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Abstract. A coupled method of finite differences and boundary elements is applied
to solve a nonlinear transmission problem of magnetostatics. The problem describes
an interaction of a uniform magnetic field with a cylindrical ferrofluid layer. Fer-
rofluid magnetisations, based on expansions over the Langevin law, are considered to
model ferrofluids with a different concentration of ferroparticles. The shielding effec-
tiveness factor of the cylindrical thick-walled ferrofluid layer is calculated depending
on intensities of the uniform magnetic field and on thickness of the ferrofluid layer.
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1 Introduction

Currently, one of the most important fields of scientific research is a study of
electromagnetic properties of composite materials used in radio and electronic
engineering. It requires development of modelling methods and computational
techniques for processes of interaction between electromagnetic fields and ob-
jects of different geometries and material structures which are important for

�
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further engineering of technical devices. A special challenge is studying materi-
als with nonlinear physical properties [8,11], in particular soft magnetic materi-
als [28]. Computational approaches of handling equilibrium states of ferrofluid
systems with different geometries and free surfaces – drop, layer, capillary –
have been developed in [16,17,18,19,23] for uniform applied magnetic fields.

Recent results related to shells and membrane theories of composite materi-
als in mechanics and biology are presented in [1]. In particular shells are applied
for suppression of vibrations by means of magnetic fields, see e.g. [21, 22] for
thin sandwich-like shells containing magnetorheological layers. One of consid-
ered research directions is a study of transmission processes for electromagnetic
fields through shields and shells, see e.g. [7]. Active research is performed on
shielding problems of electromagnetic fields by solid magnetized thin-walled
layers and films, see e.g. [2,10,12,13,30,31,32,33,34]. Current paper is devoted
to studying shielding properties of cylindrical thick-walled ferrofluid layers pro-
tecting against uniform magnetic fields, where ferrofluids of various concentra-
tion of ferroparticles are considered. Numerical solutions of the problem have
been obtained for a simpler mathematical model in [24], neglecting the effect
of magnetodipole interparticle interactions in ferrofluids.

2 Mathematical model for the magnetostatics problem

Magnetic fluids (ferrofluids) are stable colloidal suspensions of ferromagnetic
nanoparticles in a nonmagnetic carrier-liquid (such as water, kerosene, trans-
former oil, organic compounds and others). The ferroparticles of size 10 nm
are in Brownian motion inside the carried-liquid. The fluid composition results
in magnetic properties of magnetic fluids affected by magnetic fields [3,4,6,28].
The magnetic permeability of ferrofluids µf is defined by the magnetisation
law M(H)

µf = µ0µ, µ = µ(H) = 1 +M(H)/H,

where µ0 = 4π · 10−7 H/m denotes the vacuum permeability. H = |H| is the
intensity of the magnetic field. Different models of the ferrofluid magnetisation
should be used to model fluids with different concentration of ferroparticles [14].
Namely, the following relations are suggested in [14] based on expansions over
the Langevin law ML(H) = MsL(H/H∗) within the framework of the modified
mean-field theory,

M(1)(H) = ML(H),

M(2)(H) = ML

(
H +

1

3
ML(H)

)
,

M(3)(H) = ML

(
H +

1

3
ML(H) +

1

144
ML(H)

dML(H)

dH

)
.

Here Ms is saturation magnetisation of the fluid, L(t) = coth (t) − 1/t is the
Langevin function, H∗ = kT/(µ0m), k = 1.38 · 10−23 J/K is the Boltzmann
constant, T is the absolute temperature of the fluid, m is magnetic moment of
a ferropaticle.
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In contrast to M(1)(H), the magnetisation laws M(2)(H) and M(3)(H)
take into account the magnetodipole interparticle interactions [14]. The mag-
netisation M(1)(H) describes diluted or weakly-concentrated ferrofluids (the
magnetic phase concentration φm < 10 %), M(2)(H) describes moderately-
concentrated ferrofluids (φm ∼ 10–12 %), and M(3)(H) describes dense or
highly-concentrated ferrofluids (φm ∼ 12–18 %) [14]. It is assumed that the
ferroparticles are uniformly distributed inside the ferrofluid.

Every magnetisation law is characterized by initial magnetic susceptibility
χ(i) = limH→0 (dM(i)/dH), i = 1, 3:

χL =
Ms

3H∗
, χ(1) = χL, χ(2) = χL +

1

3
χ2
L, χ(3) = χL +

1

3
χ2
L +

1

144
χ3
L.

χ(i) is a dimensionless parameter of the ferrofluid. We formulate expressions for
the relative magnetic permeability in terms of the dimensionless field intensity
h = H/H∗:

µ(1)(H) = µ̄(1)(h) = 1 + 3χL
L(h)

h
, (2.1)

µ(2)(H) = µ̄(2)(h) = 1 + 3χL
L (h+ χLL(h))

h
, (2.2)

µ(3)(H) = µ̄(3)(h) = 1 + 3χL
L
(
h+ χLL(h) + 1

16χ
2
LL(h)dL(h)dh

)
h

. (2.3)

2.1 Differential statement of the problem

Let us introduce a Cartesian coordinate system OXY Z and the corresponding
cylindrical one OρϕZ in R3. We consider a cylindrical layer, infinite in Z
direction and described by its cross-section

D2 = {(ρ, ϕ) : R1 < ρ < R2, 0 ≤ ϕ < 2π},

with layer boundaries Γ1 and Γ2 such as

Γ1 = {(ρ, ϕ) : ρ = R1, 0 ≤ ϕ < 2π}, Γ2 = {(ρ, ϕ) : ρ = R2, 0 ≤ ϕ < 2π},

see Figure 1.
The interfaces Γ1 and Γ2 are assumed to be absolutely permeable for mag-

netic fields. The inner domain D1 = {(ρ, ϕ) : 0 ≤ ρ < R1, 0 ≤ ϕ < 2π}
and the outer domain D3 = {(ρ, ϕ) : R2 < ρ < ∞, 0 ≤ ϕ < 2π} are filled
with vacuum of permeability µ0, whereas layer D2 is filled with magnetic fluid
of permeability µf . The layer D2 is considered under the effect of a uniform
magnetic field H0 = H0eY with constant intensity H0, where eY = (0, 1, 0),
see Figure 1.

Let us denote Hi the magnetic field inside the domain Di and represent
magnetic field of the external domain as H3 = H0 + H̃3. The applied field
H0 does not depend on Z coordinate. That is why the problem can be treated
as two-dimensional in the polar coordinate system Oρϕ. Let us introduce
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Figure 1. The problem setting: D1 corresponds to the internal nonmagnetic medium, D2

corresponds to the ferrofluid, and D3 corresponds to the external nonmagnetic medium.

magnetostatic potential functions Ui(ρ, ϕ) such that

Hi = ∇Ui =

(
∂Ui
∂ρ

,
1

ρ

∂Ui
∂ϕ

)
, i = 0, 3.

Now let us formulate the boundary value problem for unknown potentials U1, U2

and Ũ3 = U3−U0, see e.g. [24], with the Laplace equations in the nonmagnatic
domains D1 and D3:

∇2U1 =
1

ρ

∂

∂ρ

(
ρ
∂U1

∂ρ

)
+

1

ρ2
∂2U1

∂ϕ2
= 0 in D1, (2.4)

∇2Ũ3 =
1

ρ

∂

∂ρ

(
ρ
∂Ũ3

∂ρ

)
+

1

ρ2
∂2Ũ3

∂ϕ2
= 0 in D3, (2.5)

and the nonlinear Laplace-type equation in the ferrofluid domain D2:

∇ · (µ∇U2) =
1

ρ

∂

∂ρ

(
µρ
∂U2

∂ρ

)
+

1

ρ2
∂

∂ϕ

(
µ
∂U2

∂ϕ

)
= 0 in D2, (2.6)

with transmission conditions on interfaces Γ1 and Γ2:

U1 = U2,
∂U1

∂ρ
= µ

∂U2

∂ρ
on Γ1, (2.7)

U2 = U3, µ
∂U2

∂ρ
=
∂U0

∂ρ
+
∂Ũ3

∂ρ
on Γ2, (2.8)

and a radiation condition
lim
ρ→∞

Ũ3 = 0. (2.9)

Here the potential of the external applied field is given as U0 = H0ρ sinϕ. The
permeability of the ferrofluid µ = µ(|∇U2|) is defined by one of the relations
(2.1)–(2.3). The Laplace equation (2.5) for the potential Ũ3 = U3 − U0 follows
from the Laplace equation for U3 and the fact that ∇2U0 = 0. The mathemat-
ical model is described by the Laplace equations (2.4) and (2.5), the nonlinear
Laplace-type equation (2.6), transmission conditions (2.7), (2.8) and radiation
condition (2.9).
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2.2 Integral reformulation

Let us now introduce dimensionless variables and parameters, where space
variables are dimensionless over R1, and the magnetic field is dimensionless
over H∗:

r =
ρ

R1
, x =

X

R1
, y =

Y

R1
, ui(r, ϕ) =

Ui(R1r, ϕ)

R1H∗
,

hi =
Hi

H∗
=

√(
∂ui
∂r

)2

+

(
1

r

∂ui
∂ϕ

)2

, u0 = h0r sinϕ, h0 =
H0

H∗
, δ =

R2

R1
.

The corresponding dimensionless geometry is

Ω1 = {(r, ϕ) : 0 < r < 1, 0 ≤ ϕ < 2π}, Ω2={(r, ϕ) : 1 < r < δ, 0 ≤ ϕ < 2π},
Ω3 = {(r, ϕ) : δ < r <∞, 0 ≤ ϕ < 2π},
γ1 = {(r, ϕ) : r = 1, 0 ≤ ϕ < 2π}, γ2 = {(r, ϕ) : r = δ, 0 ≤ ϕ < 2π}.

The dimensionless analog of the Laplace equation (2.4) in the bounded
domain Ω1 can be reformulated as a boundary integral equation on the interface
γ1, based on Green’s representation formula, see e.g. [5]:

πu1(ξ0) +

∫
γ1

[u1(ξ)q∗(ξ0, ξ)− q1(ξ)u∗(ξ0, ξ)] dγ1(ξ) = 0, ∀ξ0 ∈ γ1. (2.10)

Here ξ0 = (r0, ϕ0) is a fixed source point, ξ = (r, ϕ) is integration variable
and q1(ξ) = ∂u1/∂r is normal derivative of the potential function on γ1. The
fundamental solution u∗(ξ0, ξ) for the plane Laplace equation is of the following
form, see e.g. [29]:

u∗(ξ0, ξ) = − ln |ξ − ξ0|, q∗(ξ0, ξ) =
∂u∗(ξ0, ξ)

∂r
, (2.11)

where |ξ − ξ0| =
(

(r cosϕ− r0 cosϕ0)
2

+ (r sinϕ− r0 sinϕ0)
2
)1/2

is the dis-

tance between points ξ and ξ0. Similarly, the dimensionless form of the Laplace
equation (2.5) in the unbounded domain Ω3 with the radiation condition (2.9)
can be reformulated as a boundary integral equation on the interface γ2:

πũ3(ξ0)−
∫
γ2

[ũ3(ξ)q∗(ξ0, ξ)− q̃3(ξ)u∗(ξ0, ξ)] dγ2(ξ) = 0, ∀ξ0 ∈ γ2, (2.12)

where ũ3 = u3 − u0, and q̃3(ξ) = ∂ũ3/∂r is normal derivative of the potential
function ũ3 on γ2. For the problem under study,

u∗(ξ0, ξ) = − ln

∣∣∣∣2 sin
ϕ− ϕ0

2

∣∣∣∣, q∗(ξ0, ξ) = −1

2
, ∀ξ0, ξ ∈ γ1, (2.13)

u∗(ξ0, ξ) = − ln

∣∣∣∣2δ sin
ϕ− ϕ0

2

∣∣∣∣, q∗(ξ0, ξ) = − 1

2δ
, ∀ξ0, ξ ∈ γ2. (2.14)

Math. Model. Anal., 24(2):155–170, 2019.
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As a result, an integration of the term u1(ξ)q∗(ξ0, ξ) in the boundary integral
equation (2.10) and the term ũ3(ξ)q∗(ξ0, ξ) in (2.12) turns out to be zero due
to the constant value of q∗(ξ0, ξ), see (2.13), (2.14), and the symmetry of the
potential functions∫

γ1

u1(ξ)q∗(ξ0, ξ)dγ1(ξ) = −1

2

∫
γ1

u1(ξ)dγ1(ξ) = 0, ∀ξ0 ∈ γ1,∫
γ2

ũ3(ξ)q∗(ξ0, ξ)dγ2(ξ) = − 1

2δ

∫
γ2

ũ3(ξ)dγ2(ξ) = 0, ∀ξ0 ∈ γ2. (2.15)

The mathematical model (2.4)–(2.9) will be redefined by means of boundary
integral equations (2.10) and (2.12), whereas the radiation condition (2.9) is
exactly fulfilled due to integral formulation (2.12). A symmetry of the problem
setting with respect to the coordinate axes (see Figure 1) allows us to restrict
the dimensionless computational domain to the positive quadrant, see Figure 2.
Hereafter,

Ω1={(r, ϕ) : 0 < r < 1, 0 < ϕ < π/2}, Ω2={(r, ϕ) : 1 < r < δ, 0 < ϕ < π/2},
Ω3={(r, ϕ) : δ < r <∞, 0 < ϕ < π/2},

and the layer boundaries are

γ1 = {(r, ϕ) : r = 1, 0 < ϕ < π/2}, γ2 = {(r, ϕ) : r = δ, 0 < ϕ < π/2}.

We introduce additional notation for space variables on interfaces γ1 and γ2 to
handle the symmetry in the integral equations:

ξ
[σ]
1 = (σ, ϕ), ξ

[σ]
2 = (σ, π−ϕ), ξ

[σ]
3 = (σ, π+ϕ), ξ

[σ]
4 = (σ, 2π−ϕ) for σ ∈ {1, δ}.

Due to symmetry of the potential functions and relations (2.15), we reformulate
the boundary integral equations (2.10), (2.12) as∫ π/2

0

q1

(
ξ
[1]
1

) [
u∗
(
ξ0, ξ

[1]
1

)
+ u∗

(
ξ0, ξ

[1]
2

)
− u∗

(
ξ0, ξ

[1]
3

)
− u∗

(
ξ0, ξ

[1]
4

)]
dϕ

= πu1(ξ0), ∀ξ0 ∈ γ1, (2.16)

π/2∫
0

q̃3

(
ξ
[δ]
1

) [
u∗
(
ξ0, ξ

[δ]
1

)
+ u∗

(
ξ0, ξ

[δ]
2

)
− u∗

(
ξ0, ξ

[δ]
3

)
− u∗

(
ξ0, ξ

[δ]
4

)]
dϕ

= −π
δ
ũ3(ξ0), ∀ξ0 ∈ γ2. (2.17)

The mathematical model in dimensionless variables (see Figure 2) consists
of boundary integral equations (2.16) and (2.17), together with the nonlinear
Laplace-type equation

1

r

∂

∂r

(
µ̄(h2)r

∂u2
∂r

)
+

1

r2
∂

∂ϕ

(
µ̄(h2)

∂u2
∂ϕ

)
= 0 in Ω2, (2.18)
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Figure 2. Computational domain for the problem under study.

as well as transmission conditions on interfaces γ1 and γ2:

u1 = u2, q1 = µ̄(h2)q2 on γ1, (2.19)

u2 = ũ3 + h0δ sinϕ, µ̄(h2)q2 = q̃3 + h0 sinϕ on γ2, (2.20)

and the symmetry conditions

u1|ϕ=0 = u2|ϕ=0 = ũ3|ϕ=0 = 0, (2.21)

∂u1
∂ϕ

∣∣∣∣
ϕ=π

2

=
∂u2
∂ϕ

∣∣∣∣
ϕ=π

2

=
∂ũ3
∂ϕ

∣∣∣∣
ϕ=π

2

= 0. (2.22)

Here the normal derivatives of potential functions on γ1 and γ2 are denoted
as q1 = ∂u1/∂r, q2 = ∂u2/∂r and q̃3 = ∂ũ3/∂r. The unknown quantities of
the mathematical model (2.16)–(2.22) are the volume potential u2(r, ϕ) and
the boundary fluxes q1(1, ϕ) and q̃3(δ, ϕ). The mathematical model has three
dimensionless parameters: applied field intensity h0, layer thickness δ and mag-
netic susceptibility χ.

Relative magnetic permeability of the ferrofluid µ̄ could take different forms
such as µ̄(i), i = 1, 3, see (2.1)–(2.3). The corresponding model formulations are
denoted as models i, whereas the model 1 describes weakly-concentrated fer-
rofluids, the model 2 describes moderately-concentrated ones, and the model 3
corresponds to dense ferrofluids.

3 Computational procedure

The problem under study is not only of practical interest. It is also unique from
the point of view of its numerical modelling. The computational algorithm for
the integro-differential model (2.16)–(2.22) is based on the combination of the
boundary element method in the nonmagnetic domains Ω1 and Ω3 and the
finite-difference method in the ferrofluid domain Ω2. Due to the boundary
element approach, a solution of the plane Laplace equation with known funda-
mental solution (see e.g. [29]) is replaced in the nonmagnetic domains with an

Math. Model. Anal., 24(2):155–170, 2019.



162 O. Lavrova, V. Polevikov and S. Polevikov

equivalent problem of solving boundary integral equations (2.16) and (2.17).
These equations are considered the Fredholm integral equations of the first kind
with respect to the normal derivative q1 on the interface γ1 and to the normal
derivative q̃3 on the interface γ2, respectively. An advantage of the boundary
element method is that no meshes are required in the domains Ω1 and Ω3, and
the radiation condition (2.9) is exactly fulfilled by the integral reformulation.

We apply a collocation approach with constant elements to approximate
boundary integral equations (2.16) and (2.17) on uniform interface meshes
{(1, ϕj)} and {(δ, ϕj)} with respect to the integration variable ϕ, where ϕj =
j∆ϕ, j = 0, Nϕ, and the mesh step ∆ϕ = π/ (2Nϕ). For the given approxi-

mate values of the interface potentials u
(1)
j ≈ u1(1, ϕj) and ũ

(3)
j ≈ ũ3(δ, ϕj),

j = 1, Nϕ, we get two independent systems of linear algebraic equations rela-

tive to the derivatives q
(1)
j ≈ q1(1, ϕj) = ∂u1(1, ϕj)/∂r and q̃

(3)
j ≈ q̃3(δ, ϕj) =

∂ũ3(δ, ϕj)/∂r:

Nϕ∑
j=1

a
[1]
ij q

(1)
j = πu

(1)
i , i = 1, Nϕ; u

(1)
0 = q

(1)
0 = 0, (3.1)

Nϕ∑
j=1

a
[δ]
ij q̃

(3)
j = −π

δ
ũ
(3)
i , i = 1, Nϕ; ũ

(3)
0 = q̃

(3)
0 = 0, (3.2)

where

a
[σ]
ij =

∫ ϕj+1/2

ϕj−1/2

[
u∗
(
ξ0, ξ

[σ]
1

)
+u∗

(
ξ0, ξ

[σ]
2

)
− u∗

(
ξ0, ξ

[σ]
3

)
−u∗

(
ξ0, ξ

[σ]
4

)]
dϕ,

for σ ∈ {1, δ} and ξ0 = (σ, ϕi). Due to a special form of the fundamental

solution on γ1 and γ2, see (2.16), (2.17), we get a
[1]
ij = a

[δ]
ij . Hereafter we omit

the superscript for aij :

aij =

∫ ϕj+1/2

ϕj−1/2

ln
tan ((ϕ+ ϕi)/2)

tan (|ϕ− ϕi|/2)
dϕ ≈ ∆ϕ ln

tan ((ϕj + ϕi)/2)

tan (|ϕj − ϕi|/2)

for i = 1, Nϕ, j = 1, Nϕ − 1, i 6= j,

aii =

∫ ϕi+1/2

ϕi−1/2

ln
tan ((ϕ+ ϕi)/2)

tan (|ϕ− ϕi|/2)
dϕ ≈ ∆ϕ

(
1+ ln

4 tanϕi
∆ϕ

)
, i = 1, Nϕ − 1,

ai,Nϕ = −
∫ ϕNϕ+1/2

ϕNϕ−1/2

ln tan
ϕ− ϕi

2
dϕ ≈ −∆ϕ ln tan

π/2− ϕi
2

, i = 1, Nϕ − 1,

aNϕ,Nϕ = −
∫ ϕNϕ+1/2

ϕNϕ−1/2

ln tan
|π/2− ϕ|

2
dϕ ≈ ∆ϕ

(
1− ln

∆ϕ

4

)
. (3.3)

Note that singular integrals for the coefficients aii are computed similarly to
the approach in [5].

The nonlinear problem (2.18), (2.21),(2.22) is approximated by the finite-
differences of the second order on a uniform mesh along r and ϕ. The con-
structed finite-difference scheme is presented by a system of nonlinear algebraic
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equations. It satisfies the maximum principle in linear approximation at any
mesh step, i.e. the finite-difference scheme is monotonic.

Computational process has been organized in the form of an iterative algo-
rithm, where three mesh problems for the potential are solved independently
of each other at each iteration.

1. At first, two linear BEM systems (3.1), (3.3) and (3.2), (3.3) are solved
by the Gauss elimination method with respect to mesh values of q(1)

and q̃(3), respectively, for the given mesh values of the potential u(1) and
ũ(3) from the previous iteration. In spite of the fact that the problem
is ill-posed in the theory of integral equations, we obtain only correct
numerical solutions at different meshes.

2. Then, the interface mesh-values of q(2) ≈ q2 on γ1 at r = 1 and on γ2 at
r = δ are computed from the transmission conditions (2.19) and (2.20)
for the new mesh fluxes q(1) and q̃(3).

3. The nonlinear finite-difference problem with respect to the potential u2
in the ferrofluid domain Ω2 is solved by the iterative Seidel-type method.
As a result, new mesh values of the potential u(2) ≈ u2 are determined
not only at the internal nodes of the domain Ω2 but also at the inter-
face nodes. New mesh values of the magnetic permeability µ̄(h2) are
recomputed using these interface nodes.

4. At last, the mesh functions u(1) and ũ(3) are recomputed at the interface
nodes, using transmission conditions (2.19) and (2.20). It completes the
iteration of the computational process.

When the iterative process is finished, the potential u1(ξ) at any internal
point ξ ∈ Ω1 and the potential u3(ξ) at any internal point ξ ∈ Ω3 are calculated

by explicit formulas, based on the interface values of the potentials u
(1)
j , u

(3)
j

and the normal derivatives q
(1)
j , q̃

(3)
j at the interface nodes {(1, ϕj)}, {(δ, ϕj)}

for j = 1, Nϕ:

u1(ξ0) =
1

2π

Nϕ∑
j=1

(
a
[1]
j q

(1)
j − b

[1]
j u

(1)
j

)
, ∀ξ0 ∈ Ω1,

u3(ξ0)=− δ

2π

Nϕ∑
j=1

(
a
[δ]
j q̃

(δ)
j −b

[δ]
j

(
u
(3)
j −h0δ sinϕj

))
+h0r0 sinϕ0, ∀ξ0 ∈ Ω3,

where for σ ∈ {1, δ},

a
[σ]
j = ∆ϕ

[
u∗
(
ξ0, ξ

[σ]
1,j

)
+ u∗

(
ξ0, ξ

[σ]
2,j

)
− u∗

(
ξ0, ξ

[σ]
3,j

)
− u∗

(
ξ0, ξ

[σ]
4,j

)]
,

b
[σ]
j = ∆ϕ

[
q∗
(
ξ0, ξ

[σ]
1,j

)
+ q∗

(
ξ0, ξ

[σ]
2,j

)
− q∗

(
ξ0, ξ

[σ]
3,j

)
− q∗

(
ξ0, ξ

[σ]
4,j

)]
,

ξ
[σ]
1,j = (σ, ϕj), ξ

[σ]
2,j = (σ, π − ϕj), ξ[σ]3,j = (σ, π + ϕj), ξ

[σ]
4,j = (σ, 2π − ϕj).
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The computations were carried out on a uniform mesh with the number
of partitions Nr = 10 for δ ≤ 1.1, and Nr = 100 for δ > 1.1 for the variable
r ∈ [1, δ], and Nϕ = 100 for the variable ϕ ∈ [0, π/2]. The test calculations on a
finer mesh with twice the number of partitions for both variables did not reveal
any significant changes in the solution. An undisturbed magnetic potential
u2 = u0 was chosen as starting configuration for the iterative process.

4 Results of computations

The initial magnetic susceptibility χ lies in the range 0 < χ ≤ 1 for the weakly-
concentrated ferrofluids, and in the range 1 < χ ≤ 10 for the moderately-
concentrated ones. It reaches values χ ∼ 50–80 for the dense ferrofluids under
the room-temperature conditions [20, 26, 27]. For instance, the dense decane-
based ferrofluid with magnetic phase φm = 22.6 % has initial susceptibility
χ = 51 under the room temperature, see e.g. [9]. Under low temperatures
(T ∼ 230–240 K), the value of the initial magnetic susceptibility of dense
laboratory synthesized ferrofluids increases up to χ ∼ 100–120 for the preserved
fluidity, see e.g. [20, 26, 27]. We take the initial magnetic susceptibility from
the range 10 ≤ χ ≤ 50 for the test computations, namely χ = {10, 30, 50}.
The value χ = 10 corresponds to moderately-concentrated ferrofluids, whereas
χ = {30, 50} describes dense ferrofluids.

Shielding effectiveness factor of the uniform magnetic field H0 by the cylin-
drical thick-walled ferrofluid layer D2 is defined by the formula

Kef =
|H0(0, ϕ)|
|H1(0, ϕ)|

=
h0

|∇u1(0, ϕ)|
=h0/

√(
∂u1
∂r

)2

+

(
1

r

∂u1
∂ϕ

)2∣∣∣∣
r=0

. (4.1)

Shielding effectiveness factor Kef estimates the decay factor of the externally
applied magnetic field intensity H0 transmitted into the internal cylinder D1.
We compute (4.1) at a point where ϕ = π/2, lying on the axis Oy, with
symmetry condition (2.22), hence

Kef = h0/

∣∣∣∣ limr→0

∂u1(r, π/2)

∂r

∣∣∣∣.
Figure 3 demonstrates the shielding effectiveness factor Kef dependent on

the applied field for models 1–3. The geometric configuration of the problem
is specified by the layer thickness δ = 1.1. The ferrofluid properties are defined
two ways: by the initial magnetic susceptibility χ = {10, 30, 50} with χ(i) = χ,
see Figure 3a, and by the Langevin susceptibility χL = {4.06, 7.61, 9.97} with
χ(i) = χ(i)(χL), see Figure 3b. The values of the susceptibilities are taken
in such a way that χ(3)(χL) = χ, it leads to the identical numerical results
for model 3 (solid lines) in Figure 3a and Figure 3b. Figure 3a illustrates the
comparison of models 1–3, aligned for weak magnetic fields by the same values
of χ, whereas Figure 3b shows the comparison of models 1–3 with analogous
physical ferrofluid properties, fixed by the same values of χL. Numerical results
in Figure 3 suggest that in weak fields (h0 < 0.1, H0 < 102 A/m) the shielding
factor preserves a constant maximum value, and the shielding effect is higher
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for more concentrated ferrofluids. Namely, Kef ≈ 1.4 for the moderately-
concentrated ferrofluid with χ = 10 and Kef ≈ 3.1 for the dense ferrofluid with
χ = 50, see Figure 3a. We note that the numerical results of model 1–3 for
the same χ, shown in Figure 3a, coincide in weak magnetic fields due to the
identical linear behavior of magnetisation laws M(i) = χ(i)H → χH in the
limit case H → 0. As magnetic fields increase, the shielding effectiveness factor
Kef monotonically decreases to 1 and the shielding effect is almost absent for
h0 > 102 (H0 > 106 A/m). We conclude that the ferrofluid shield is effective in
weak magnetic fields, whereas the concentration of magnetic particles could be
considered as a way to control the intensity of the externally applied magnetic
field, penetrating to the inner domain of the shield. For instance, geomagnetic
storms on the Earth surface have intensity H0 < 200 A/m and could be effec-
tively shielded by ferrofluid layers. We note that numerical results in Figure 3a
for the model 1 have been originally published in [24].
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a) b)

Figure 3. Dependence of the shielding effectiveness factor Kef on the dimensionless
applied magnetic-field intensity h0 for the dimensionless layer thickness δ = 1.1. The

ferrofluid properties are defined two ways: by the initial magnetic susceptibility
χ = {10, 30, 50} (a) and by the Langevin permeability χL = {4.06, 7.61, 9.97} (b). Dotted

lines correspond to model 1, dashed lines to model 2, solid lines to model 3. On the scale of
the graph, the results for model 2 are indistinguishable from those of model 3 in (a). Lines

for model 1 in (b) correspond to increasing values of χL bottom-up.

Figure 3b allows to compare numerical results with respect to models 1–3,
where the ferrofluid properties are specified by the model-independent param-
eter χL, in contrast to the parameter χ in Figure 3a. Figure 3b shows that
different models produce quantitatively different results for the same ferroflu-
ids. Namely, model 1 does not suit for describing moderately- and strongly-
concentrated ferrofluids (χL > 1) for the problem under study. The shield-
ing effect is underestimated for χL > 1 in the frame of model 1. The re-
sults of model 2 and model 3 are quantitatively comparable for moderately-
concentrated ferrofluids (χL = 4.06), but the shielding effect is underestimated
for strongly-concentrated ferrofluids (χL = 7.61 and χL = 9.97) in the frame
of model 2. We note that the numerical results of model 1–3 for the same
χL, shown in Figure 3b, coincide for magnetic fields h0 > 10 due to the same
behavior of magnetisation laws in saturation M(i) = χ(i)H → Ms in the limit
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case H →∞.
The shielding effectiveness factor has an explicit analytical representation

in a weak field limit, see e.g. [15, equation (72)] or [7, equation (B.34)]

Kef =
1

4µ(0)

((
µ(0) + 1

)2 − 1

δ2
(
µ(0) − 1

)2)
.

This formula corresponds to a linear magnetisation law of the ferrofluid
M(0)(H) = χLH with the initial susceptibility χ(0) = χL and the relative
magnetic permeability µ(0) = 1 +χL. To verify the computations, we compare
the numerical results from Figure 3a for h0 = 0.01 and χ = {10, 30, 50} with
the analytical ones for χ = χL, δ = 1.1 and observe the agreement between
them up to the fourth significant digit.

Figure 4 shows the shielding effectiveness factor Kef dependent on the layer
thickness at the applied field h0 = 1 for different values of the Langevin sus-
ceptibility χL = {4.06, 7.61, 9.97} and for models 2–3. The layer thickness is
presented here by the difference between the outer and the inner layer radii as
δ − 1 = (R2 −R1)/R1 and specified by the values δ − 1 ∈ (0.01, 10).
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 -1
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Figure 4. Dependence of the shielding effectiveness factor Kef on the dimensionless layer
thickness δ − 1 = (R2 −R1)/R1 for the dimensionless applied magnetic-field intensity

h0 = 1 and the Langevin susceptibility χL = {4.06, 7.61, 9.97}. Dashed lines correspond to
model 2. Solid lines correspond to model 3.

Numerical results demonstrate the monotone increase of the shielding effect
as the layer thickness increases. The strongest growth of shielding effectiveness
factor is shown for δ − 1 ∈ (0.01, 3) with tendency to reach a constant value of
Kef for thick layers with δ− 1 > 5. This qualitative behavior is present for fer-
rofluids of different concentrations, namely, for the moderately-concentrated
ferrofluid with χL = 4.06 and for the highly-concentrated ferrofluids with
χL = 7.61 and χL = 9.97. A stronger shielding effect is achieved for ferrofluids
with a larger value of χL or a higher ferroparticle concentration, similarly to
the observation in Figure 3. The shielding effectiveness factor is higher for
model 3 than for model 2 at different layer thicknesses, whereas the difference
between numerical results of models 2 and 3 increases with increasing the fer-
roparticle concentration. Results in Figure 4 do support the statement in [14]
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that model 2 should be applied for the modelling of moderately-concentrated
ferrofluids, whereas model 3 should be taken for the modelling of strongly-
concentrated ferrofluids.

u/h
0
  = 1.2

1.0

0.8

0.6 

 

0.2

0.4

0 x

y

1

1

u/h
0
  = 1.2

1.0

0.8

0.6

 
 

0.2

0.4

0 x

y

1

1

a) b)

Figure 5. Isolines of the dimensionless magnetostatic potential u/h0 for the
dimensionless layer thickness δ = 1.1, the Langevin susceptibility χL = 7.61, the

dimensionless applied magnetic-field intensity h0 = 1 (a) and h0 = 3 (b). Dashed isolines
correspond to model 2. Solid isolines correspond to model 3.

Figure 5 illustrates magnetic field structure in the computational domain by
means of isolines of the magnetostatic potential. The isolines for model 2 and
model 3 are close to each other for χL = 7.61. For any value of χL and h0 ≤ 1,
the magnetic field in the inner domain Ω1 is nearly uniform and vertically
directed, as shown in Figure 5a. As expected, the inner magnetic field has
lower intensity than the externally applied field (h1 < h0).

The computations, discussed in the paper, are made under assumption of
a uniform ferroparticle distribution inside the ferrofluid. We have made test
computations for the magnetostatics problem (model 1) coupled with the dif-
fusion problem for ferromagnetic particles inside the ferrofluid in the case of
a linear dependence of the magnetisation law on the concentration, when the
diffusion problem is analytically solvable, see [25]. The numerical results for
the coupled magnetostatics and diffusion problems, compared with the results
of only model 1 for χL ≤ 1, are very close to each other.

5 Conclusions

Shielding properties of the cylindrical thick-walled ferrofluid layer, protect-
ing against uniform magnetic fields, have been numerically investigated for
the weakly-, moderately- and highly-concentrated ferrofluids. Computational
procedure for the magnetic field, penetrating through the ferrofluid layer to
the inner nonmagnetic domain, is developed. The computational algorithm is
based on a coupled method of finite differences and boundary elements. The
shielding effectiveness factor, estimating the decay factor of the externally ap-
plied magnetic field into the inner domain, is calculated for different ferrofluid
properties, different layer thicknesses and different intensities of the applied
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field. Numerical results demonstrate that in weak fields (H0 < 102 A/m) the
shielding effectiveness factor practically preserves a constant value, which de-
pends on the initial susceptibility χ of the ferrofluid. Namely, Kef ≈ 1.4 for the
moderately-concentrated ferrofluid with χ = 10 and Kef ≈ 3.1 for the dense
ferrofluid with χ = 50. The shielding effect is almost absent in strong fields
(H0 > 106 A/m). With respect to models 1, 2 and 3, one can conclude that the
magnetodipole interparticle interactions in ferrofluids have significant influence
to the shielding effectiveness factor and the mathematical formulation should
depend on the ferrofluid under study. Namely, model 1 could be applied for the
mathematical modelling of only weakly-concentrated ferrofluids, model 2 suits
for moderately-concentrated ferrofluids, whereas model 3 should be used for
the problem under study with application of strongly-concentrated ferrofluids.
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