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1 Introduction

In this paper, we are interested in developing the rigorous stability and con-
vergence analysis of BDF-k (k = 3, 4, 5) for simulating the extended Fisher-
Kolmogorov (EFK) model [3, 9, 10].

∂tΦ = ∆Φ− γ∆2Φ− f(Φ) for x ∈ Ω and 0 < t ≤ T ,

Φ(·, t) is L- periodic, t ∈ (0, T ),

Φ(x, 0) := Φ0(x), x ∈ Ω, (1.1)

where the spatial domain Ω = (0, L)2 ⊂ R2, the nonlinear function f(v) =
v3 − v , the parameter γ > 0 is a positive constant and Φ0(x) is a given L-
periodic function regular enough. Mathematically, the governing system of the
EFK model could be derived via an L2 gradient flow associated with the the
following free energy (Lyapunov) functional

E [Φ] =

∫
Ω

(
γ

2
|∆Φ|2 + 1

2
|∇Φ|2 + F [Φ]

)
dx.

Then, the system has the energy dissipation law

dE

dt
=

(δE
δΦ

, ∂tΦ
)
= −∥∂tΦ∥2L2 ≤ 0,

in which (f, g) :=
∫
Ω
fg dx, and the associated L2 norm ∥f∥L2 =

√
(f, f) for

all f, g ∈ L2(Ω).
The EFK model was proposed by adding a fourth order derivative term to

the classical Fisher-Kolmogorov (FK) model by Coullet, Elphick and Repauxin
in [4]. Then the generalization of the standard FK model was explored by
Dee and Saarloos in [6]. The EFK model has wide applications in science
and technology. The numerical methods, including finite element Galerkin
method [5, 8], collocation method [25] and pseudo-spectral method [16] for
solving the EFK model had attracted many researchers. The numerical re-
search in [11, 12, 13, 14, 15] are mainly focused on the Crank-Nicolson (CN)
type schemes with uniform time-step. However, it is well known that the BDF
method is a class of implicit methods for solving rigid differential equation nu-
merical integrals. They are linear multistep methods, which use the informa-
tion of the time point to approximate the derivative of the unknown function,
thus improving the approximation accuracy. These methods are particularly
suitable for the solution of rigid differential equation in which the numerical
stability is expressed as an absolutely stable region which it is called A-stable.
It is well known that only the first-order and second-order backward differential
formulas (BDF1 and BDF2) are A-stable, see [27], while orders greater than
2 can not be A-stable. Some remedial measures [1, 2, 24] have been proposed
to restore the the L2 norm stability and convergence for k-order backward dif-
ferential formula (k = 3, 4, 5). It is worthwhile to noting that this standard
analysis technique of BDF-k methods may not be used to establish some dis-
crete energy stable property for the gradient flow systems, including the EFK
equation.
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In this paper, we will make use of the recent discrete orthogonal convolution
(DOC) technique to analyze the BDF-k time-stepping method for solving the
EFK equation. The readers are referred to [17, 19, 20, 23] for the adaptive
BDF2 methods for the convergence analysis of linear reaction-diffusion problem
and the phase field models. Consider the time-step sizes τ := T/N and the
uniform discrete time layers tj = jτ . For any grid function {vk}Nk=0, put
▽τv

n := vn − vn−1 and ∂τv
n := ▽τv

n/τ . When the index k = 3, 4 or 5, the
BDF-k formula Dkv

n with uniform time-steps reads

Dkv
n :=

1

τ

n∑
k=1

b
(k)
n−k▽τv

k, n ≥ k,

where the associated BDF-k kernels b
(k)
j (vanish if j ≥ k), see Table 1, are

generated by

k∑
ℓ=1

1

ℓ
(1− ζ)ℓ−1 =

k−1∑
ℓ=0

b
(k)
ℓ ζℓ, 3 ≤ k ≤ 5. (1.2)

Table 1. The BDF-k kernels b
(k)
j generated by (1.2).

BDF-k b
(k)
0 b

(k)
1 b

(k)
2 b

(k)
3 b

(k)
4

k = 2 3
2

− 1
2

k = 3 11
6

− 7
6

1
3

k = 4 25
12

− 23
12

13
12

− 1
4

k = 5 137
60

− 163
60

137
60

− 21
20

1
5

In order to analyze the L2 norm stability and convergence of the BDF-k
methods, the corresponding DOC kernels technique will be introduced. For

the discrete BDF-k kernels b
(k)
j generated by (1.2), the corresponding DOC-k

kernels θ
(k)
j are defined by [22]

θ
(k)
0 :=

1

b
(k)
0

, θ
(k)
n−j := − 1

b
(k)
0

n∑
ℓ=j+1

θ
(k)
n−ℓb

(k)
ℓ−j , j=n−1, n−2, . . . , k+1, k. (1.3)

According to the above expressions, we can find the following discrete orthog-
onal convolution property

n∑
ℓ=j

θ
(k)
n−ℓb

(k)
ℓ−j ≡ δnj for any k ≤ j ≤ n, (1.4)

where δnk is the Kronecker delta symbol. Thus, this characteristic leads directly
to the following relationship, yields

n∑
j=k

θ
(k)
n−j

j∑
ℓ=k

b
(k)
j−ℓ▽τϕ

ℓ =

n∑
ℓ=k

▽τϕ
ℓ

n∑
j=ℓ

θ
(k)
n−jb

(k)
j−ℓ = ▽τϕ

n for k ≤ n ≤ N .

Math. Model. Anal., 29(1):125–140, 2024.
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This identity directly leads to the following relationship

n∑
j=k

θ
(k)
n−jDkϕ

j =
1

τ

n∑
j=k

θ
(k)
n−j

k−1∑
ℓ=1

b
(k)
j−ℓ▽τϕ

ℓ +
1

τ

n∑
j=k

θ
(k)
n−j

j∑
ℓ=k

b
(k)
j−ℓ▽τϕ

ℓ

≜
1

τ
ϕ
(k,n)
I + ∂τϕ

n for k ≤ n ≤ N , (1.5)

which ϕ
(k,n)
I is defined as

ϕ
(k,n)
I :=

k−1∑
ℓ=1

▽τϕ
ℓ

n∑
j=k

θ
(k)
n−jb

(k)
j−ℓ for n ≥ k. (1.6)

With the aid of the discrete convolution kernels, we focus on the effective-
ness of numerical method by considering a fully implicit BDF-k approach for
solving the EFK equation (1.1). Denote the space of L-periodic grid functions
Vh :=

{
vh | vh is L-periodic forxh ∈ Ω̄h

}
. That is, to find the numerical solu-

tion ϕnh ∈ Vh such that

Dkϕ
n
h + γ∆2

hϕ
n
h + f(ϕnh)−∆hϕ

n
h = 0 for xh ∈ Ωh and k ≤ n ≤ N , (1.7)

subjected to the initial value ϕ0h = Φ0(xh) and periodic boundary conditions.
Always, to avoid complex theoretical analysis, it is to assume that the initial
solutions ϕℓh for 1 ≤ ℓ ≤ k − 1 have been obtained by choose other higher-
order numerical algorithms, such as the Runge-Kutta method. The equivalent
convolutional form of the scheme (1.7) using DOC kernel technology will play
an important role in our analysis.

By applying the DOC-k kernels θ
(k)
j−n to both sides of the discrete formula

(1.7) with the help of (1.5) and (1.6), one can obtain the following equivalent
schemes (replacing n by ℓ)

∂τϕ
j = −ϕ(k,j)I /τ +

j∑
ℓ=k

θ
(k)
j−ℓ(∆hϕ

ℓ
h − γ∆2

hϕ
ℓ
h − f(ϕℓh)) for j ≥ k. (1.8)

In this article, we emphasize that the convolution formula will be the core
and starting point of our energy technology, potentially producing a simpler
and more effective proof than previous work [1, 2, 24]. Our work is organized
as follows. The unique solvability of the fully implicit BDF-k scheme (1.7) is
established, see Theorem 1. Then, the energy dissipation law in Theorem 2
is verified and Theorem 3 can establish the boundedness of solution in the
maximum norm in Section 2. In Section 3, an optimal L2 norm error estimate
of the BDF-k scheme (1.7) is established with the help of the DOC kernels.
It is worthy mentioning that, this is the first time to extend the stability and
convergence theory of the BDF-k scheme for solving the EFK equation. Several
numerical experiments are presented in Section 4 to show the accuracy and
effectiveness of our BDF-k method.
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2 Solvability and energy dissipation law

2.1 Spatial dispersion

For a completed presentation of the discrete numerical scheme, we describe the
general situation of spatial discretization briefly.

For the domain Ω = (0, L)2, let the grid length hx = hy = h := L/M with
an integer M . Let put the full discrete spatial grid Ω̄h := {xh = (ih, jh) | 0 ≤
i, j ≤ M} and define Ωh := {xh = (ih, jh) | 1 ≤ i, j ≤ M}. For the function
υh = υ(xh), let∆xυij := (υi+1,j−υi,j)/h and δ2xυij = (υi+1,j−2υij+υi−1,j)/h

2.
Similarly, ∆yυij and δ2yυij can be defined. Then the discrete Laplacian and

gradient vector are ∆hυij := (δ2x + δ2y)υij and ∇hυij := (∆xυij , ∆yυij)
T re-

spectively. For any v, w ∈ Vh, we define the discrete inner products and norms
as follows:

⟨v, w⟩ := h2
∑

xh∈Ωh

vhwh, ∥v∥ :=
√

⟨v, v⟩, ∥∇hv∥ :=
(
h2

∑
xh∈Ωh

|∇hvh|2
) 1

2

,

∥∆hv∥ :=
(
h2

∑
xh∈Ωh

|∆hvh|2
) 1

2

, ∥v∥∞ := max
xh∈Ωh

|vh|.

There exists a positive constant cΩ which dependents on the spatial domain
Ωh, one has the Sobolev inequality in [29]

∥v∥∞ ≤ cΩ
(
∥v∥+ ∥∆hv∥

)
for v ∈ Vh.

Under periodic boundary conditions, for any v, w ∈ Vh, the discrete Green’s
formula is shown〈

∆2
hv, w

〉
= ⟨∆hv,∆hw⟩ and ⟨−∆hv, w⟩ = ⟨∇hv,∇hw⟩ .

2.2 Unique solvability

The following proof shows that the solvability of the implicit BDF-k scheme
(1.7) is equivalent to the minimization of a convex functional S according to
[28], and also shows that the implicit scheme is uniquely solvable.

Theorem 1. If the time-step size satisfy the restriction τ ≤ b
(k)
0 , the implicit

BDF-k scheme (1.7) is uniquely solvable.

Proof. For any time-level index n ≥ k, consider the following discrete energy
convex functional S on the space Vh,

S[β] :=
1

2τ

〈
b
(k)
0 (β − ϕn−1) + 2Qn−1, β − ϕn−1

〉
+
γ

2

∥∥∆hβ
∥∥2 + 1

2

∥∥∇hβ
∥∥2

+
1

4

〈
(1− β2)2, 1

〉
,

where Qn−1 :=
∑n−1

ℓ=1 b
(k)
n−ℓ▽τϕ

ℓ. Under the time-step condition τ ≤ b
(k)
0 , S is

strictly convex function for any λ ∈ R and any ψh ∈ Vh, due to

d2S

dλ2
[β + λψ]

∣∣∣
λ=0

=(
1

τ
b
(k)
0 − 1)

∥∥ψ∥∥2 + γ
∥∥∆hψ

∥∥2 + ∥∥∇hψ
∥∥2 + 3

∥∥βψ∥∥2 ≥ 0.

Math. Model. Anal., 29(1):125–140, 2024.
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The above result shows that the functional S has a unique minimizing value,
denoted by ϕnh, if and only if it solves the equation

dS

dλ
[β+λψ]

∣∣∣
λ=0

=
1

τ

〈
b
(k)
0 (β−ϕn−1)+Qn−1, ψ

〉
+γ

〈
∆hβ,∆hψ

〉
+
〈
∇hβ,∇hψ

〉
+
〈
f(β), ψ

〉
=

1

τ

〈
b
(k)
0 (β − ϕn−1) +Qn−1 + γ∆2

hβ −∆hβ + β3 − β, ψ
〉
.

Therefore, for any ψh ∈ Vh, the following equation is obtained, only when we
take the unique minimum value ϕnh ∈ Vh,

1

τ

n∑
ℓ=1

b
(k)
n−ℓ▽τϕ

ℓ + γ∆2
hϕ

n −∆hϕ
n + (ϕn)3 − ϕn = 0,

which is precisely our BDF-k implicit formula (1.7) we constructed. ⊓⊔

2.3 Energy dissipation property

In what follows, we prove that the numerical scheme (1.7) maintains the mod-
ified energy dissipation property at the discrete levels.

Lemma 1. [22, Lemma 2.4]With the aid of the Grenander-Szegö theorem, see

this article [7, pp. 64–65], for 3 ≤ k ≤ 5, the discrete BDF-k kernels b
(k)
j

defined in (1.2) are positive definite in the sense that

2

n∑
ℓ=k

wℓ

ℓ∑
j=k

b
(k)
ℓ−jwj ≥ m1k

n∑
ℓ=k

w2
ℓ for n ≥ k,

which the constants are m13 = 95/48, m14 = 1.628 and m15 = 0.4776.

Lemma 2. [18, Lemma 2.3] For any real sequence {vk | k = 0, 1, 2, . . . , N},
the difference operators are defined when m ≥ 1 as

δm+1
1 vn := δm1 (δ1vn) = δm1 vn − δm1 vn−1,

also define the operator δ1vn := δ11vn = vn − vn−1. Then for k = 3, 4 and 5,

the BDF-k kernels b
(k)
j can meet the following form:

vn

n∑
j=1

b
(k)
n−jvj =Gk[vn]− Gk[vn−1] +

σLk

2
v2n +Rk[vn] for n ≥ k,

where the functionals Gk, Rk, and the positive constants σLk are shown by

� for k = 3, the constant σL3 := 95
48 ≈ 1.979,

G3[vn] :=
37

96
v2n − 1

8
v2n−1 +

7

24
(δ1vn)

2 =
1

6
v2n +

1

6
( 74vn − vn−1)

2,

R3[vn] :=
1

6
(δ21vn + 1

4vn−1)
2;
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� for k = 4, the constant σL4 := 4919
3072 ≈ 1.601,

G4[vn] :=
3433

6144
v2n − 15

64
v2n−1 +

1

8
v2n−2 +

47

192
(δ1vn)

2 − 3

16
(δ1vn−1)

2

+
3

16
(δ21vn)

2 =
13627

43008
v2n+

7

24
( 6556vn−vn−1)

2+
1

8
( 32δ1vn+vn−2)

2,

R4[vn] :=
1

8
(δ31vn + 3

2δ1vn−1)
2 +

1

6
(δ21vn + 35

32vn−1)
2;

� for k = 5, the constant σL5 := 646631
1920000 ≈ 0.3367,

G5[vn] :=
4227769

3840000
v2n − 551

1600
v2n−1 +

17

40
v2n−2 −

1

10
v2n−3 +

1607

4800
(δ1vn)

2

− 39

80
(δ1vn−1)

2 +
2

5
(δ1vn−2)

2 +
7

80
(δ21vn)

2 − 2

5
(δ21vn−1)

2 +
1

5
(δ31vn)

2

=
1198850903

1678080000
v2n +

437

900
( 49316992vn − vn−1)

2

+
9

40
( 2318δ1vn + vn−2)

2 +
1

10
(2δ1vn + 2vn−2 − vn−3)

2,

R5[vn]:=
(δ41vn+2δ21vn−1)

2

10
+
1

8
(δ31vn+

23
10δ1vn−1)

2+
1

6
(δ21vn+

1787
800 vn−1)

2.

Thus the quadratic form b
(k)
j associated with the BDF-k kernels can be re-

strained by

2

n∑
ℓ=k

vℓ

ℓ∑
j=k

b
(k)
ℓ−jvj ≥ σLk

n∑
ℓ=k

v2ℓ for n ≥ k.

We now prove the energy stability of BDF-k scheme (1.7). Let E[ϕn] be
the discrete version of energy (Lyapunov) functional,

E[ϕn] :=
γ

2

∥∥∆hϕ
n
∥∥2 + 1

2

∥∥∇hϕ
n
∥∥2 + 1

4

∥∥(ϕn)2 − 1
∥∥2.

Define the following modified discrete energy Ek[ϕn] and

Ek[ϕn] :=E[ϕn] +
1

τ

〈
Gk

[
▽τϕ

n
]
, 1
〉
.

Due to the employment of BDF-k formula Dk, the above modified energy for-
mula Ek[ϕn] inserts a perturbed term which the term is O(τ) in the primal
energy E[ϕn]. Always, we assume that the modified discrete energy Ek[ϕ0],
Ek[ϕ1], . . ., Ek[ϕk−1] satisfy the energy dissipation law. Next we will prove the
following theorem.

Theorem 2. If the time-step size τ fulfills

τ ≤ min
{
b
(k)
0 , σLk

}
for n ≥ k, (2.1)

where σL3 ≈ 1.979 > b
(3)
0 , σL4 ≈ 1.601 < b

(4)
0 and σL5 ≈ 0.3367 < b

(5)
0 . Then

the BDF-k implicit scheme (1.7) preserves the following energy dissipation law

Ek[ϕn] ≤ Ek[ϕn−1] for n ≥ k.

Math. Model. Anal., 29(1):125–140, 2024.
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Proof. Taking the inner product of (1.7) by ▽τϕ
n, for n ≥ k, one has〈

Dkϕ
n,▽τϕ

n
〉
+ γ

〈
∆hϕ

n,▽τ∆hϕ
n
〉
+

〈
∇hϕ

n,▽τ∇hϕ
n
〉

+
〈
(ϕn)3 − ϕn,▽τϕ

n
〉
= 0, (2.2)

which the discrete Green’s formula has been used with periodic boundary con-
ditions. Applying Lemma 2, one can obtains that〈

Dkϕ
n,▽τϕ

n
〉
≥ 1

τ

〈
Gk

[
▽τϕ

n
]
, 1
〉
− 1

τ

〈
Gk

[
▽τϕ

n−1
]
, 1
〉
+
σLk

2τ

∥∥▽τϕ
n
∥∥2.

With the aid of the discrete Green’s formula and 2a(a−b)=a2−b2+(a−b)2, one
has

γ ⟨∆hϕ
n,▽τ∆hϕ

n⟩ = γ

2

∥∥∆hϕ
n
∥∥2 − γ

2

∥∥∆hϕ
n−1

∥∥2 + γ

2

∥∥▽τ∆hϕ
n
∥∥2,

⟨∇hϕ
n,▽τ∇hϕ

n⟩ = 1

2

∥∥∇hϕ
n
∥∥2 − 1

2

∥∥∇hϕ
n−1

∥∥2 + 1

2

∥∥▽τ∇hϕ
n
∥∥2.

Noting the following relationship

4(a3 − a)(a− b) = (a2 − 1)2 − (b2 − 1)2 − 2(1− a2)(a− b)2 + (a2 − b2)2

≥ (a2 − 1)2 − (b2 − 1)2 − 2(a− b)2,

then one can obtain〈
(ϕn)3 − ϕn,▽τϕ

n
〉
≥ 1

4

∥∥(ϕn)2 − 1
∥∥2 − 1

4

∥∥(ϕn−1)2 − 1
∥∥2 − 1

2

∥∥▽τϕ
n
∥∥2.

Inserting the above results into (2.2) yields

1

2
(σLk/τ − 1)

∥∥▽τϕ
n
∥∥2 + Ek[ϕn] ≤ Ek[ϕn−1] for n ≥ k.

The time step restriction (2.1) implies the claimed discrete energy stable im-
mediately. ⊓⊔

Theorem 3. Assume the time-step size τ satisfies the conditon (2.1), the nu-
merical solution of the BDF-k scheme (1.7) is bounded (stable) in the L∞ norm∥∥ϕn∥∥∞ ≤ c0 := cΩ

√
4γ−1c2 + (2 + γ)|Ωh| for n ≥ k.

Similarly, the continuous energy dissipation law gives

∥Φ(tn)∥∞ ≤ ∥Φ(tn)∥L∞ ≤ c1.

Note that, the fixed constant c0 may dependent on the domain Ω, but c0 is
independent of the spatial length, the time steps τ and the current time tn.

Proof. The result follows from the proof of [26, Lemma 3.3] in the same way.
⊓⊔
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3 L2 norm convergence analysis

3.1 Some properties of the DOC kernels

The discrete convolution form (1.4) plays an important role in our convergence
analysis, we give some properties of the DOC kernels and discrete convolution
inequalities firstly, ef. [21, Lemma2.1] and [22, Lemma 2.5].

Lemma 3. The discrete kernels b
(k)
j in (1.2) are positive (semi-)definite if and

only if the associated DOC-k kernels θ
(k)
j in (1.3) are positive (semi-)definite.

Lemma 4. For 3 ≤ k ≤ 5, the associated DOC-k kernels θ
(k)
j defined in (1.3)

are positive definite and satisfy the following decaying estimates∣∣θ(k)j

∣∣ ≤ ρk
4

(k
7

)j

for j ≥ 0,

where the constants ρ3 = 10/3, ρ4 = 6 and ρ5 = 96/5.

3.2 L2 norm error estimate

Now we are to establish the L2 norm error estimate of the BDF-k scheme (1.7).
Let the local consistency error at the time t = tj ,

ξjΦ := DkΦ(tj)− ∂tΦ(tj).

Consider a convolutional consistency error Ξk
Φ defined by

Ξℓ
Φ :=

ℓ∑
j=k

θ
(k)
ℓ−jξ

j
Φ =

ℓ∑
j=k

θ
(k)
ℓ−j [DkΦ(tj)− ∂tΦ(tj)] for ℓ ≥ k. (3.1)

Then, we arrive at the following estimate on the convolutional consistency by
Lemma 4.

Lemma 5. For any k ≥ 3, the convolutional consistency error Ξk
Φ in (3.1)

satisfies ∥ξj∥ ≤ Cϕτ
k, such that

n∑
ℓ=k

τ
∥∥Ξℓ

Φ

∥∥ ≤ ρktn−k+1

7− k
Cϕτ

k for n ≥ k.

Proof. By using the Taylor’s expansion formula, one has

ξj =
1

k!τ

k−1∑
l=1

(bl − bl−1)

∫ tj

tj−l

(t− tj−l)
kΦ(k+1)(t)dt

− 1

k!τ
bk−1

∫ tj

tj−k

(t− tj−l)
kΦ(k+1)(t)dt,
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so we have

∥ξj∥ ≤ 1

k!
τk

k−1∑
l=1

|bl − bl−1|
∫ tj

tj−l

∥Φ(k+1)(t)∥dt+ 1

k!
|bk−1|τk

∫ tj

tj−k

∥Φ(k+1)(t)∥dt

≤ Cϕτ
k max
tk≤t≤T

∣∣∂(k+1)
t Φ(t)

∣∣ ≤ Cϕτ
k,

and Lemma 4 yields the following estimate

n∑
ℓ=k

τ
∥∥Ξℓ

Φ

∥∥ ≤ Cϕτ
k+1

n∑
ℓ=k

ℓ∑
j=k

∣∣θ(k)ℓ−j

∣∣ ≤ ρktn−k+1

7− k
Cϕτ

k for n ≥ k,

where Cϕ is independent of the time step τ and time tn, then the proof is
completed. ⊓⊔

Lemma 6. [22, Lemma 2.6] There exist some positive constants cI,k > 1 such

that the starting values ϕ
(k,j)
I satisfy

∣∣ϕ(k,j)I

∣∣ ≤ cI,kρk
8

(k
7

)j−k k−1∑
ℓ=1

∣∣▽τϕ
ℓ
∣∣ for 3 ≤ k ≤ 5 and j ≥ k,

such that

n∑
j=k

∣∣ϕ(k,j)I

∣∣ ≤ 7cI,kρk
8(7− k)

k−1∑
ℓ=1

∣∣▽τϕ
ℓ
∣∣ for 3 ≤ k ≤ 5 and n ≥ k,

where the constants ρk are defined in Lemma 4.

Theorem 4. Suppose Φ ∈ C
(4,6)
x,t (Ω × (0, T ]) is a solution of the EFK problem

(1.1) and the time-step condition (2.1) holds. Assume further that if the time
step τ is small enough such that τ ≤ 7−k

7ρkc3
, the solution ϕn of the BDF-k

scheme (1.7) is convergent in the L2 norm,

∥Φn − ϕn∥ ≤ 7ρk
7− k

exp

(
7ρkc3
7− k

tn−k+1

)[
cI,k

k−1∑
ℓ=0

∥∥eℓ∥∥+ Cϕtn−k+1(τ
k + h2)

]
for k ≤ n ≤ N .

Here, c3 := 1 + c20 + c0c1 + c21 is dependent on the domain Ω and the initial
values Φ0 and ϕ0, but independent of the time tn, the time-step size τ and the
spatial length h.

Proof. Let enh := Φn
h − ϕnh for xh ∈ Ω̄h. The local truncation error equation is

obtained, such as

Dke
j
h+γ∆

2
he

j
h−∆he

j
h + f(Φj

h)− f(ϕjh)=ξ
j
h+η

j
h, xh∈Ωh, k ≤ j ≤ N, (3.2)
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where ξjh is defined as the truncation error in time and ηjh is denoted the error
in space, respectively. Under the regularity setting of solution and Lemma 4,
we conclude

n∑
ℓ=k

τ
∥∥Υ ℓ

∥∥ ≤ Cϕτh
2

n∑
ℓ=k

ℓ∑
j=k

|θ(k)ℓ−j | ≤
ρktn−k+1

7− k
Cϕh

2 for k ≤ n ≤ N , (3.3)

where Υ ℓ
h :=

∑ℓ
j=k θ

(k)
k−jη

j
h for ℓ ≥ k.

Multiplying both sides of (3.2) by the DOC kernels τθ
(k)
ℓ−j , and summing up

the superscript from j = k to ℓ we apply the identity (1.8) to obtain

▽τe
ℓ + τ

ℓ∑
j=k

θ
(k)
ℓ−j

(
γ∆2

h −∆h

)
ejh = −e(k,ℓ)I + τ

ℓ∑
j=k

θ
(k)
ℓ−j

[
f(ϕjh)− f(Φj

h)
]

+ τΥ ℓ
h + τΞℓ, (3.4)

where e
(k,n)
I represents the starting error effects on the numerical solution at

the time tn,

e
(k,n)
I :=

k−1∑
ℓ=1

▽τe
ℓ

n∑
j=k

θ
(k)
n−jb

(k)
j−ℓ for n ≥ k. (3.5)

Making the inner product of the above equality (3.4) with 2eℓ, and summing
up the superscript from k to n, one can apply the discrete Green’s formula to
derive that∥∥en∥∥2 − ∥∥ek−1

∥∥2 + 2

n∑
ℓ=k

〈
e
(k,ℓ)
I , eℓ

〉
+ Jn

≤ 2τ

n,ℓ∑
ℓ,j

θ
(k)
ℓ−j

〈
f(ϕjh)− f(Φj

h), e
ℓ
〉
+ 2τ

n∑
ℓ=k

〈
Υ ℓ
h +Ξℓ, eℓ

〉
(3.6)

for k ≤ n ≤ N , where Jn is defined by

Jn := 2γτ

n,ℓ∑
ℓ,j

θ
(k)
ℓ−j

〈
∆he

j , ∆he
ℓ
〉
+ 2τ

n,ℓ∑
ℓ,j

θ
(k)
ℓ−j

〈
∇he

j ,∇he
ℓ
〉
.

The positive definiteness of DOC kernels in Lemma 3 shows that the term
Jn > 0. By virtue of the maximum norm estimates in Theorem 3, we have

|f(ϕjh)− f(Φj
h)| = |(ϕjh)

2 + ϕjhΦ
j
h + (Φj

h)
2 − 1||ejh| ≤ c3|ejh|.

Then, it follows from (3.6) that

∥∥en∥∥2 ≤
∥∥ek−1

∥∥2 + 2

n∑
ℓ=k

∥∥e(k,ℓ)I

∥∥∥∥eℓ∥∥+ 2c3τ

n∑
ℓ=k

θ
(k)
ℓ−j

∥∥ej∥∥∥∥eℓ∥∥
+ 2τ

n∑
ℓ=k

∥∥eℓ∥∥∥∥Υ ℓ +Ξℓ
∥∥. (3.7)
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Choose some integer n0 (k−1≤n0≤n) such that
∥∥en0

∥∥=maxk−1≤ℓ≤n

∥∥ej∥∥. Let
n = n0 in the above inequality (3.7), one gets

∥∥en0
∥∥ ≤

∥∥ek−1
∥∥+ 2

n0∑
ℓ=k

∥∥e(k,ℓ)I

∥∥+ 2c3τ

n0∑
ℓ=k

ℓ∑
j=k

∥∥θ(k)ℓ−je
ℓ
∥∥+ 2τ

n∑
ℓ=k

∥∥Υ ℓ +Ξℓ
∥∥

≤
∥∥ek−1

∥∥+2

n∑
ℓ=k

∥∥e(k,ℓ)I

∥∥+2c3τ

n∑
ℓ=k

ℓ∑
j=k

|θ(k)ℓ−j |
∥∥eℓ∥∥+ 2τ

n∑
ℓ=k

∥∥Υ ℓ +Ξℓ
∥∥. (3.8)

Applying Lemma 6 to the starting term e
(k,ℓ)
I in (3.5), one has

2

n∑
ℓ=k

∥∥e(k,ℓ)I

∥∥ ≤ 7cI,kρk
4(7− k)

k−1∑
ℓ=1

∥∥▽τe
ℓ
∥∥ for k ≤ n ≤ N.

For the right term in (3.8), one can derive the following estimates in a similar
fashion

2c3τ

n∑
j=k

j∑
ℓ=k

|θ(k)ℓ−j |
∥∥eℓ∥∥ ≤ ρk

2
c3τ

n∑
j=k

j∑
ℓ=k

(
k

7
)j−ℓ

∥∥eℓ∥∥ ≤ 7ρk
2(7− k)

c3τ

n∑
ℓ=k

∥∥eℓ∥∥.
Thus, we can use Lemma 4 to get the following estimate

∥∥en∥∥ ≤
∥∥en0

∥∥ ≤ 7cI,kρk
2(7− k)

k−1∑
ℓ=0

∥∥eℓ∥∥+
7ρkc3

2(7− k)
τ

n∑
ℓ=k

∥∥eℓ∥∥+ 2τ

n∑
ℓ=k

∥∥Υm +Ξm
∥∥.

Under the time-step constraint τ ≤ 7−k
7ρkc3

, one has

∥∥en∥∥ ≤ 7cI,kρk
7− k

k−1∑
ℓ=0

∥∥eℓ∥∥+
7ρkc3
7− k

τ

n−1∑
ℓ=k

∥∥eℓ∥∥+ 4τ

n∑
ℓ=k

∥∥Υm +Ξm
∥∥.

Obviously, applying the discrete Grönwall inequality, one can obtain

∥en∥≤ exp

(
7ρkc3
7− k

tn−k+1

)[
7cI,kρk
7− k

k−1∑
ℓ=0

∥∥eℓ∥∥+4τ

n∑
ℓ=k

∥∥Υm +Ξm
∥∥]

for k ≤ n ≤ N . The proof is completed from Lemma 5 and the error estimate
(3.3). ⊓⊔

4 Numerical example

In this section, we will verify our conclusions with numerical examples. We
employ the sixth-order implicit Runge-Kutta method to initiate the numeri-
cal schemes. In all our computations, a fixed-point iteration scheme will be
employed to solve the nonlinear scheme at each time level with a tolerance
10−10.
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4.1 Accuracy test

Example 1. We set γ = 0.02 and consider the following exterior-forced EFK
model

∂tΦ+ γ∆2Φ−∆Φ+ f(Φ) = g(x, t)

for x ∈ (0, π)2 such that it has exact solution Φ = cos(t) sin(2x) sin(2y).

The computational domain (0, π)2 is discretized by using 2562 spatial meshes
and solve the problem until T = 1. The numerical results are listed in Tables 2–
4, where the discrete L2 norm error e(N) :=

∥∥Φ(T )− ϕN
∥∥ is recorded in each

run and the experimental order of convergence is computed by

Order ≈ log(e(N)/e(2N))

log(τ(N)/τ(2N))
.

Table 2. Accuracy of BDF3 scheme.

N τ e(N) Order

15 6.67e-02 7.25e-04 −
30 3.33e-02 8.68e-05 3.06
60 1.67e-02 1.06e-05 3.03
120 8.33e-03 1.31e-06 3.02
240 4.17e-03 1.63e-07 3.01

Table 3. Accuracy of BDF4 scheme.

N τ e(N) Order

15 6.67e-02 3.95e-05 −
30 3.33e-02 2.60e-06 3.92
60 1.67e-02 1.67e-07 3.96
120 8.33e-03 1.05e-08 3.98
240 4.17e-03 6.63e-10 3.99

Table 4. Accuracy of BDF5 scheme.

N τ e(N) Order

15 6.67e-02 2.27e-06 −
30 3.33e-02 6.66e-08 5.09
60 1.67e-02 2.00e-09 5.06
120 8.33e-03 6.27e-11 5.00
240 4.17e-03 1.88e-12 5.06

From these data it can be observes that the BDF-k scheme admits k-th
order accuracy.
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4.2 Numerical application

Example 2. We consider the EFK model (1.1) with the following initial data

Φ (x, 0) = 0.1 (sin(3x) sin(2y) + sin(5x) sin(5y)) .

We take the model parameter γ = 10−4 and use 1282 uniform mesh to discrete
the spatial domain (0, 2π)2.

Figure 1. Solution snapshots of the BDF3 scheme for the EFK equation at
t = 0, 0.1, 0.9, 1, 1.1, 15, respectively(the BDF-4 and BDF-5 schemes generate similar

profiles).

Figure 2. Evolutions of original energy of the BDF-K scheme for the EFK equation.

We here begin with the examination using a constant time step τ = 10−3

until time T = 15 (i.e., N = 15000). The evolution of phase variable is pre-
sented in Figure 1. One can find that the initial solution evolve on a fast time
scale while later ones evolve on a very slow time scale. The evolution of the
original energy E[ϕn] over time is shown in Figure 2, and it can be seen that
during the coarsening process, the free energy decays monotonically.
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