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Abstract. In this article, we will introduce the mathematical model of the diffusion
process in a swelling medium that has already been modeled. The main purpose of
this paper is introducing a new class of group transformations for solving the nonlinear
emulsion equation. Thus, we introduce this method as the discrete group methods
based on solvable class orbits. One of the crucial advantages of this method is that
a transformation is sought, which reduces the equation being investigated to some
standard form for which the methods of integration are known. In developing this
approach, one may construct all canonical forms of solvable equations.
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1 Introduction

Most laws related to natural phenomena, especially physical laws and engi-
neering sciences, are modeled based on differential equations. To describe the
behavior of these models, simulation is a valuable tool. Simulation is also an
imitation of actual system performance over time. So the evolution of these
systems occurs over time and the time describing variable is significant. These
models include equations called evolution equations. Studying and calculat-
ing the analytical and approximate solutions of this type of equation is one of
the challenges of the last three decades for researchers. Also, industrial pro-
cess modeling has certain problems. One of these problems is how to analyze
these models. It should be noted that simulation alone is not enough to ex-
amine these models. To examine these simulated models and their validity, we
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must be able to obtain the solutions of these models by numerical or analytical
methods. Now, to express the future behavior of the model, we must obtain its
solutions by solving the equations of the simulation system and comment based
on its approximate or analytical solutions. Nevertheless, there are models such
as emulsion equations whose exact solutions have not been obtained due to the
nature of the equations.

In what follows, in Section 2, we will introduce the mathematical model of
swelling medium and mathematics of diffusion equations which have been so
far obtained. In Section 3.1, we will be mainly concerned with the dry emulsion
equations, in order to transforming them into the solvable orbits of classical
Emden-Fowler equations. By using the discrete group methods, some applica-
ble transformations for obtaining the exact solutions of solvable equations are
presented in Section 3.2.

2 Preliminaries

Emulsion layers, discussed previously in [6], consisting of silver halide in grain
forms as well as oil droplets. Once a photo is taken, light is captured by the
silver halide grains. When the film is developed, the oil droplets containing dye
couplers, produce color. In addition, some other ingredients exist in emulsion
layers. A considerable proportion of the emulsion is occupied by the silver
halide grains; however, the volume of other materials is not significant. When
the photographic film is being produced, paper is being manufactured, and the
film is being developed, aqueous solutions disperse inside and outside emulsion
layers. Understanding the diffusion process is very important. In this regard,
when a dry emulsion layer is dispersed in an aqueous solution Figure 1(a),
water diffuses into the emulsion, which makes it swell Figure 1(b). Whenever
the left end of gelatin is continuously in contact with water, some part of the
left end will be occupied by pure water. Because the medium is swelling and
changing as a result, the basic laws of diffusion are not valid anymore.

a) before b) after

Figure 1. Dry emulsion diffusion in solvent.

Accordingly, a mathematical model was introduced in [5], in which a swe-
lling medium is considered in the diffusion process. According to Fick’s law, the

flux of a species passing a point x at time t is calculated −H(u, x, t)∂u(x,t)∂x , here
H(u, x, t) and u = u(x, t) are diffusion coefficient and spatial concentration of a
diffusing species, respectively. On the other hand, in the small interval (x,∆x),

Math. Model. Anal., 29(1):46–56, 2024.



48 P. Darania

according to the conservation law of mass, we have

∂

∂t

(
u(x, t)∆x

)
= H(u, x, t)

(∂u(x, t)
∂x

∣∣∣
x+∆x

− ∂u(x, t)

∂x

∣∣∣
x

)
. (2.1)

In Equation (2.1), if we let ∆x → 0, then

∂u(x, t)

∂t
=

∂

∂x

(
H(u, x, t)

∂u(x, t)

∂x

)
.

Now, in the coordinate systems x−y (Eulerian-Lagrangian coordinate [1,5]),
we can generalize such diffusion equation to be applied in the swelling media as
well. To do this, we introduce the following notations and quantities in Table 1.

Table 1. Notations and quantities.

Notations Quantities

N(x, t) Volume ratio of water to gelatin
M(x, t) Concentration of species M
P (x) Volume ratio of non gelatin emulsion material

to gelatin
k(x, t) = 1 +N(x, t) Swell ratio
s(x, t) = 1 +N(x, t) + P (x) Ratio of total volume to gelatin volume

As we want to focus on what is happening to the emulsion layer in the right
parts of Figure 1, what is happening to the left end of gelatin is not taken
into consideration. The separated gelatin on the left does not disperse in the
emulsion on the right. It is only water that can diffuse.

The gelatin-free emulsion has silver halide grains and oil droplets. Since
the solution is very dilute in M that the volume it occupies is not considered.
Many of these species are found in photographic films. The model introduced
below explains such a situation; M is considered as a vector, not a scalar.

It is apparent from the definition s that variable change at time t is given
by

y =

∫ x

0

s(ς, t)dς. (2.2)

From Equation (2.2), we get

∂

∂y
=

1

s(x, t)

∂

∂x
.

It should be noted that the volume fraction of the quantity c in a continuous
phase ( gelatin+water) in gelatin is taken and divided by the swelling ratio k.

Now a small interval (x, x +∆x) is considered in the emulsion. This con-
tains to second order in ∆x, at time t, an amount N(x, t)∆x of water. Ac-
cording to Fick’s law, the flux passing a point y corresponds to the spatial
gradient ∂

∂y of continuous phase concentration of water N/k, diffusion coeffi-

cient HN (k(x, t), s(x, t)) is the coefficient of proportionality. And by conserving
mass, to second order in ∆x, the following is given
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∂N(x, t)

∂t
∆x =−

HN

(
k(x, t), s(x, t)

)
s(x, t)

∂

∂x

N(x, t)

k(x, t)

∣∣∣
x

HN

(
k(x+∆x, t), s(x+∆x, t)

)
s(x+∆x, t)

∂

∂x

N(x, t)

k(x, t)

∣∣∣
x+∆x

.

When it is divided by ∆x, and considering ∆x → 0, the equation of nonlinear
diffusion is obtained

∂N(x, t)

∂t
=

∂

∂x

(HN (k(x, t), s(x, t))

s(x, t)

∂

∂x

N(x, t)

k(x, t)

)
. (2.3)

Note that, in the same manner for M , we have

∂M(x, t)

∂t
=

∂

∂x

(HM (k(x, t), s(x, t))

s(x, t)

∂

∂x

M(x, t)

k(x, t)

)
. (2.4)

Equations (2.3) and (2.4) are completed at boundary conditions like: Evapo-
ration conditions for water

HN (k(x, t), s(x, t))

s(x, t)
=

∂

∂x

N(x, t)

k(x, t)
= ±Kev

(N(x, t)

k(x, t)
− µ

)
, (2.5)

here Kev refers to a constant, µ is the equilibrium value of N
k , and ± is a sign

where − and + refer to the right endpoint and left endpoint, respectively. Also,
at end points we have

∂

∂x

M(x, t)

k(x, t)
= 0.

The initial data should be specified

N(x, 0) =N0(x), M(x, 0) = M0(x). (2.6)

3 Main results

3.1 General equations

It should be noted that when the diffusion coefficient HN (k, s) is identified,
Equation (2.3) turns into an equation of nonlinear diffusion. Now, from [9], we
set

HN (k, s) =
2H0k

3s− k
exp

(
− βα

k − α

)
,

where α, 0 < α < 1, H0, and β, refer to fitting parameter, diffusion coefficient
of species in pure water and physical constant pertaining to water and gelatin,
respectively.

Considering the emulsion in direct contact with water, the corresponding
boundary condition is as follows

N = N∞,
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where N∞ is very large.
In special cases where emulsion is extremely thick, if the interval (0,∞) is

occupied and
P = 0, HN (k, s) = 1/

(
1 +N(x, t)

)
,

Considering the originally dry emulsion, Equations (2.3), (2.5) and (2.6), take
the following form

∂N(x, t)

∂t
=

∂

∂x

( 1

1 +N(x, t)

∂

∂x

N(x, t)

1 +N(x, t)

)
, x ∈ (0,∞), t > 0, (3.1)

N(0, t) = N∞, t > 0,

N(x, 0) = 0, x ∈ (0,∞). (3.2)

Now, in Equations (3.1)–(3.2), we set N∞ = ∞ and

Φ(x, t) = 1/(1 +N(x, t))2.

Then, we get

∂Φ(x, t)

∂t
= Φ

3
2 (x, t)

∂2Φ(x, t)

∂x2
, x ∈ (0,∞), t > 0,

Φ(0, t) = 0, t > 0,

Φ(x, 0) = 1, x ∈ (0,∞). (3.3)

Once a similarity solution

Φ(x, t) = Ψ

(
x√
t

)
(3.4)

is used, it is seen that Ψ(z) satisfies in the generalized Emden-Fowler equation

Ψ
3
2 (z)Ψ ′′(z) +

z

2
Ψ ′ =0, z ∈ (0,∞), (3.5)

Ψ(0) =0, Ψ(∞) = 1. (3.6)

Theorem 1. [5] There exists a unique solution for Ψ(z) in (3.5) and (3.6);
moreover, Ψ ′(0) exists and we have

Ψ ′(0) > 0, z ∈ [0,∞),
Ψ ′′(0) < 0, z ∈ (0,∞),

z
1
2Ψ ′′(0) → 1

2Ψ ′(0) , z → ∞.

Note that, whenever Ψ is near z = 0, its form is as

Ψ(z) = Az
(
1 +

∞∑
k=1

akz
k
2

)
,

where both A = Ψ ′(0) and the ak depend on A.
Note that, by using the solution of the system (2.3), (2.5), and (2.6) and

substituting k and s in Equation (2.4), we get the same results for M . Thus,
the new mathematical feature of the system (2.3)–(2.6) is just in the solution
to this system. Therefore, in the next section, we will solve this system.
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3.2 Solvable orbits

The group analysis is the most popular theoretical and analytical method for
solving differential equations. In this section, we introduce some useful transfor-
mations by using the concept of the discrete group theory and its applications
in exact solution of differential equations. Note that, all of these transfor-
mations are invertible and this invertibility allows us to avoid some lengthy
computations for the conversion of the initial and boundary condition. Also,
under these transformations, the solution of the transformed equation can be
converted into the solution of the reference equation [7, 8].

Let D be a class of ordinary differential equation and

D(x, y, a) = 0

be an equation in this class, where a is a vector parameters. We shall seek the
transformations Fi that are closed in the class D(x, y, a) = 0 , i.e., they change
only the vector a:

Fi : D(x, y, a) → D(t, u, bi).

If each Fi has an inverses, then the collection {Fi} defines a discrete transfor-
mation group on the class D(x, y, a) = 0.

All the existing methods of exact solution of ordinary differential equations
can be conditionally divided into two groups:

(I) a search for transformation of the original ordinary differential equations
in class D to some other class of ordinary differential equations D1, which
belongs to one of the standard classes of ordinary differential equations
having known solutions;

(II) a search for a transformation leaving the original ordinary differential
equation in D invariant, that is, transformation into ”itself”, that gives
independent information about the solution.

The discrete group method does not operate with a single equation as in
the applications of the Lie method, but operates with a class of equations D,
depending on a vector a of parameters containing the investigated equation;
but contrary to approach (I), one considers the transformations of the given
class D which are closed in themselves on a chosen class of ordinary differential
equations.

In the literature, there are two methods for searching discrete group trans-
formations, namely, point transformations and Backlund transformations.

Therefore, discrete group transformations are related to point and Back-
land transformations. In this article, we have introduced a number of useful
transformations based on Backland and point transformations. We show that
these transformations have all the properties of the discrete group.

The class of generalized Emden-Fowler equations

y′′(x) = Axnym(y′x)
l (3.7)

is determined by a three-dimensional parameter vector a = (n,m, l) ∈ R3.
Application of RF − pair(X,X) to the generalized Emden-Fowler equations
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(3.7), we obtain a transformation

g : (n,m, l) −→ ( 1
1−l ,−

n
n+1 ,

2m+1
m ),

y′x = t
1

1−l ,

y = (u′
t)

−1
m ,

x = u
1

n+1 ,

 u′
t = y−m,
u = xn+1,
t = (y′x)

l−1,

where g3 = E and

g−1 : (n,m, l) −→ (− m
m+1 ,−

1
l−2 ,

n−1
n ), (3.8)

y′x = u
1

2−l ,

y = t
1

m+1 ,

x = (u′
t)

1
n ,

 u′
t = xn,
u = (y′x)

2−l,
t = ym+1,

which defines the group G3{g| g3 = E}, where E unity (the identity transfor-
mation). For further details see [4] and references therein).

The parameter subspace a = (n,m, 0) defines the set of classical Emden-
Fowler equations. It is well known that the point transformation

S : (n,m, 0) −→ (−m− n− 3,m, 0), (3.9)

y = u/t, x = 1/t,

which defines the group G2{S| S2 = E}.
It is not hard to show that for n = 1, the transformation T1 represents a

composition Sg−1,

Sg−1 ≡ T1 : (1,m, l) −→ (−2ml + 3l − 3m− 5

(m+ 1)(l − 2)
,

1

l − 2
, 0), y′x = (ut )

1
2−l ,

y = t−
1

m+1 ,
x = tu′

t − u,


u′
t = (y′x)

2−l − 2−l
m+1Axym+1,

u = y−m−1(y′x)
2−l,

t = y−m−1,
(3.10)

where g−1 and S are defined in (3.8) and (3.9) respectively. For further details
see [3] and references therein.

Theorem 2. The class of generalized Emden-Fowler equations a = (1,m, l)
admits a general group

G2

{
S
∣∣ S2 = E

}
⊗G3

{
g
∣∣ g3 = E

}
∼ D3

{
(S, g−1)

∣∣ (g−1)3 = S2 = E
}
,

which is maximal in the Backlund transformation class defined by means of
the RF − pair method [9]. This group may be given by the graph depicted in
Figure 2. The graph represented in Figure 2 is valid for all values m and l,
except for the singular points m = −1 and l = 2.
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Figure 2. Group D3.

Now, in the Equation (3.7), we assume that A = −2, n = 1, m = − 3
2 and

l = 1. Then, we get
y′′xx(x) = −2xy−

3
2 y′. (3.11)

By this assumption, in the transformation (3.10), we obtain

T1 = T1

∣∣∣
A=−2, a=(1,− 3

2 ,1)
,

where  y′x = (ut ),
y = t2,
x = tu′

t − u,


u′
t = (y′x)− 4xy−

1
2 ,

u = y−
5
2 y′x,

t = y−
5
2 ,

(3.12)

and

y′′xx =
d

dx
y′x =

d

dx
(
u

t
) =

d

dt
(
u

t
)
dt

dx
=

tu′
t − u

t3u′′
tt

.

By substituting of these relations into Equation (3.11) or by using of the
discrete group transformations Sg−1(1,− 3

2 , 1), we get

u′′
tt = −2tu−1. (3.13)

We consider the discrete group analysis and general exact solutions of the
Equation (3.5). This equation, can be rewritten as the following generalized
Emden-Fowler form

Ψ ′′ = − 1
2zΨ

− 3
2Ψ ′. (3.14)

Now, by using the suitable class of group transformations and solvable class of
orbits, we will analyze the exact solutions of Equation (3.14). Here, by using
of the transformation (3.12), let us introduce a transformation

T1 :

 z = τw′
τ − w,

Ψ = τ2,
Ψ ′
z = w/τ.

(3.15)

The substitution (3.15) reduces Equation (3.14) to the following form

w′′
ττ = −2τw−1. (3.16)

We shall now show that the Equation (3.16), by using the transformation

T2 :

{
τ = exp(λ),
w = X exp(hλ),

(3.17)
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with an appropriate choice of h, leads to an autonomous form. To do this, by
substituting the transformation (3.17) in the Equation (3.16) and after some
computation, we have

exp
(
(2h− 2)λ

)(
X ′′

λλ + (2h− 1)X ′
λ + h(h− 1)X

)
= −2X−1. (3.18)

Now, if we set h = 1, then Equation (3.18) reduces to the autonomous equation

X ′′
λλ +X ′

λ = −2X−1. (3.19)

Having applied the transformation

T3 :

{
X ′

λ = −Y (X),
X ′′

λλ = Y (X)Y ′
X(X),

(3.20)

Equation (3.19) is easily reduced to

Y (X)Y ′
X(X)− Y (X) = −2X−1. (3.21)

Furthermore, by the substitution

T4 :

{
V = −2X−2,
Z = −Y/X + 1,

(3.22)

we obtain from Equation (3.21), the Abel equation

(V − Z2 + Z)V ′
Z = (−2Z + 2)V. (3.23)

Finally, by substituting the transformation

T5 :

{
V = −2ξ2θ−2,

Z = ξ
θ θ

′
ξ,

in the Equation (3.23), we get the following classical Emden-Fowler equation

θ′′ξξ = −2θ−1. (3.24)

This equation is integrable as a consequence of which, we have been able to
construct some solutions for the nonlinear dry emulsion problem.

Note that, Equation (3.24) is a solvable Emden-Fowller equation with an
exact solution  θ(η) = βC1 exp(∓η2),

ξ(η) = αC1

∫
exp(∓η2)dη + C2,

(3.25)

where α2 ∓ β2 = 0, α, β ̸= 0 and C1, C2, α and β are constants, which are
dependent of initial and boundary conditions [8] and [9].

Now, by using the effect of the inverse of the operators T5 − T1 on the
Equations (3.25), we can obtain the exact solution of the Equation (3.5). For
further details see [2, 8, 10] and references therein. Hence, to integrate the
Equation (3.3), we start from Equations (3.24) and (3.25). By using the inverse
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operator T5 on the Equations (3.25), the analytical solution of Equation (3.23)
will be as follows

T −1
5

(
θ(η)
ξ(η)

)
=

(
Z(η)
V (η)

)
,

where
Z(η) = ∓ 2β

αC1
η exp(±η2)

(
αC1

∫
exp(∓η2)dη + C2

)
,

V (η) = − 1
β2C2

1
exp(∓2η2)

(
αC1

∫
exp(∓η2)dη + C2

)2

.
(3.26)

Form Equations (3.22) and (3.26), we get the analytical solution of Equa-
tion (3.21) in the following form

T −1
4

(
Z(η)
V (η)

)
=

(
X(η)
Y (η)

)
,

where

X2(η) =
2β2C2

1 exp(±2η2)(
αC1

∫
exp(∓η2)dη + C2

)2 ,

Y 2(η) =
2β2C2

1 exp(±2η2)(
αC1

∫
exp(∓η2)dη + C2

)2

×
(
∓ 2β

αC1
η exp(±η2)

(
αC1

∫
exp(∓η2)dη + C2

))2

.

(3.27)

Also, from Equations (3.19), (3.20) and (3.27), we have

T −1
3

(
X(η)
Y (η)

)
=

 X(λ) =

∫
G(λ)dλ

G(λ) = Y (X(λ))

 , (3.28)

where G(λ) = −Y (X(λ)).
Now, by using the Equations (3.17) and (3.28), the exact solution of Equa-

tion (3.16) as follows

T −1
2

(
X(λ)
G(λ)

)
=

(
τ(η)
w(η)

)
,

where {
τ = exp(λ),
w = X exp(λ),

(3.29)

and from Equations (3.14), (3.15) and (3.29), we have

T −1
1

(
τ(η)
w(η)

)
=

(
z(η)
Ψ(η)

)
,

where {
z(η) = τw′

τ − w,
Ψ(η) = τ2.

(3.30)
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Finally, from Equations (3.4) and (3.30), we can find the exact solution of the
Equation (3.3) as follows {

Φ(x, t) = Ψ(x/
√
t),

z = x/
√
t.

4 Conclusions

In this paper, we have successfully developed the combination of method of
discrete group method and invertible transformations to obtain the exact so-
lution of gelatin swelling equation. The analytical results obtained show that
the results of these methods are in agreement.
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