

On a Dirichlet Series Connected to a Periodic Hurwitz Zeta-Function with Transcendental and Rational Parameter

Aidas Balčiūnas^a, Antanas Laurinčikas^a and Mindaugas Stoncelis^b

^a Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University
Naugarduko g. 24, LT-03225 Vilnius, Lithuania
^b Institute of Regional Development, Šiauliai Academy, Vilnius University
P. Višinskio g. 25, LT-76351 Šiauliai, Lithuania
E-mail(corresp.): antanas.laurincikas@mif.vu.lt
E-mail: aidas.balciunas@mif.vu.lt
E-mail: mindaugas.stoncelis@sa.vu.lt

Received June 28, 2022; revised November 28, 2022; accepted November 28, 2022

Abstract. In the paper, we construct an absolutely convergent Dirichlet series which in the mean is close to the periodic Hurwitz zeta-function, and has the universality property on the approximation of a wide class of analytic functions.

Keywords: Haar measure, periodic Hurwitz zeta-function, space of analytic functions, universality, weak convergence.

AMS Subject Classification: 11M41.

1 Introduction

Let $\mathfrak{a} = \{a_m : m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}\}$ be a periodic sequence of complex numbers with minimal period $q \in \mathbb{N}, 0 < \alpha \leq 1$ fixed parameter, and $s = \sigma + it$ a complex variable. The periodic Hurwitz zeta-function $\zeta(s, \alpha; \mathfrak{a})$ is defined, for $\sigma > 1$, by the Dirichlet series

$$\zeta(s,\alpha;\mathfrak{a}) = \sum_{m=0}^{\infty} \frac{a_m}{(m+\alpha)^s}.$$

Copyright © 2023 The Author(s). Published by Vilnius Gediminas Technical University This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

If $a_m \equiv 1$, then we have the classical Hurwitz zeta-function $\zeta(s, \alpha)$ which has the meromorphic continuation to the whole complex plane with unique simple pole at the point s = 1 with residue 1. The periodicity of the sequence \mathfrak{a} implies, for $\sigma > 1$, the equality

$$\zeta(s,\alpha;\mathfrak{a}) = \frac{1}{q^s} \sum_{l=0}^{q-1} a_l \zeta\left(s, \frac{l+\alpha}{q}\right), \qquad (1.1)$$

therefore, the function $\zeta(s, \alpha; \mathfrak{a})$ also can be meromorphically continued to the whole complex plane with a simple pole at the point s = 1 with residue

$$\widehat{a} \stackrel{def}{=} \frac{1}{q} \sum_{l=0}^{q-1} a_l.$$

If $\hat{a} = 0$, then $\zeta(s, \alpha; \mathfrak{a})$ is an entire function. Clearly, $\zeta(s, 1; \{1\}) = \zeta(s)$ is the Riemann zeta-function. Thus, the periodic Hurwitz zeta-function is a generalization of the classical Hurwitz and Riemann zeta-functions. Analytical properties of $\zeta(s, \alpha; \mathfrak{a})$ are governed by the sequence \mathfrak{a} , and, in particular, by arithmetic of the parameter α .

The function $\zeta(s,\alpha;\mathfrak{a})$, for some classes of the parameter α , as other zetafunctions, is universal, i. e., its shifts $\zeta(s+i\tau,\alpha;\mathfrak{a}), \tau \in \mathbb{R}$, approximate all analytic functions defined in the strip $D = \{s \in \mathbb{C} : 1/2 < \sigma < 1\}$. Note that the phenomenon of universality for zeta-functions was discovered by Voronin, in [6] he proved the universality of the Riemann zeta-function. Later, the universality of some other zeta-functions was obtained. By the Linnik-Ibragimov conjecture, all functions in some half-plane given by Dirichlet series, analytically continuable to the left of the absolute convergence half-plane and satisfying some natural growth conditions are universal in the Voronin sense. However, till now the universality of some zeta-functions are not known. The universality of the function $\zeta(s,\alpha;\mathfrak{a})$ with transcendental α was considered in [3], and with rational α in [4]. Denote by \mathcal{K} the class of compact subsets of the strip D, and by H(K) with $K \in \mathcal{K}$ the class of continuous functions on K that are analytic in the interior of K. Let meas A stand for the Lebesgue measure of a measurable set $A \subset \mathbb{R}$. Then the universality of the function $\zeta(s, \alpha; \mathfrak{a})$ is described in the following theorem.

Theorem 1. Suppose that the number α is transcendental, or $\alpha = a/b$, $a, b \in \mathbb{N}$, a < b, (a,b) = 1, $a/b \neq 1/2$ and (lb + a, bq) = 1 for all $l = 0, 1, \ldots, q - 1$. Let $K \in \mathcal{K}$ and $f(s) \in H(K)$. Then, for every $\varepsilon > 0$,

$$\liminf_{T \to \infty} \frac{1}{T} \operatorname{meas} \left\{ \tau \in [0, T] : \sup_{s \in K} |\zeta(s + i\tau, \alpha; \mathfrak{a}) - f(s)| < \varepsilon \right\} > 0.$$

It is easily seen that the transcendence of α can be replaced by the linear independence over the field of rational numbers \mathbb{Q} of the set

$$L(\alpha) = \{ \log(m + \alpha) : m \in \mathbb{N}_0 \}.$$

The universality of the function $\zeta(s, \alpha; \mathfrak{a})$ with algebraic irrational α is an open problem.

In the strip D, the function $\zeta(s, \alpha; \mathfrak{a})$ is defined by using (1.1) and analytic continuation of the Hurwitz zeta-function. Therefore, it is not easy to derive an information on the function f(s) from the inequality

$$\sup_{s \in K} |\zeta(s + i\tau, \alpha; \mathfrak{a}) - f(s)| < \varepsilon.$$

It is more convenient to use an absolutely convergent Dirichlet series in place of $\zeta(s, \alpha; \mathfrak{a})$. This paper is devoted to a realization of the mentioned idea.

Let $\theta > 1/2$ be a fixed number, and, for $m \in \mathbb{N}_0$ and u > 0,

$$v_u(m, \alpha) = \exp\left\{-\left((m+\alpha)/u\right)^{\theta}\right\}$$

Since $|a_m| \leq C$, $m \in \mathbb{N}_0$, with some $C < \infty$, the series

$$\zeta_u(s,\alpha;\mathfrak{a}) = \sum_{m=0}^{\infty} \frac{a_m v_u(m,\alpha)}{(m+\alpha)^s}$$

is absolutely convergent for $\sigma > \sigma_0$ with arbitrary finite σ_0 .

Denote by $\mathcal{B}(\mathbb{X})$ the Borel σ -field of the space \mathbb{X} , by H(D) the space of analytic on D functions endowed with the topology of uniform convergence on compacta, and let $\gamma = \{s \in \mathbb{C} : |s| = 1\}$. Define the set $\Omega = \prod_{m \in \mathbb{N}_0} \gamma_m$, where $\gamma_m = \gamma$ for all \mathbb{N}_0 . With the product topology and pointwise multiplication, the torus Ω is a compact topological Abelian group. Therefore, on $(\Omega, \mathcal{B}(\Omega))$, the probability Haar measure m_H exists, and we obtain a probability space $(\Omega, \mathcal{B}(\Omega), m_H)$. Denote by ω_m the *m*th component of an element $\omega \in \Omega$, $m \in \mathbb{N}_0$, and, on the probability space $(\Omega, \mathcal{B}(\Omega), m_H)$, define the H(D)-valued random element

$$\zeta(s,\alpha,\omega;\mathfrak{a}) = \sum_{m=0}^{\infty} \frac{a_m \omega(m)}{(m+\alpha)^s}.$$

The latter series, for almost all $\omega \in \Omega$ is uniformly convergent on compact subsets of the strip D. Let $P_{\zeta,\alpha,\mathfrak{a}}$ be the distribution of the random element $\zeta(s,\alpha,\omega;\mathfrak{a})$, i. e.,

$$P_{\zeta,\alpha,\mathfrak{a}}(A) = m_H\{\omega \in \Omega : \zeta(s,\alpha,\omega;\mathfrak{a}) \in A\}, \quad A \in \mathcal{B}(H(D)).$$

Theorem 2. Suppose that the number α is transcendental, and $u_T \to \infty$, $u_T \ll T^2$ as $T \to \infty$. Let $K \in \mathcal{K}$ and $f(s) \in H(K)$. Then the limit

$$\lim_{T \to \infty} \frac{1}{T} \operatorname{meas} \left\{ \tau \in [0, T] : \sup_{s \in K} |\zeta_{u_T}(s + i\tau, \alpha; \mathfrak{a}) - f(s)| < \varepsilon \right\}$$
$$= m_H \left\{ \omega \in \Omega : \sup_{s \in K} |\zeta(s, \alpha, \omega; \mathfrak{a}) - f(s)| < \varepsilon \right\} > 0$$

exists for all but at most countably many $\varepsilon > 0$.

For the case of rational α , define one more infinite-dimensional torus $\Omega_1 = \prod_{p \in \mathbb{P}} \gamma_p$, where $\gamma_p = \gamma$ for all $p \in \mathbb{P}$, and \mathbb{P} is the set of all prime numbers. Analogically to Ω , we have the probability space $(\Omega_1, \mathcal{B}(\Omega_1), m_{1H})$, where m_{1H} is the probability Haar measure on $(\Omega_1, \mathcal{B}(\Omega_1))$. Denote by $\omega_1(p)$ the *p*-th component of an element $\omega_1 \in \Omega_1$, $p \in \mathbb{P}$, and extend $\omega_1(p)$ to the set \mathbb{N} by the formula

$$\omega_1(m) = \prod_{\substack{p^l \mid m \\ p^{l+1} \nmid m}} \omega^l(p), \quad m \in \mathbb{N}.$$

Now, let $\alpha = a/b$, $a, b \in \mathbb{N}$, a < b, (a, b) = 1. Denote by χ Dirichlet characters, and by $L(s, \chi)$ the corresponding Dirichlet *L*-functions

$$L(s,\chi) = \sum_{m=1}^{\infty} \frac{\chi(m)}{m^s}, \quad \sigma > 1.$$

The functions $L(s, \chi)$ have meromorphic continuation to the whole complex plane. Let $\varphi(m)$ be the totient Euler function. On the probability space $(\Omega_1, \mathcal{B}(\Omega_1), m_{1H})$, define the H(D)-valued random element

$$\zeta\left(s,\frac{a}{b},\omega_{1};\mathfrak{a}\right) = \frac{b^{s}\omega_{1}(b)}{\varphi(bq)}\sum_{l=0}^{q-1}a_{l}\sum_{\chi \bmod bq}\overline{\chi}(a+bl)L(s,\omega_{1},\chi),$$

where

$$L(s,\omega_1,\chi) = \sum_{m=1}^{\infty} \frac{\chi(m)\omega_1(m)}{m^s}$$

and \overline{z} denotes the complex conjugate of $z \in \mathbb{C}$.

Theorem 3. Suppose that $a, b \in \mathbb{N}$, a < b, (a, b) = 1, $a/b \neq 1/2$ and (lb + a, q) = 1 for all $l = 0, 1, \ldots, q - 1$, and $u_T \to \infty$, $u_T \ll T^2$ as $T \to \infty$. Let $K \in \mathcal{K}$ and $f(s) \in H(K)$. Then the limit

$$\lim_{T \to \infty} \frac{1}{T} \operatorname{meas} \left\{ \tau \in [0, T] : \sup_{s \in K} \left| \zeta_{u_T} \left(s + i\tau, \frac{a}{b}; \mathfrak{a} \right) - f(s) \right| < \varepsilon \right\}$$
$$= m_{1H} \left\{ \omega_1 \in \Omega_1 : \sup_{s \in K} \left| \zeta \left(s, \frac{a}{b}, \omega_1; \mathfrak{a} \right) - f(s) \right| < \varepsilon \right\} > 0$$

exists for all but at most countably many $\varepsilon > 0$.

We will derive Theorems 2 and 3 from Theorem 1 by using the approximation of $\zeta(s, \alpha; \mathfrak{a})$ by $\zeta_{u_T}(s, \alpha; \mathfrak{a})$ in the mean.

2 Some estimates

In this section, we prove the following equality.

Lemma 1. Let K be a compact subset of the strip D, and $u_T \to \infty$ and $u_T \ll T^2$ as $T \to \infty$. Then

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T \sup_{s \in K} |\zeta(s + i\tau, \alpha; \mathfrak{a}) - \zeta_{u_T}(s + i\tau, \alpha; \mathfrak{a})| \, \mathrm{d}\tau = 0.$$

Proof. From the Mellin formula

$$\frac{1}{2\pi i} \int_{c-\infty}^{c+\infty} \Gamma(s) d^{-s} \mathrm{d}s = e^{-d}, \quad c, d > 0,$$

where $\Gamma(s)$ is the Euler gamma-function, we have

$$v_{u_T}(m,\alpha) = \frac{1}{2\pi i} \int_{\theta-i\infty}^{\theta+i\infty} \frac{1}{\theta} \Gamma\left(\frac{s}{\theta}\right) \left(\frac{m+\alpha}{u_T}\right)^{-s} \,\mathrm{d}s$$

Hence, denoting $l_{u_T}(s) = \frac{s}{\theta} \Gamma\left(\frac{s}{\theta}\right) u_T^s$, we obtain, for $s \in K$,

$$\zeta_{u_T}(s,\alpha;\mathfrak{a}) = \frac{1}{2\pi i} \sum_{m=0}^{\infty} \frac{a_m}{(m+\alpha)^s} \int_{\theta-i\infty}^{\theta+i\infty} \frac{z}{\theta} \Gamma\left(\frac{z}{\theta}\right) \left(\frac{m+\alpha}{u_T}\right)^{-z} \frac{\mathrm{d}z}{z}$$
$$= \frac{1}{2\pi i} \int_{\theta-i\infty}^{\theta+i\infty} \frac{l_{u_T}(z)}{z} \sum_{m=0}^{\infty} \frac{a_m}{(m+\alpha)^{s+z}} \,\mathrm{d}z$$
$$= \frac{1}{2\pi i} \int_{\theta-i\infty}^{\theta+i\infty} \zeta(s+z,\alpha;\mathfrak{a}) l_{u_T}(z) \frac{\mathrm{d}z}{z}.$$
(2.1)

There exists $\varepsilon > 0$ such that $1/2 + 2\varepsilon \leq \sigma \leq 1 - \varepsilon$ for $s = \sigma + it \in K$. We take $\theta = \frac{1}{2} + \varepsilon$ and $\theta_1 = \frac{1}{2} + \varepsilon - \sigma$. Then $\theta_1 < 0$ for all $s \in K$. Therefore, the representation (2.1) and the residue theorem give

$$\zeta_{u_T}(s,\alpha;\mathfrak{a}) - \zeta(s,\alpha;\mathfrak{a}) = \frac{1}{2\pi i} \int_{\theta_1 - i\infty}^{\theta_1 + i\infty} \zeta(s+z,\alpha;\mathfrak{a}) \frac{l_{u_T}(z)}{z} \,\mathrm{d}z + \frac{\widehat{a}l_{u_T}(1-s)}{1-s}.$$

Thus, for all $s \in K$,

Therefore,

$$\frac{1}{T} \int_{0}^{T} \sup_{s \in K} \left| \zeta(s + i\tau, \alpha; \mathfrak{a}) - \zeta_{u_{T}}(s + i\tau, \alpha; \mathfrak{a}) \right| \, \mathrm{d}\tau$$

$$\ll \int_{-\infty}^{\infty} \left(\frac{1}{T} \int_{0}^{T} \left| \zeta \left(\frac{1}{2} + \varepsilon + i\tau + iv, \alpha; \mathfrak{a} \right) \right|^{2} \, \mathrm{d}\tau \right)^{1/2}$$

$$\times \sup_{s \in K} \left| \frac{l_{u_{T}}(1/2 + \varepsilon - s + iv)}{1/2 + \varepsilon - s + iv} \right| \, \mathrm{d}v + \widehat{a} \frac{1}{T} \int_{0}^{T} \sup_{s \in K} \left| \frac{l_{u_{T}}(1 - s - i\tau)}{1 - s - i\tau} \right| \, \mathrm{d}\tau \stackrel{def}{=} I_{1} + I_{2}.$$

$$(2.2)$$

It is well known that, for $1/2 < \sigma < 1$,

$$\int_0^T |\zeta(\sigma + it, \alpha)|^2 \, \mathrm{d}t \ll_{\sigma, \alpha} T$$

This and (1.1) show that, for $1/2 < \sigma < 1$,

$$\int_0^T |\zeta(\sigma + it, \alpha; \mathfrak{a})|^2 \, \mathrm{d}t \ll_{\sigma, \alpha, \mathfrak{a}} T.$$

Hence, for the same σ and $v \in \mathbb{R}$,

$$\int_0^T |\zeta(\sigma + it + iv, \alpha; \mathfrak{a})^2 \, \mathrm{d}\tau \ll_{\sigma, \alpha, \mathfrak{a}} T(1 + |v|), \quad T \ge 1.$$
(2.3)

For the function $\Gamma(s)$, the estimate

$$\Gamma(\sigma + it) \ll \exp\{-c_1|t|\}$$

uniformly in $\sigma_1 \leq \sigma \leq \sigma_2$ with arbitrary $\sigma_1 < \sigma_2$ is valid. Therefore, for all $s \in K$,

$$\frac{l_{u_T}(1/2 + \varepsilon - s + iv)}{1/2 + \varepsilon - s + iv} \ll u_T^{1/2 + \varepsilon - \sigma} \left| \Gamma \left(\frac{1}{\theta} \left(\frac{1}{2} + \varepsilon - s + iv \right) \right) \right| \\ \ll u_T^{-\varepsilon} \exp \left\{ \frac{c_1}{\theta} |v - t| \right\} \ll_{\varepsilon, K} u_T^{-\varepsilon} \exp\{-c_2 |v|\}, \quad c_2 > 0.$$

Therefore, in view of (2.3),

$$I_1 \ll_{\varepsilon,\alpha,\mathfrak{a},K} u_T^{-\varepsilon} \int_{-\infty}^{\infty} (1+|v|)^{1/2} \exp\{-c_2|v|\} \,\mathrm{d}v \ll_{\varepsilon,\alpha,\mathfrak{a},K} u_T^{-\varepsilon}.$$
 (2.4)

Similarly, we find that, for all $s \in K$,

$$\frac{l_{u_T}(1-s-i\tau)}{1-s-i\tau} \ll_{\varepsilon} u_T^{1-\sigma} \exp\{-c_1|t+\tau|\} \ll_{\varepsilon,\mathfrak{a},K} u_T^{1/2-2\varepsilon} \exp\{-c_3|\tau|\}, \quad c_3 > 0.$$

Thus,

$$I_2 \ll_{\varepsilon,\mathfrak{a},K} u_T^{1/2-2\varepsilon} \frac{1}{T} \int_0^T \exp\{-c_3\tau\} \,\mathrm{d}\tau \ll_{\varepsilon,\mathfrak{a},K} u_T^{1/2-2\varepsilon}/T.$$

This, (2.2) and (2.4) prove the lemma. \Box

3 Limit theorems

Let P_n , $n \in \mathbb{N}$, and P be probability measures on $(\mathbb{X}, \mathcal{B}(\mathbb{X}))$. Recall that P_n converges weakly to P as $n \to \infty$ if, for every real bounded continuous function g on \mathbb{X} ,

$$\lim_{n \to \infty} \int_{\mathbb{X}} g \, \mathrm{d}P_n = \int_{\mathbb{X}} g \, \mathrm{d}P.$$

There are equivalents of weak convergence in terms of some classes of sets. We will use the following, see, for example, [1].

Lemma 2. P_n converges weakly to P as $n \to \infty$ if and only if, for every closed set $F \subset \mathbb{X}$,

$$\limsup_{n \to \infty} P_n(F) \leqslant P(F).$$

For $A \in \mathcal{B}(H(D))$, define

$$P_{T,\alpha,\mathfrak{a}}(A) = \frac{1}{T} \operatorname{meas}\{\tau \in [0,T] : \zeta(s+i\tau,\alpha;\mathfrak{a}) \in A\}.$$

Lemma 3. Suppose that α is a transcendental number. Then $P_{T,\alpha,\mathfrak{a}}$ converges weakly to

$$m_H\{\omega \in \Omega : \zeta(s,\omega,\alpha;\mathfrak{a}) \in A\}, \quad A \in \mathcal{B}(H(D)),$$

as $T \to \infty$.

The lemma was obtained in [2]. The transcendence of α can be replaced by the linear independence over \mathbb{Q} for the set $L(\alpha)$.

Let V > 0 be an arbitrary fixed number, $D_V = \{s \in \mathbb{C} : 1/2 < \sigma < 1, |t| < V\}$, and $H(D_V)$ the space of analytic on D_V functions. Denote by $P_{T,\alpha,\mathfrak{a}}^1$ the analogue of $P_{T,\alpha,\mathfrak{a}}$ for the space $H(D_V)$.

Lemma 4. Suppose that $\alpha = a/b$, $a, b \in \mathbb{N}$, a < b, (a, b) = 1, $a/b \neq 1/2$, and (lb + a, bq) = 1 for all $l = 0, 1, \ldots, q - 1$. Then $P_{T,\alpha,\mathfrak{a}}^1$ converges weakly to

$$m_{1H}\left\{\omega_1 \in \Omega_1 : \zeta\left(s, \frac{a}{b}, \omega_1; \mathfrak{a}\right) \in A\right\} \stackrel{def}{=} P^1_{\zeta, \alpha, \mathfrak{a}}(A), \quad A \in \mathcal{B}(H(D_V)),$$

as $T \to \infty$.

Proof of the lemma is given in [4], Theorem 3.

Now we will prove the analogues of Lemmas 3 and 4 for the function $\zeta_{u_T}(s, \alpha; \mathfrak{a})$. For $A \in \mathcal{B}(H(D))$, define

$$Q_{T,\alpha,\mathfrak{a}}(A) = \frac{1}{T} \operatorname{meas}\{\tau \in [0,T] : \zeta_{u_T}(s+i\tau,\alpha;\mathfrak{a}) \in A\}.$$

Lemma 5. Suppose that α is a transcendental number, and $u_T \to \infty$ and $u_T \ll T^2$ as $T \to \infty$. Then $Q_{T,\alpha,\mathfrak{a}}$ converges weakly to $P_{\zeta,\alpha,\mathfrak{a}}$ as $T \to \infty$.

Proof. For $g_1, g_2 \in H(D)$, define

$$\rho(g_1, g_2) = \sum_{l=1}^{\infty} 2^{-l} \frac{\sup_{s \in K_l} |g_1(s) - g_2(s)|}{1 + \sup_{s \in K_l} |g_1(s) - g_2(s)|},$$

where $\{K_l : l \in \mathbb{N}\} \subset D$ is a sequence of compact embedded subsets such that $D = \bigcup_{l=1}^{\infty} K_l$, and if $K \subset D$ is a compact set, then K lies in some K_l . Then ρ is a metric in the space H(D) inducing its topology of uniform convergence on compacta.

Let ξ_T be the random variable defined on a certain probability space $(\widehat{\Omega}, \mathcal{A}, \mu)$ and uniformly distributed in the interval [0, T]. Define the H(D)-valued random elements

$$\begin{aligned} X_{T,\alpha,\mathfrak{a}} &= X_{T,\alpha,\mathfrak{a}}(s) = \zeta(s+i\xi_T,\alpha;\mathfrak{a}), \\ Y_{T,\alpha,\mathfrak{a}} &= Y_{T,\alpha,\mathfrak{a}}(s) = \zeta_{u_T}(s+i\xi_T,\alpha;\mathfrak{a}). \end{aligned}$$

Let F be an arbitrary closed set of the space H(D) and $\varepsilon > 0$. Then the set

$$F_{\varepsilon} = \{g : \rho(g, F) \leqslant \varepsilon\}$$

is closed as well. Therefore, by Lemmas 3 and 2,

$$\limsup_{T\to\infty} P_{T,\alpha,\mathfrak{a}}(F_{\varepsilon}) \leqslant P_{\zeta,\alpha,\mathfrak{a}}(F_{\varepsilon}).$$

Using the inclusion

$$\{Y_{T,\alpha,\mathfrak{a}}\in F\}\subset\{X_{T,\alpha,\mathfrak{a}}\in F_{\varepsilon}\}\cup\{\rho(X_{T,\alpha,\mathfrak{a}},Y_{T,\alpha,\mathfrak{a}})\geqslant\varepsilon\},\$$

we find

$$\mu\{Y_{T,\alpha,\mathfrak{a}} \in F\} \leqslant \mu\{X_{T,\alpha,\mathfrak{a}} \in F_{\varepsilon}\} + \mu\{\rho(X_{T,\alpha,\mathfrak{a}}, Y_{T,\alpha,\mathfrak{a}}) \geqslant \varepsilon\}.$$
(3.1)

Since the density of the random variable ξ_T is 1/T on [0, T], and 0 elsewhere, for every measurable function $h : \hat{\Omega} \to \mathbb{X}$, we have

$$\mu\{h(\xi_T) \in A\} = \frac{1}{T} \int_0^T \mathrm{d}\tau, \quad A \in \mathcal{B}(\mathbb{X}).$$

Therefore, by the definitions of $X_{T,\alpha,\mathfrak{a}}$ and $Y_{T,\alpha,\mathfrak{a}}$,

$$\mu\{X_{T,\alpha,\mathfrak{a}}\in F_{\varepsilon}\}=\frac{1}{T}\operatorname{meas}\{\tau\in[0,T]:\zeta(s+i\tau,\alpha;\mathfrak{a})\in F_{\varepsilon}\}=P_{T,\alpha;\mathfrak{a}}(F_{\varepsilon}),$$

and similarly

$$\mu\{Y_{T,\alpha;\mathfrak{a}}\in F\}=Q_{T,\alpha,\mathfrak{a}}(F).$$

Moreover, in view of Lemma 1 and the definition of the metric ρ , for every $\varepsilon > 0$,

$$\begin{split} &\mu\{\rho(X_{T,\alpha,\mathfrak{a}},Y_{T,\alpha,\mathfrak{a}}) \geqslant \varepsilon\} \\ &= \frac{1}{T} \mathrm{meas}\{\tau \in [0,T] : \rho(\zeta(s+i\tau,\alpha,\mathfrak{a}),\zeta_{u_T}(s+i\tau,\alpha,\mathfrak{a})) \geqslant \varepsilon\} \\ &\leqslant \frac{1}{T\varepsilon} \int_0^T \rho(\zeta(s+i\tau,\alpha,\mathfrak{a}),\zeta_{u_T}(s+i\tau,\alpha,\mathfrak{a})) \,\mathrm{d}\tau = 0. \end{split}$$

These three equalities and (3.1) give

$$\liminf_{T\to\infty} Q_{T,\alpha,\mathfrak{a}}(F) \leqslant P_{\zeta,\alpha,\mathfrak{a}}(F_{\varepsilon}).$$

Letting $\varepsilon \to +0$ together with Lemma 2 proves the lemma. \Box

For $A \in \mathcal{B}(H(D_V))$, let $Q^1_{T,\alpha,\mathfrak{a}}(A)$ be an analogue of $Q_{T,\alpha,\mathfrak{a}}$ for the space $H(D_V)$. Using Lemma 4 and repeating a proof of Lemma 5 lead to the following assertion.

Lemma 6. Suppose that the hypotheses of Lemma 4 on the parameter α and the sequence \mathfrak{a} are satisfied, and $u_T \to \infty$ and $u_T \ll T^2$ as $T \to \infty$. Then $Q^1_{T,\alpha,\mathfrak{a}}$ converges weakly to $P^1_{\zeta,\alpha,\mathfrak{a}}$ as $T \to \infty$.

Lemmas 5 and 6 imply the weak convergence for the corresponding measures on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. To see this, recall a preservation property of weak convergence. Let P be a probability measure on $(\mathbb{X}, \mathcal{B}(\mathbb{X}))$, and $h : \mathbb{X} \to \mathbb{X}_1$ be a $(\mathcal{B}(\mathbb{X}), \mathcal{B}(\mathbb{X}_1))$ -measurable mapping. Then the measure P defines the unique probability measure Ph^{-1} on $(\mathbb{X}_1, \mathcal{B}(\mathbb{X}_1))$ by the formula

$$Ph^{-1}(A) = P(h^{-1}A), \quad A \in \mathcal{B}(\mathbb{X}_1).$$

Lemma 7. Suppose that P_n , $n \in \mathbb{N}$, and P are probability measures on $(\mathbb{X}, \mathcal{B}(\mathbb{X}))$, $h : \mathbb{X} \to \mathbb{X}_1$ a continuous mapping, and P_n converges weakly to P as $n \to \infty$. Then also $P_n h^{-1}$ converges weakly to Ph^{-1} as $n \to \infty$.

Proof of the lemma can be found in [1]. For $A \in \mathcal{B}(\mathbb{R})$, define

$$\widehat{Q}_{T,\alpha,\mathfrak{a}}(A) = \frac{1}{T} \operatorname{meas}\Big\{\tau \in [0,T] : \sup_{s \in K} |\zeta_{u_T}(s+i\tau,\alpha;\mathfrak{a}) - f(s)| \in A\Big\},\$$

where K and f(s) are from Theorems 2 and 3.

Lemma 8. Suppose that α is a transcendental number, $u_T \to \infty$ and $u_T \ll T^2$ as $T \to \infty$, and $K \subset D$ is a compact set. Then $\widehat{Q}_{T,\alpha,\mathfrak{a}}$ converges weakly to

$$m_H \Big\{ \omega \in \Omega : \sup_{s \in K} |\zeta(s, \alpha, \omega; \mathfrak{a}) - f(s)| \in A \Big\}, \quad A \in \mathcal{B}(\mathbb{R}),$$

as $T \to \infty$.

Proof. The mapping $h: H(D) \to \mathbb{R}$ given by $h(g) = \sup_{s \in K} |g(s) - f(s)|$ is continuous. Therefore, the lemma follows from Lemmas 5 and 7. \Box

Similarly, Lemmas 6 and 7 imply the following statement.

Lemma 9. Let $K \subset D$ be a compact set, $u_T \to \infty$ and $u_T \ll T^2$ as $T \to \infty$. Then, under hypotheses of Lemma 4 for the parameter α and sequence \mathfrak{a} , $\hat{Q}_{T,\alpha,\mathfrak{a}}$ converges weakly to

$$m_{1H}\left\{\omega_1 \in \Omega_1 : \sup_{s \in K} \left| \zeta\left(s, \frac{a}{b}, \omega_1; \mathfrak{a}\right) - f(s) \right| \in A \right\}, \quad A \in \mathcal{B}(\mathbb{R}),$$

as $T \to \infty$.

4 Proof of universality

Let $G_n(x), n \in \mathbb{N}$ and G(x) be the distribution functions. We recall that G_n converges weakly to G if

$$\lim_{n \to \infty} G_n(x) = G(x)$$

for every continuity point x of G(x). Moreover, every distribution function has no more than a countable set of discontinuity points.

It is well known that the weak convergence of probability measures on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ is equivalent to that of the corresponding distribution functions.

Proof. (Proof of Theorem 2). In [3], it is obtained that the support of the measure $P_{\zeta,\alpha,\mathfrak{a}}$ is the space H(D). Therefore,

$$P_{\zeta,\alpha,\mathfrak{a}}(\mathcal{G}_{\varepsilon}) > 0, \tag{4.1}$$

where

$$\mathcal{G}_{\varepsilon} = \left\{ g \in H(D) : \sup_{s \in K} |g(s) - p(s)| < \frac{\varepsilon}{2} \right\},$$

and p(s) is a polynomial. In view of the Mergelyan theorem on the approximation of analytic functions by polynomials [5], there exists a polynomial p(s) such that

$$\sup_{s \in K} |f(s) - p(s)| < \frac{\varepsilon}{2}.$$

This shows that

$$\mathcal{G}_{\varepsilon} \subset \left\{ g \in H(D) : \sup_{s \in K} |g(s) - f(s)| < \varepsilon \right\} \stackrel{def}{=} \widehat{\mathcal{G}}_{\varepsilon}.$$

Thus, in view of (4.1), we have $P_{\zeta,\alpha,\mathfrak{a}}(\widehat{\mathcal{G}}_{\varepsilon}) > 0$, i. e.,

$$m_H\left\{\omega\in\Omega:\sup_{s\in K}|\zeta(s,\alpha,\omega;\mathfrak{a})-f(s)|<\varepsilon\right\}>0.$$

Define the distribution function

$$G_{T,\alpha,\mathfrak{a}}(\varepsilon) = \frac{1}{T} \operatorname{meas}\left\{\tau \in [0,T] : \sup_{s \in K} |\zeta_{u_T}(s+i\tau,\alpha;\mathfrak{a}) - f(s)| < \varepsilon\right\}.$$

Then Lemma 8 implies that

$$\lim_{T \to \infty} G_{T,\alpha,\mathfrak{a}}(\varepsilon) = m_H \left\{ \omega \in \Omega : \sup_{s \in K} |\zeta(s,\alpha,\omega;\mathfrak{a}) - f(s)| < \varepsilon \right\}$$

for all continuity points ε of the latter limit distribution function, i. e., for all but at most countably many $\varepsilon > 0$. \Box

Proof. (Proof of Theorem 3). Let V be such that $K \subset D_V$. The support of the measure $P^1_{\zeta,\alpha,\mathfrak{a}}$ is the set $H(D_V)$ [4]. Therefore, the analogue of the set $\mathcal{G}_{\varepsilon}$, the set

$$\mathcal{G}_{\varepsilon,V} = \left\{ g \in H(D_V) : \sup_{s \in K} |g(s) - p(s)| < \frac{\varepsilon}{2} \right\},\$$

100

is an open neighbourhood of an element of the support of the measure $P_{\zeta,\alpha,\mathfrak{a}}^1$. Thus $P_{\zeta,\alpha,\mathfrak{a}}^1(\mathcal{G}_{\varepsilon,V}) > 0$, and the further proof runs in the same way as that of Theorem 2 by using Lemma 9. \Box

References

- [1] P. Billingsley. Convergence of Probability Measures. Wiley, New York, 1968.
- [2] A. Javtokas and A. Laurinčikas. On the periodic Hurwitz zeta-function. Hardy-Ramanujan Journal, 29:18–36, 2006. https://doi.org/10.46298/hrj.2006.154.
- [3] A. Javtokas and A. Laurinčikas. Universality of the periodic Hurwitz zetafunction. Integral Transforms and Special Functions, 17(10):711-722, 2006. https://doi.org/10.1080/10652460600856484.
- [4] A. Laurinčikas, R. Macaitienė, D. Mochov and D. Šiaučiūnas. Universality of the periodic Hurwitz zeta-function with rational parameter. *Siberian Mathematical Journal*, 59(5):894–900, 2018. https://doi.org/10.1134/S0037446618050130.
- [5] S.N. Mergelyan. Uniform approximations to functions of complex variable. Uspekhi Mat. Nauk, 7(2):31–122, 1952. (in Russian).
- S.M. Voronin. Theorem on the "universality" of the Riemann zetafunction. Mathematics of the USSR-Izvestiya, Ser. Matem., 9(3):475-486, 1975. https://doi.org/10.1070/IM1975v009n03ABEH001485. (in Russian).