conditions are
of Dirichlet type). As any eigenvalue of matrix is continues function of matrix
elements, the following statement is true:
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a) b)

c)

Figure 1. The schematic cases of the hyperbola (2.9) with α(x) ≥ 0, β(x) ≥ 0: a) the
case A > 0; b) the case A < 0; c) the case A = 0.

Corollary 2. Neighborhood of the point (γ1 = 0, γ2 = 0) exists in the area S0

such that in every point of it all the eigenvalues of problem (1.1)–(1.2) are that
positive. Further, varying γ1 and γ2 positive eigenvalue becomes negative one
when the point moves from area S0 to the other area S1 or S2, crossing the
hyperbola in the points of which eigenvalue λ = 0 exists.

But if in the area S0 there are complex eigenvalues, then varying γ1 and γ2
positive eigenvalue could becomes negative continuously moving not through
eigenvalue λ = 0, but through imaginary eigenvalue ±iImλ, i =

√
−1.

The samples of this situation are provided in [25,26]. So, we formulate the
following conclusion.

Corollary 3. If in the area S0 or in part of it to which the point of origin of
coordinates belongs, there are no complex eigenvalue of problem (1.1)–(1.2),
then there are no negative eigenvalues in it, i.e., the spectrum of the problem
consists only of positive numbers.

Let us consider the separate case of nonlocal conditions (1.2), αi ≥ 0, βi ≥ 0,
i = 0, N often used in various types of differential equations [17,18,24].

When αi ̸≡ 0, βi ̸≡ 0, we normalize these vectors so that would be

[α, 1] = 1, [β, 1] = 1.

After normalization we write the equation of hyperbola (2.8) as

Aγ1γ2 +Bγ1 + Cγ2 − 1 = 0, (2.9)

Math. Model. Anal., 28(3):522–541, 2023.
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where A = [α, x]− [β, x], B = 1− [α, x], C = [β, x].
Now, we could show how the coefficients αi and βi influence on the form of

hyperbola. We put out three cases:

1) [α, x] > [β, x]. In this case we have: A > 0, B > 0 and C > 0. Therefore,
the following inequalities for hyperbola asymptotes are true

γ1 = −C/A < 0, γ2 = −B/A.

Further, when γ1 = 0, then it follows from (2.9), that γ2 = 1/C > 0, i.e.,
the point (γ1 = 0, γ2 = 0) is placed lower the upper branch of hyperbola
(it is placed between hyperbola branches (Figure 1a)).

2) [α, x] < [β, x]. In this case A < 0, B > 0, C > 0, the point (γ1 = 0,
γ2 = 0) is placed lower of both of the hyperbola branches (Figure 1b).

3) [α, x] = [β, x]. In this case hyperbola degenerates to the straight line:

Bγ1 + Cγ2 = 1,

B > 0, C > 0 and the point (γ1 = 0, γ2 = 0) is placed lower this straight
line (Figure 1c).

So, we get the following statement:

Corollary 4. If αi ≥ 0, βi ≥ 0 (αi ̸≡ 0, βi ̸≡ 0), then the geometric location of
eigenvalue λ = 0 of the eigenvalue problem (1.1)–(1.2) in the coordinate plane
(γ1, γ2) is fully described by these three different types (Figures 1a, 1b, 1c). In
any case the point of origin of coordinates (γ1 = 0, γ2 = 0) cannot be placed
above the hyperbola or straight line.

3 Difference eigenvalue problem: numerical experiment

It was mentioned earlier, that the difference eigenvalue problem (1.1)–(1.2) is
not investigated theoretically in complete yet. To receive new information on
the structure of spectrum of this problem we performed numerical experiment.
The fact that numerical experiment might complement theoretical results was
demonstrated in [25,27].

Main aims of numerical experiment are as follows:

- to widen and supplement theoretical results on the structure of spectrum
depending on αi, βi, i = 0, N ;

- to find some regularities characteristic to whole problem (1.1)–(1.2), not
only for particular values of αi, βi (these regularities we formulate as
corollaries).

In the numerical experiment, αi and βi were defined as values of continuous
functions α(x) and β(x) in the interval [0, 1], where

α(x), β(x) :=
{
1, 2x, 2(1− x), 3x2, 3(1− x)2,

2(ax+ b)

a+ 2b
,
π

2
sin (πx)

}
. (3.1)
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Choosing the pair of functions α(x) and β(x), we calculate approximately
all eigenvalues of matrix A defined by formula (2.2) in the interval γi ∈ [ai, bi]
with some steps δγ1 and δγ2. The largest interval was γi ∈ [−200, 200], the
smallest one γi ∈ [0, 10]. The step of the grid was taken h = 1

N , N =
50, 100, 200, 400, 1000. With every pair of the functions α(x) and β(x) after
obtaining all the eigenvalues of matrix A the structure of spectrum was repre-
sented in the coordinate plane (γ1, γ2).

In the graphical representation colors and significations were chosen as fol-
lows:

- A white area corresponds to the values of γ1, γ2 for which all eigenvalues
of matrix A are real and positive.

- An area, criss-crossed with vertical and horizontal lines on a white back-
ground corresponds to the values of γ1, γ2 for which there exist complex
eigenvalues such that Reλ > 0. The rest of eigenvalues are real and
positive.

- A non criss-crossed area with a dark grey background corresponds to the
values of γ1, γ2 for which one negative eigenvalue there exist and the rest
of eigenvalues are positive. Criss-crossing of an area with sloped lines
shows that there are some complex eigenvalues here.

- A non criss-crossed area on a light grey background corresponds to these
values of γ1, γ2 for which there exist two negative eigenvalues and the
rest of eigenvalues are positive. Criss-crossing of an area with sloped lines
shows that there are some complex eigenvalues here.

In other words, a white background (with or without criss-crossing) sug-
ests that the entire spectrum is such that Reλ > 0. In the areas with
light grey or dark grey background the inequality Reλ < 0 is true at least
for one eigenvalue.

From the results of numerical experiment, we always determine in which
areas of the coordinate plane all the eigenvalues of matrix A are characterized
by the property Reλ > 0. Inequality Reλ > 0 is important because it is one of
conditions of the stability of difference schemes (see Section 4, formula (4.7)).

According to the results of the numerical experiment, some regularity was
observed. The first elementary but quite important conclusion is following:

Corollary 5. Interchanging the functions α(x) and β(x) in the eigenvalue prob-
lem (1.1)–(1.2), the structure of the spectrum may change significantly (Fig-
ure 2a, Figure 2b).

Really, when [α, x] ̸= [β, x], then according to Corollary 4, the location
of hyperbola in the coordinate plane (γ1, γ2) is different for respective pairs
(α(x), β(x)) and (β(x), α(x)) (see Figure 1a, Figure 1b). For the pair of func-
tions α(x) = 3x2, β(x) = 2(1− x) the point (γ1 = 0, γ2 = 0) is placed between
branches of hyperbola (Figure 1a, Figure 2a). And for the pair of functions
α(x) = 2(1 − x), β(x) = 3x2 this point is placed lower of both the branches
of hyperbola (Figure 1b, Figure 2b). Namely this fact determines that in the

Math. Model. Anal., 28(3):522–541, 2023.
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Figure 2. Effects of interchanging the functions α(x) and β(x). The property Reλ > 0 is
true in the points (γ1, γ2) of the area with white bacground (with or without criss-crossing).

cases (α(x), β(x)), and (β(x), α(x)) the areas in the coordinate plane (γ1, γ2)
with the property Reλ > 0 are different.

In the first case (Figure 2a) the points (γ1, γ2) in which the property Reλ >
0 is true basically belong to the second and fourth quadrants of coordinate
plane. In the second case (Figure 2b) these points with small exception belong
only to the third quadrant (area S0).

We also admit, that in the second case (Figure 2b) functions α(x) and β(x)
were specially selected in a way that all the eigenvalues of the problem (1.1)–
(1.2) are real (there are no complex eigenvalues with all values of γ1 and γ2).
Therefore, according to Corollary 3, all the eigenvalues in the area S0 of the
coordinate plane are positive.

The similar situation with the structure of spectrum is also in the case
when complex eigenvalues exist (Figure 3a, when α(x) = 3x2, β(x) = 2x and
Figure 3b, when α(x) = 2x, β(x) = 3x2). In this case, as it was admitted in
Corollary 3, all eigenvalues are positive not in the whole area S0, but only in
the part of it (Figure 3a).
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a) α(x) = 3x2, β(x) = 2x
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b) α(x) = 2x, β(x) = 3x2

Figure 3. Effects of interchanging the functions α(x) and β(x). The property Reλ > 0 is
true in the points (γ1, γ2) of the area with white bacground (with or without criss-crossing).

In numerical experiment, one regularity observed is directly related with
the property of hyperbola (2.9) that the point of origin of the coordinate plane
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cannot be placed above the upper branch of hyperbola (Corollary 4). It follows
from Corollary 4 that in all the points (γ1, γ2) placed above the hyperbola the
negative eigenvalue of the problem (1.1)– (1.2) exists.

So, the following statement is true.
When (γ1, γ2) belongs to the first quadrant of the coordinate plane, then

the property of the spectrum Reλ > 0 is characteristic only if the point (γ1,
γ2) is close enough to the origin point of coordinates.

4 Investigation of the stability of difference schemes

We will use the results of Sections 2 and 3 for the investigation of stability
of difference schemes obtained solving the parabolic equation with nonlocal
conditions type (1.5) by finite difference method.

Stability of difference schemes with nonlocal boundary conditions were in-
vestigated in many papers. One of the first articles where the conditions for
the stability of difference schemes for one-dimension linear parabolic equation

∂u

∂t
=

∂2u

∂x2
+ f(x, t) (4.1)

with integral conditions

u(0, t) =

∫ 1

0

α(x)u(x, t)dx+ µ1(t), u(1, t) =

∫ 1

0

β(x)u(x, t)dx+ µ2(t) (4.2)

were investigated, is the paper [9]. Here, the stability and convergence of the
forward and backward Euler methods were proved under asumptions∫ 1

0

|α(x)|dx ≤ ρ < 1,

∫ 1

0

|β(x)|dx ≤ ρ < 1. (4.3)

The stability of Crank-Nicolson method was proved under additional asumption(∫ 1

0

α2(x)dx

) 1
2

+

(∫ 1

0

β2(x)dx

) 1
2

<

√
3

2
. (4.4)

In [11], the stability and convergence for parabolic equation was proved then
the asumptions ∫ 1

0

α2(x)dx < 1,

∫ 1

0

β2(x)dx < 1

were fulfilled. In the paper [16], proving the stability of difference schemes the
presumption (4.4) was replaced by another one∫ 1

0

α2(x)dx+

∫ 1

0

β2(x)dx < 2, (4.5)

which is much weaker than (4.4).
The sufficient conditions of the stability of difference scheme analogous as

conditions (4.3)–(4.5) or differing from them insignificantly could be found in
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many other papers where the difference methods for parabolic equation with
nonlocal conditions are considered [4, 6].

Beside this approach of the investigation of stability, another direction of
investigation of stability of difference schemes with nonlocal conditions also
was developed basing on the structure of spectrum of the matrix of difference
equation system [3,15,19,24,25].

According to this approach, as an example we approximate the problem
(4.1), (4.2) by using the Crank-Nicolson method and get the following difference
scheme for the points on n-th layer

un
i − un−1

i

τ
=

u
n− 1

2
i−1 − 2u

n− 1
2

i + u
n− 1

2
i+1

h2
+ f

n− 1
2

i , i = 1, . . . , N − 1,

un
0 = (α, un) + µn

1 , un
N = (β, un) + µn

2 ,

where u
n− 1

2
i = 1

2

(
un
i + un−1

i

)
. By analogy with eigenvalue problem (1.1)-(1.3)

we express un
0 and un

N for these nonlocal conditions. Putting the expressions
un
0 and un

N into difference equations, when i = 1 and i = N − 1, we can write
this difference scheme in matrix form

un = Sun−1 + τfn− 1
2 . (4.6)

where S = (I + τ
2A)−1(I − τ

2A), matrix A is determined in (2.2) (for details
see [24]).

Next we formulate the theoretical statement which defines the essence of
this methodology. Firstly, if Reλk(A) > 0, k = 1, N − 1, where matrix A is
defined by (2.2), then,

ρ(S) = max
1≤k≤N−1

|λk(S)| < 1.

Thus the condition
Reλk(A) > 0, k = 1, N − 1 (4.7)

is the sufficient condition of stability of the scheme (4.6). The meaning and
significance of this condition in the theory of stability were deeply analyzed
earlier in [32].

Now, we can compare the conditions of stability (4.3)–(4.5) and investigate
how much they differ from the stability condition (4.7). With this aim we
rewrite the sufficient conditions of stability (4.3)–(4.5) in a different form

|γ1| ∥α∥L1 < 1, |γ2| ∥β∥L1 < 1, (4.8)

|γ1| ∥α∥L2
+|γ2| ∥β∥L2

≤
√
3/2, |γ1| ∥α∥L2

< 1, |γ2| ∥β∥L2
< 1,

γ2
1 ∥α∥2L2

+ γ2
2 ∥β∥2L2

< 2, (4.9)

where

∥α∥L1
=

∫ 1

0

|α(x)|dx, ∥α∥L2
=

(∫ 1

0

α2(x)dx

) 1
2

.

Now, we take a concrete example.
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Example 1. α(x) = 2(1−x), β(x) = 3x2. The following assumptions of stability
are obtained with these functions:

|γ1| < 1, |γ2| < 1, (4.10)

2√
3
|γ1|+

3√
5
|γ2| <

√
3

2
, (4.11)

|γ1| <
√
3/2, |γ2| <

√
5/3, (4.12)

4

3
γ2
1 +

9

5
γ2
2 < 2. (4.13)

By these inequalities the areas of stability in the plane (γ1, γ2) are defined
(Figure 4a). As it was mentioned before, using the coordinate plane it is
convenient to interpret the results of stability. Let us take the condition of
stability (4.4) [9]. The interpretation for this condition is as following. The
Crank-Nicolson scheme for the Equation (4.1) with nonlocal conditions (4.2),
when α(x) = 2(1−x), β(x) = 3x2, will be stable, if γ1 and γ2 satisfy inequality
(4.13), or in other words, if the point (γ1, γ2) belongs to the area of stability
in Figure 4a, the contour of which is a curve (4.13).

a) α(x) = 2(1− x), β(x) = 3x2 b) α(x) = 3x2, β(x) = 2(1− x)

Figure 4. The areas of the stability: 1 (blue) for the condition (4.10); 2 (black) for the
condition (4.11); 3 (red) for the condition (4.12); 4 (purple) for the condition (4.13).

From Figure 4a could be seen that every out of four areas of stability, even
if they are different, have many common properties. Firstly, all of them are
placed in comparable small neighborhood of the point (γ1 = 0, γ2 = 0), i.e.,
inside the circle of the radius r =

√
1.5. Meanwhile the real area of stability

obtained during the numerical experiment (condition of stability Reλk(A) > 0)
is incomparably larger (Figure 2b).

Secondly, the areas of stability defined by formulas (4.8)–(4.9) change lit-
tle, if α(x) and β(x) change each other (Figure 4b).The real area of stability
obtained in the numerical experiment differs significantly.

Thirdly, the areas of stability (4.8)–(4.9) remain the same if instead of
the functions (α(x), β(x)) would be taken (−α(x), β(x)), (α(x), −β(x)) or
(−α(x), −β(x)). But the area of stability obtained in the numerical experiment
also differs significantly.

We get analogous situation with the same conclusions if instead the func-
tions α(x) = 2(1 − x) and β(x) = 3x2 we would take any functions from the
set (3.1). So, from the numerical experiment it follows the conclusion.

Math. Model. Anal., 28(3):522–541, 2023.
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Corollary 6. The sufficient conditions of stability of difference schemes (4.3)–
(4.5) are effective enough and possibly close to the necessary conditions only
for the class of functions α(x) ≥ 0, β(x) ≥ 0. But if the functions α(x) and
β(x) are of opposite signs or each of them may change the sign, conditions
(4.3)–(4.5) are ineffective and may differ much from the necessary conditions.

Any of conditions (4.3)–(4.5) may be rephrased in a following way. For dif-
ference scheme to be stable it is sufficient that norms of the α(x) and β(x) in the
space L1 and L2 would be bounded by comparably small constant (roughly not
exceeding two). Even more expressive is a free interpretation of this statement.
According to presumptions (4.3)–(4.5) difference scheme is stable if nonlocal
conditions (4.2) differ by a little from the boundary conditions of Dirichlet type
(α(x) = β(x) = 0).

Numerical experiment shows that in most cases the sufficient conditions
of stability (4.3)–(4.5) ineffectively enought define the real area of stability
obtained on the basis of the structure of spectrum for difference problem (con-
dition Reλ(A) > 0).

So, the values of the norms of α(x) and β(x) (or shortly, magnitude of α(x),
β(x)) often are not characteristic indication of the stability of difference scheme.
More important indication of stability is structure of spectrum of difference
problem. Also, it is important to emphasize that it is simpler to examine any
of conditions (4.3)–(4.5) than to investigate structure of spectrum.

Example 2. Let us form and solve the differential problem in which the con-
ditions of stability of difference scheme are not related with the magnitude of
the values of α(x) and β(x). Let us choose functions α(x) and β(x) from the
following class of functions:

α(x) ≥ 0, [α, 1] = 1, [β, 1] = 1.

It means that some values of βi may be negative but certain predominance of
positive values is presented. Namely, let us take the following expressions of
the functions α(x) and β(x):

α(x) = (10x+ 4)/9, β(x) = 10x− 4.

Figure 5. The location of the hyperbola (2.8) in the plane (γ1, γ2) in the case
α(x) = (10x+ 4)/9, β(x) = 10x− 4.
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Figure 6. Spectral properties of the matrix A in the case α(x) = (10x+ 4)/9,
β(x) = 10x− 4 with different intervals for γ1, γ2.

With these functions, the form of hyperbola (2.9) in the points of which
there exists the eigenvalue λ = 0 of the problem (1.1)–(1.2) in the coordinate
plane (γ1, γ2), is different as it was under the presence of the conditions α(x) ≥
0, β(x) ≥ 0 (Figure 5). Consequently, in the points of the first quadrant
(the area S0) of the plane (γ1, γ2) we could expect different properties of the
spectrum. Indeed, the numerical experiment showed different structure of the
spectrum than it was in the case α(x) ≥ 0, β(x) ≥ 0 (see Figure 6).

We will not deal with all the properties of the structure of spectrum, but will
indicate most important of them. The area of stability in the points of the first
quadrant of coordinate plane (γ1, γ2) (criss-crossed or non criss-crossed area on
a white background) resembles the centric corner or sector of circle (with some
accuracy, of course). It means that it is possible to pick two neighboring points
(with as big as desired values of γ1 > 0, γ2 > 0) such that in one of them all
eigenvalues will possess a property Reλk(A) > 0 and in another point at least
for one eigenvalue would be correct the property Reλk(A) < 0.

In Table 1, there are presented results received by Crank-Nicolson method
for differential equation (4.1) with conditions (4.2),

u(x, 0) = φ(x),

where α(x) = (10x+ 4)/9, β(x) = 10x− 4.
Functions f(x, t) and φ(x), µ1(t), µ2(t) are taken in a way that function

u(x, t) = e−t sin
(
πx/2

)
would be the solution of the differential problem.

Our aim was to demonstrate that every time increasing γ1 or γ2 or both values
we switch from the area of stability or vice versa. So, the solution of difference
problem showed that the magnitude of the values γ1α(x) and γ2β(x) alone has
no influence on the stability of difference scheme. Stability depends on other
properties (the sign of Reλ(A)).

Math. Model. Anal., 28(3):522–541, 2023.
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Table 1. The errors of solution ε = max
(i,n)

|un
i − u(xi, t

n)| for different values h, τ , γ1, γ2;

un
i - solution of the difference problem, u(xi, t

n) - solution of the difference problem.

T = 5

(γ1; γ2) h =
1

1000
, τ =

1

100
h =

1

4000
, τ =

1

400
h =

1

16000
, τ =

1

1600

(3; 1) 4.6837 · 10−4 2.9401 · 10−5 2.0155 · 10−6

(8; 3) 4.0537 · 10−4 2.5400 · 10−5 1.6352 · 10−6

(30; 10) 3.9454 · 10−4 2.4714 · 10−5 1.6141 · 10−6

(90; 30) 3.9099 · 10−4 2.4644 · 10−5 1.6350 · 10−6

(150; 50) 3.8994 · 10−4 2.4466 · 10−5 1.9582 · 10−6

(8; 4) 3.5937 · 1045 7.0303 · 10115 7.4685 · 10125
(30; 11) 4.3708 · 10−4 1.2672 · 1013 1.7646 · 10156
(90; 31) 3.9109 · 10−4 2.6398 · 10−5 5.4861 · 1011

This effect was attained choosing α(x) and β(x) in the way that at least
one of these functions shift the sign of it in the interval of integration [0, 1]. For
this reason hyperbola (2.8) in the coordinate plane (γ1, γ2) occupies the area
(Figure 6) different from referred in Figure 1. Now the points (γ1 > 0, γ2 > 0)
of the first quadrant with some big values of γ1, γ2 are placed in the same area
S0 of coordinate plane as also the point (γ1 = 0, γ2 = 0). We admit that the
situation when α(x) and β(x) shift the sign in the interval of integration may
occur also in the problems of thermoelasticity [7].

5 Concluding remarks

The structure of spectrum of the problem considered in this paper plays im-
portant role in the investigation of stability of difference schemes with nonlocal
conditions. To highlight this role was the main purpose of this paper.

During last three decades many different numerical methods were used to
solve the parabolic equations with nonlocal conditions of various types. And
many sufficient conditions of stability of difference schemes were investigated
for solution of this problem. The results of the investigation of stability are
described in some articles. Short overview of these investigations up to the
year 2013 is provided in [1]. In the present paper we continue investigation
of conditions of stability. Particularly, we emphasized the influence of the
coefficients α(x) and β(x) on the stability of difference schemes. For this aim
we also used the numerical experiment.

More than ten years ago the author of the paper [29] wrote on the eigenvalue
problem (1.4), (1.6): ”Although it is important in many nonlinear problems,
the corresponding eigenvalue theory for linear problem is incomplete”. Today
we may say analous words about the eigenvalue problem (1.1)–(1.3) and its
significance in stability of difference schemes in the case of nonlocal boundary
conditions.

In any way, the structure of spectrum of difference or differential eigenvalue
problems (1.1)–(1.2) and (1.4)–(1.5) is an important problem of numerical anal-
ysis and differential equations and worth of further investigation.
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[5] R. Čiupaila, K. Pupalaigė and M. Sapagovas. On the numerical solu-
tion for nonlinear elliptic equation with variable weight coefficients in an
integral condition. Nonlinear. Anal. Model. Contr., 26(4):738–758, 2021.
https://doi.org/10.15388/namc.2021.26.23929.

[6] M.R. Cui. Convergence analysis of compact difference schemes for diffusion equa-
tion with nonlocal boundary conditions. Appl. Math. Comput., 260(2015):227–
241, 2015. https://doi.org/10.1016/j.amc.2015.03.039.

[7] W.A. Day. Extensions of a property of solutions of the heat equation subject
to linear thermoelasticity and other theories. Quart. Appl. Math., 40:319–330,
1982. https://doi.org/10.1090/qam/678203.

[8] M. Dehghan. Efficient techniques for the second-order parabolic equation
subject to nonlocal specifications. Appl. Numer. Math., 52:39–62, 2005.
https://doi.org/10.1016/j.apnum.2004.02.002.

[9] G. Ekolin. Finite–difference methods for a nonlocal boundary–value problem for
heat equation. BIT, 31:245–261, 1991. https://doi.org/10.1007/BF01931285.

[10] N. El-Mowafy, S.M. Hedal and M.S. El-Hzab. Study the influence of nonlocal
boundary condition on the difference eigenvalue problem for differential equation.
J. Informat. and Mathem. Scienc., 12(3):209–222, 2020.

[11] G. Fairweather and J.C. Lopez-Marcos. Galerkin methods for a semilinear
parabolic problem with nonlocal conditions. Adv. Comp. Math., 6:243–262, 1996.
https://doi.org/10.1007/BF02127706.

[12] J. Gao, D. Sun and M. Zhang. Structure of eigenvalues of multi-point boundary
value problems. Advan. Difference Equat., 381932(2010):1–18, 2010.

[13] N.I. Ionkin. Solution of one boundary value problem of the theory of heat con-
daction with a nonclasical boundary condition. Differ. Equ., 13:204–211, 1977.
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