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1 Introduction

Let a = {am : m ∈ N0 = N ∪ {0}} be a periodic sequence of complex numbers
with minimal period q ∈ N, 0 < α ⩽ 1 fixed parameter, and s = σ + it a
complex variable. The periodic Hurwitz zeta-function ζ(s, α; a) is defined, for
σ > 1, by the Dirichlet series

ζ(s, α; a) =

∞∑
m=0

am
(m+ α)s

.

■
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If am ≡ 1, then we have the classical Hurwitz zeta-function ζ(s, α) which has
the meromorphic continuation to the whole complex plane with unique simple
pole at the point s = 1 with residue 1. The periodicity of the sequence a
implies, for σ > 1, the equality

ζ(s, α; a) =
1

qs

q−1∑
l=0

alζ

(
s,

l + α

q

)
, (1.1)

therefore, the function ζ(s, α; a) also can be meromorphically continued to the
whole complex plane with a simple pole at the point s = 1 with residue

â
def
=

1

q

q−1∑
l=0

al.

If â = 0, then ζ(s, α; a) is an entire function. Clearly, ζ(s, 1; {1}) = ζ(s)
is the Riemann zeta-function. Thus, the periodic Hurwitz zeta-function is a
generalization of the classical Hurwitz and Riemann zeta-functions. Analytical
properties of ζ(s, α; a) are governed by the sequence a, and, in particular, by
arithmetic of the parameter α.

The function ζ(s, α; a), for some classes of the parameter α, as other zeta-
functions, is universal, i. e., its shifts ζ(s+ iτ, α; a), τ ∈ R, approximate all an-
alytic functions defined in the strip D = {s ∈ C : 1/2 < σ < 1}. Note that the
phenomenon of universality for zeta-functions was discovered by Voronin, in [6]
he proved the universality of the Riemann zeta-function. Later, the universality
of some other zeta-functions was obtained. By the Linnik-Ibragimov conjec-
ture, all functions in some half-plane given by Dirichlet series, analytically
continuable to the left of the absolute convergence half-plane and satisfying
some natural growth conditions are universal in the Voronin sense. However,
till now the universality of some zeta-functions are not known. The universal-
ity of the function ζ(s, α; a) with transcendental α was considered in [3], and
with rational α in [4]. Denote by K the class of compact subsets of the strip
D, and by H(K) with K ∈ K the class of continuous functions on K that are
analytic in the interior of K. Let measA stand for the Lebesgue measure of
a measurable set A ⊂ R. Then the universality of the function ζ(s, α; a) is
described in the following theorem.

Theorem 1. Suppose that the number α is transcendental, or α = a/b, a, b ∈
N, a < b, (a, b) = 1, a/b ̸= 1/2 and (lb + a, bq) = 1 for all l = 0, 1, . . . , q − 1.
Let K ∈ K and f(s) ∈ H(K). Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ, α; a)− f(s)| < ε

}
> 0.

It is easily seen that the transcendence of α can be replaced by the linear
independence over the field of rational numbers Q of the set

L(α) = {log(m+ α) : m ∈ N0}.

The universality of the function ζ(s, α; a) with algebraic irrational α is an
open problem.
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In the strip D, the function ζ(s, α; a) is defined by using (1.1) and analytic
continuation of the Hurwitz zeta-function. Therefore, it is not easy to derive
an information on the function f(s) from the inequality

sup
s∈K

|ζ(s+ iτ, α; a)− f(s)| < ε.

It is more convenient to use an absolutely convergent Dirichlet series in place
of ζ(s, α; a). This paper is devoted to a realization of the mentioned idea.

Let θ > 1/2 be a fixed number, and, for m ∈ N0 and u > 0,

vu(m,α) = exp
{
− ((m+ α)/u)

θ
}
.

Since |am| ⩽ C, m ∈ N0, with some C < ∞, the series

ζu(s, α; a) =

∞∑
m=0

amvu(m,α)

(m+ α)s

is absolutely convergent for σ > σ0 with arbitrary finite σ0.
Denote by B(X) the Borel σ-field of the space X, by H(D) the space of

analytic on D functions endowed with the topology of uniform convergence on
compacta, and let γ = {s ∈ C : |s| = 1}. Define the set Ω =

∏
m∈N0

γm, where
γm = γ for all N0. With the product topology and pointwise multiplication,
the torus Ω is a compact topological Abelian group. Therefore, on (Ω,B(Ω)),
the probability Haar measure mH exists, and we obtain a probability space
(Ω,B(Ω),mH). Denote by ωm the mth component of an element ω ∈ Ω,
m ∈ N0, and, on the probability space (Ω,B(Ω),mH), define the H(D)-valued
random element

ζ(s, α, ω; a) =

∞∑
m=0

amω(m)

(m+ α)s
.

The latter series, for almost all ω ∈ Ω is uniformly convergent on compact
subsets of the strip D. Let Pζ,α,a be the distribution of the random element
ζ(s, α, ω; a), i. e.,

Pζ,α,a(A) = mH{ω ∈ Ω : ζ(s, α, ω; a) ∈ A}, A ∈ B(H(D)).

Theorem 2. Suppose that the number α is transcendental, and uT → ∞, uT ≪
T 2 as T → ∞. Let K ∈ K and f(s) ∈ H(K). Then the limit

lim
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|ζuT

(s+ iτ, α; a)− f(s)| < ε

}
= mH

{
ω ∈ Ω : sup

s∈K
|ζ(s, α, ω; a)− f(s)| < ε

}
> 0

exists for all but at most countably many ε > 0.

Math. Model. Anal., 28(1):91–101, 2023.
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For the case of rational α, define one more infinite-dimensional torus Ω1 =∏
p∈P γp, where γp = γ for all p ∈ P, and P is the set of all prime numbers.

Analogically to Ω, we have the probability space (Ω1,B(Ω1),m1H), where m1H

is the probability Haar measure on (Ω1,B(Ω1)). Denote by ω1(p) the p-th
component of an element ω1 ∈ Ω1, p ∈ P, and extend ω1(p) to the set N by the
formula

ω1(m) =
∏
pl|m

pl+1∤m

ωl(p), m ∈ N.

Now, let α = a/b, a, b ∈ N, a < b, (a, b) = 1. Denote by χ Dirichlet
characters, and by L(s, χ) the corresponding Dirichlet L-functions

L(s, χ) =

∞∑
m=1

χ(m)

ms
, σ > 1.

The functions L(s, χ) have meromorphic continuation to the whole complex
plane. Let φ(m) be the totient Euler function. On the probability space
(Ω1,B(Ω1),m1H), define the H(D)-valued random element

ζ
(
s,

a

b
, ω1; a

)
=

bsω1(b)

φ(bq)

q−1∑
l=0

al
∑

χmod bq

χ(a+ bl)L(s, ω1, χ),

where

L(s, ω1, χ) =

∞∑
m=1

χ(m)ω1(m)

ms

and z denotes the complex conjugate of z ∈ C.
Theorem 3. Suppose that a, b ∈ N, a < b, (a, b) = 1, a/b ̸= 1/2 and (lb +
a, q) = 1 for all l = 0, 1, . . . , q − 1, and uT → ∞, uT ≪ T 2 as T → ∞. Let
K ∈ K and f(s) ∈ H(K). Then the limit

lim
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K

∣∣∣ζuT

(
s+ iτ,

a

b
; a
)
− f(s)

∣∣∣ < ε

}
= m1H

{
ω1 ∈ Ω1 : sup

s∈K

∣∣∣ζ (s, a
b
, ω1; a

)
− f(s)

∣∣∣ < ε

}
> 0

exists for all but at most countably many ε > 0.

We will derive Theorems 2 and 3 from Theorem 1 by using the approxima-
tion of ζ(s, α; a) by ζuT

(s, α; a) in the mean.

2 Some estimates

In this section, we prove the following equality.

Lemma 1. Let K be a compact subset of the strip D, and uT → ∞ and uT ≪
T 2 as T → ∞. Then

lim
T→∞

1

T

∫ T

0

sup
s∈K

|ζ(s+ iτ, α; a)− ζuT
(s+ iτ, α; a)|dτ = 0.
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Proof. From the Mellin formula

1

2πi

∫ c+∞

c−∞
Γ (s)d−sds = e−d, c, d > 0,

where Γ (s) is the Euler gamma-function, we have

vuT
(m,α) =

1

2πi

∫ θ+i∞

θ−i∞

1

θ
Γ
(s
θ

)(m+ α

uT

)−s

ds.

Hence, denoting luT
(s) = s

θΓ
(
s
θ

)
us
T , we obtain, for s ∈ K,

ζuT
(s, α; a) =

1

2πi

∞∑
m=0

am
(m+ α)s

∫ θ+i∞

θ−i∞

z

θ
Γ
(z
θ

)(m+ α

uT

)−z
dz

z

=
1

2πi

∫ θ+i∞

θ−i∞

luT
(z)

z

∞∑
m=0

am
(m+ α)s+z

dz

=
1

2πi

∫ θ+i∞

θ−i∞
ζ(s+ z, α; a)luT

(z)
dz

z
. (2.1)

There exists ε > 0 such that 1/2 + 2ε ⩽ σ ⩽ 1 − ε for s = σ + it ∈ K. We
take θ = 1

2 + ε and θ1 = 1
2 + ε− σ. Then θ1 < 0 for all s ∈ K. Therefore, the

representation (2.1) and the residue theorem give

ζuT
(s, α; a)− ζ(s, α; a) =

1

2πi

∫ θ1+i∞

θ1−i∞
ζ(s+ z, α; a)

luT
(z)

z
dz +

âluT
(1− s)

1− s
.

Thus, for all s ∈ K,

ζuT
(s+ iτ, α; a)− ζ(s+ iτ, α; a) =

1

2πi

∫ ∞

−∞
ζ

(
1

2
+ ε+ it+ iτ + iv, α; a

)
× luT

(1/2 + ε− σ + iv)

1/2 + ε− σ + iv
dv +

âluT
(1− s− iτ)

1− s− iτ

=
1

2πi

∫ ∞

−∞
ζ

(
1

2
+ ε+ iτ + iv, α; a

)
luT

(1/2 + ε− s+ iv)

1/2 + ε− s+ iv
dv

+
âluT

(1− s− iτ)

1− s− iτ
≪
∫ ∞

−∞

∣∣∣∣ζ (1

2
+ ε+ iτ + iv, α; a

)∣∣∣∣
sup
s∈K

∣∣∣∣ luT
(1/2 + ε− s+ iv)

1/2 + ε− s+ iv

∣∣∣∣ dv + â sup
s∈K

∣∣∣∣ luT
(1− s− iτ)

1− s− iτ

∣∣∣∣ .
Therefore,

1

T

∫ T

0

sup
s∈K

|ζ(s+ iτ, α; a)− ζuT
(s+ iτ, α; a)| dτ (2.2)

≪
∫ ∞

−∞

(
1

T

∫ T

0

∣∣∣∣ζ (1

2
+ ε+ iτ + iv, α; a

)∣∣∣∣2 dτ

)1/2

× sup
s∈K

∣∣∣∣ luT
(1/2 + ε− s+ iv)

1/2 + ε− s+ iv

∣∣∣∣ dv + â
1

T

∫ T

0

sup
s∈K

∣∣∣∣ luT
(1−s−iτ)

1− s− iτ

∣∣∣∣ dτ def
= I1+I2.

Math. Model. Anal., 28(1):91–101, 2023.
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It is well known that, for 1/2 < σ < 1,∫ T

0

|ζ(σ + it, α)|2 dt ≪σ,α T.

This and (1.1) show that, for 1/2 < σ < 1,∫ T

0

|ζ(σ + it, α; a)|2 dt ≪σ,α,a T.

Hence, for the same σ and v ∈ R,∫ T

0

|ζ(σ + it+ iv, α; a)2 dτ ≪σ,α,a T (1 + |v|), T ⩾ 1. (2.3)

For the function Γ (s), the estimate

Γ (σ + it) ≪ exp{−c1|t|}

uniformly in σ1 ⩽ σ ⩽ σ2 with arbitrary σ1 < σ2 is valid. Therefore, for all
s ∈ K,

luT
(1/2 + ε− s+ iv)

1/2 + ε− s+ iv
≪ u

1/2+ε−σ
T

∣∣∣∣Γ (1

θ

(
1

2
+ ε− s+ iv

))∣∣∣∣
≪ u−ε

T exp
{c1
θ
|v − t|

}
≪ε,K u−ε

T exp{−c2|v|}, c2 > 0.

Therefore, in view of (2.3),

I1 ≪ε,α,a,K u−ε
T

∫ ∞

−∞
(1 + |v|)1/2 exp{−c2|v|}dv ≪ε,α,a,K u−ε

T . (2.4)

Similarly, we find that, for all s ∈ K,

luT
(1− s− iτ)

1− s− iτ
≪ε u

1−σ
T exp{−c1|t+τ |} ≪ε,a,K u

1/2−2ε
T exp{−c3|τ |}, c3 > 0.

Thus,

I2 ≪ε,a,K u
1/2−2ε
T

1

T

∫ T

0

exp{−c3τ} dτ ≪ε,a,K u
1/2−2ε
T /T.

This, (2.2) and (2.4) prove the lemma. ⊓⊔

3 Limit theorems

Let Pn, n ∈ N, and P be probability measures on (X,B(X)). Recall that Pn

converges weakly to P as n → ∞ if, for every real bounded continuous function
g on X,

lim
n→∞

∫
X
g dPn =

∫
X
g dP.

There are equivalents of weak convergence in terms of some classes of sets. We
will use the following, see, for example, [1].
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Lemma 2. Pn converges weakly to P as n → ∞ if and only if, for every closed
set F ⊂ X,

lim sup
n→∞

Pn(F ) ⩽ P (F ).

For A ∈ B(H(D)), define

PT,α,a(A) =
1

T
meas{τ ∈ [0, T ] : ζ(s+ iτ, α; a) ∈ A}.

Lemma 3. Suppose that α is a transcendental number. Then PT,α,a converges
weakly to

mH{ω ∈ Ω : ζ(s, ω, α; a) ∈ A}, A ∈ B(H(D)),

as T → ∞.

The lemma was obtained in [2]. The transcendence of α can be replaced by
the linear independence over Q for the set L(α).

Let V > 0 be an arbitrary fixed number, DV = {s ∈ C : 1/2 < σ < 1, |t| <
V }, and H(DV ) the space of analytic on DV functions. Denote by P 1

T,α,a the
analogue of PT,α,a for the space H(DV ).

Lemma 4. Suppose that α = a/b, a, b ∈ N, a < b, (a, b) = 1, a/b ̸= 1/2, and
(lb+ a, bq) = 1 for all l = 0, 1, . . . , q − 1. Then P 1

T,α,a converges weakly to

m1H

{
ω1 ∈ Ω1 : ζ

(
s,

a

b
, ω1; a

)
∈ A

}
def
= P 1

ζ,α,a(A), A ∈ B(H(DV )),

as T → ∞.

Proof of the lemma is given in [4], Theorem 3.
Now we will prove the analogues of Lemmas 3 and 4 for the function

ζuT
(s, α; a). For A ∈ B(H(D)), define

QT,α,a(A) =
1

T
meas{τ ∈ [0, T ] : ζuT

(s+ iτ, α; a) ∈ A}.

Lemma 5. Suppose that α is a transcendental number, and uT → ∞ and
uT ≪ T 2 as T → ∞. Then QT,α,a converges weakly to Pζ,α,a as T → ∞.

Proof. For g1, g2 ∈ H(D), define

ρ(g1, g2) =

∞∑
l=1

2−l sups∈Kl
|g1(s)− g2(s)|

1 + sups∈Kl
|g1(s)− g2(s)|

,

where {Kl : l ∈ N} ⊂ D is a sequence of compact embedded subsets such that
D =

⋃∞
l=1 Kl, and if K ⊂ D is a compact set, then K lies in some Kl. Then ρ

is a metric in the space H(D) inducing its topology of uniform convergence on
compacta.

Math. Model. Anal., 28(1):91–101, 2023.
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Let ξT be the random variable defined on a certain probability space (Ω̂,
A, µ) and uniformly distributed in the interval [0, T ]. Define the H(D)-valued
random elements

XT,α,a = XT,α,a(s) = ζ(s+ iξT , α; a),

YT,α,a = YT,α,a(s) = ζuT
(s+ iξT , α; a).

Let F be an arbitrary closed set of the space H(D) and ε > 0. Then the set

Fε = {g : ρ(g, F ) ⩽ ε}

is closed as well. Therefore, by Lemmas 3 and 2,

lim sup
T→∞

PT,α,a(Fε) ⩽ Pζ,α,a(Fε).

Using the inclusion

{YT,α,a ∈ F} ⊂ {XT,α,a ∈ Fε} ∪ {ρ(XT,α,a, YT,α,a) ⩾ ε},

we find

µ{YT,α,a ∈ F} ⩽ µ{XT,α,a ∈ Fε}+ µ{ρ(XT,α,a, YT,α,a) ⩾ ε}. (3.1)

Since the density of the random variable ξT is 1/T on [0, T ], and 0 elsewhere,

for every measurable function h : Ω̂ → X, we have

µ{h(ξT ) ∈ A} =
1

T

∫ T

0
τ∈h−1A

dτ, A ∈ B(X).

Therefore, by the definitions of XT,α,a and YT,α,a,

µ{XT,α,a ∈ Fε} =
1

T
meas{τ ∈ [0, T ] : ζ(s+ iτ, α; a) ∈ Fε} = PT,α;a(Fε),

and similarly
µ{YT,α;a ∈ F} = QT,α,a(F ).

Moreover, in view of Lemma 1 and the definition of the metric ρ, for every
ε > 0,

µ{ρ(XT,α,a, YT,α,a) ⩾ ε}

=
1

T
meas{τ ∈ [0, T ] : ρ(ζ(s+ iτ, α, a), ζuT

(s+ iτ, α, a)) ⩾ ε}

⩽
1

Tε

∫ T

0

ρ(ζ(s+ iτ, α, a), ζuT
(s+ iτ, α, a)) dτ = 0.

These three equalities and (3.1) give

lim inf
T→∞

QT,α,a(F ) ⩽ Pζ,α,a(Fε).

Letting ε → +0 together with Lemma 2 proves the lemma. ⊓⊔

For A ∈ B(H(DV )), let Q1
T,α,a(A) be an analogue of QT,α,a for the space

H(DV ). Using Lemma 4 and repeating a proof of Lemma 5 lead to the following
assertion.
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Lemma 6. Suppose that the hypotheses of Lemma 4 on the parameter α and
the sequence a are satisfied, and uT → ∞ and uT ≪ T 2 as T → ∞. Then
Q1

T,α,a converges weakly to P 1
ζ,α,a as T → ∞.

Lemmas 5 and 6 imply the weak convergence for the corresponding mea-
sures on (R,B(R)). To see this, recall a preservation property of weak conver-
gence. Let P be a probability measure on (X,B(X)), and h : X → X1 be a
(B(X),B(X1))-measurable mapping. Then the measure P defines the unique
probability measure Ph−1 on (X1,B(X1)) by the formula

Ph−1(A) = P (h−1A), A ∈ B(X1).

Lemma 7. Suppose that Pn, n ∈ N, and P are probability measures on (X,
B(X)), h : X → X1 a continuous mapping, and Pn converges weakly to P as
n → ∞. Then also Pnh

−1 converges weakly to Ph−1 as n → ∞.

Proof of the lemma can be found in [1].

For A ∈ B(R), define

Q̂T,α,a(A) =
1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|ζuT

(s+ iτ, α; a)− f(s)| ∈ A
}
,

where K and f(s) are from Theorems 2 and 3.

Lemma 8. Suppose that α is a transcendental number, uT → ∞ and uT ≪ T 2

as T → ∞, and K ⊂ D is a compact set. Then Q̂T,α,a converges weakly to

mH

{
ω ∈ Ω : sup

s∈K
|ζ(s, α, ω; a)− f(s)| ∈ A

}
, A ∈ B(R),

as T → ∞.

Proof. The mapping h : H(D) → R given by h(g) = sups∈K |g(s) − f(s)| is
continuous. Therefore, the lemma follows from Lemmas 5 and 7. ⊓⊔

Similarly, Lemmas 6 and 7 imply the following statement.

Lemma 9. Let K ⊂ D be a compact set, uT → ∞ and uT ≪ T 2 as T → ∞.
Then, under hypotheses of Lemma 4 for the parameter α and sequence a, Q̂T,α,a

converges weakly to

m1H

{
ω1 ∈ Ω1 : sup

s∈K

∣∣∣ζ (s, a
b
, ω1; a

)
− f(s)

∣∣∣ ∈ A

}
, A ∈ B(R),

as T → ∞.

Math. Model. Anal., 28(1):91–101, 2023.
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4 Proof of universality

Let Gn(x), n ∈ N and G(x) be the distribution functions. We recall that Gn

converges weakly to G if
lim

n→∞
Gn(x) = G(x)

for every continuity point x of G(x). Moreover, every distribution function has
no more than a countable set of discontinuity points.

It is well known that the weak convergence of probability measures on
(R,B(R)) is equivalent to that of the corresponding distribution functions.

Proof. (Proof of Theorem 2). In [3], it is obtained that the support of the
measure Pζ,α,a is the space H(D). Therefore,

Pζ,α,a(Gε) > 0, (4.1)

where

Gε =

{
g ∈ H(D) : sup

s∈K
|g(s)− p(s)| < ε

2

}
,

and p(s) is a polynomial. In view of the Mergelyan theorem on the approxi-
mation of analytic functions by polynomials [5], there exists a polynomial p(s)
such that

sup
s∈K

|f(s)− p(s)| < ε

2
.

This shows that

Gε ⊂
{
g ∈ H(D) : sup

s∈K
|g(s)− f(s)| < ε

}
def
= Ĝε.

Thus, in view of (4.1), we have Pζ,α,a(Ĝε) > 0, i. e.,

mH

{
ω ∈ Ω : sup

s∈K
|ζ(s, α, ω; a)− f(s)| < ε

}
> 0.

Define the distribution function

GT,α,a(ε) =
1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|ζuT

(s+ iτ, α; a)− f(s)| < ε

}
.

Then Lemma 8 implies that

lim
T→∞

GT,α,a(ε) = mH

{
ω ∈ Ω : sup

s∈K
|ζ(s, α, ω; a)− f(s)| < ε

}
for all continuity points ε of the latter limit distribution function, i. e., for all
but at most countably many ε > 0. ⊓⊔

Proof. (Proof of Theorem 3). Let V be such that K ⊂ DV . The support of
the measure P 1

ζ,α,a is the set H(DV ) [4]. Therefore, the analogue of the set Gε,
the set

Gε,V =

{
g ∈ H(DV ) : sup

s∈K
|g(s)− p(s)| < ε

2

}
,
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is an open neighbourhood of an element of the support of the measure P 1
ζ,α,a.

Thus P 1
ζ,α,a(Gε,V ) > 0, and the further proof runs in the same way as that of

Theorem 2 by using Lemma 9. ⊓⊔
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