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Abstract. In this paper, a regular discontinuous Sturm-Liouville problem which
contains eigenparameter in both boundary and interface conditions is investigated.
Firstly, a new operator associated with the problem is constructed, and the self-
adjointness of the operator in an appropriate Hilbert space is proved. Some properties
of eigenvalues are discussed. Finally, the continuity of eigenvalues and eigenfunctions
is investigated, and the differential expressions in the sense of ordinary or Fréchet of
the eigenvalues concerning the data are given.
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1 Introduction

For the classical Sturm-Liouville problems, the eigenparameter λ generally only
appears in differential equation. However, for many practical problems in
physics, engineering, and other fields, the corresponding mathematical mod-
els require that the eigenparameter λ not only appears in differential equation,
but also in boundary conditions. For the classical Sturm-Liouville problems
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with eigenparameter dependent boundary conditions, there have been a sea of
research results, (see, for example, [3, 7, 8, 9] and references cited therein).

Recently, there has been increasing interest in Sturm-Liouville problems
with discontinuity and eigenparameter dependent boundary conditions, that
is, a discontinuous point appears in the interval, namely, problems are consid-
ered in two disjoint intervals. To deal with such problems, some conditions are
imposed on these points, which are also called transmission conditions, inter-
face conditions etc [20, 30]. Such problems arise in many problems of physics
and mechanics [14,24]. For example, heat and mass transfer problems. For such
problems, many researchers study the asymptotic of eigenvalues and eigenfunc-
tions, inverse problems, the completeness of eigenfunctions and resolvent and
so on. Many important results have been obtained for this kind of problems
(see [1, 2, 4, 13,15,16,17,18,19,20,22,23,25,27,30]).

The dependence of eigenvalues for regular or singular Sturm-Liouville op-
erators has been well investigated in recent years, see [26, 28, 29]. This kind
of problems consists of a certain second-order differential expression with self-
adjoint boundary conditions, and study the continuity and differentiability of
eigenvalues with respect to the given parameters appear in the equation and
boundary conditions. These results provided a fundamental to the numeri-
cal computation of spectrum, for example, the codes SLEUTH and SLEIGN2
constructed by Greenberg, Bailey et al. [6].

Kong and Zettl in [12] showed the continuity of eigenvalue of regular Sturm-
Liouville problems and each eigenvalue is differentiable with respect to a given
parameter. Such a problem gained various generalizations since then, for exam-
ple, Sturm-Liouville operators with interface conditions, third-order and fourth-
order differential operators, and general even order case, etc. [10, 13, 21, 30].
Particularly, in recent papers, we generalized these results to third-order differ-
ential operators with eigen-dependent boundary conditions [5], and Ao et al.
considered the case of third-order differential operators with discontinuity [27].

Inspired by the above results, we consider the following differential equation

ly:=− (py′)′ + qy=λωy, on I = [a, c) ∪ (c, b], −∞ < a < c < b <∞, (1.1)

L1y := λ(α′
1y(a)− α′

2(py
′)(a))− (α1y(a)− α2(py

′)(a)) = 0, (1.2)

L2y := λ(β′
1y(b)− β′

2(py
′)(b))− (β2(py

′)(b)− β1y(b)) = 0, (1.3)

L3y := y(c+)− γ1y(c−) = 0, (1.4)

L4y := λδy(c−)− [(γ2(py
′)(c−)− (py′)(c+)] = 0, (1.5)

here λ is a complex spectral parameter;

1

p
, q, ω∈L(I)and have finite left and right limits at c, p, ω > 0a.e. on I, (1.6)

αi, βi, α
′
i, β

′
i, γi, δ ∈ R, i = 1, 2 and ζ := γ1γ2 > 0,

ρ1 = α′
1α2 − α1α

′
2 > 0, ρ2 = β′

1β2 − β1β
′
2 > 0. (1.7)

Then we consider a discontinuous Sturm-Liouville problem with eigenparam-
eter contained in both boundary and interface conditions (1.1)–(1.5). Noting
that the problem (1.1)–(1.5) can be gotten by using the method of separation
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of variables to various physical problems in some special cases. For example,
some boundary-value problems arising in diffraction problems etc. (see [14,24]).
Using operator theory and analysis technique, the problem (1.1)–(1.5) is trans-
ferred to a self-adjoint operator in a proper Hilbert space. We introduce some
properties of eigenvalues and eigenfunctions of this operator. Moreover, we in-
troduce the dependence of eigenvalues of the problem (1.1)–(1.5) with respect
to the parameters given in the problem.

The outline of this paper is arranged as follows: in Section 2, a new Hilbert
space related to the problem is constructed, and a new operator is defined in
this space such that the eigenvalues of the problem are consistent with the
eigenvalues of this operator. The fundamental solutions are constructed, and
it is proved that the new operator is self-adjoint, and the simplicity of the
eigenvalue is proved. The continuity of eigenvalues and eigenfunctions are
proved in Section 3, followed by the differential expressions of eigenvalues about
each parameter are given in Section 4.

2 Preliminaries and basic results

In this section, we define a new Hilbert space H = H1

⊕
C3, where H1 =

L2[a, c)
⊕
L2(c, b], C3 denotes three-dimension complex vector space. And the

inner product in H is defined as

⟨M,N⟩ = γ1γ2

∫ c

a

mnωdx+

∫ b

c

mnωdx+
γ1γ2
ρ1

m1n1 +
1

ρ2
m2n2 +

γ1
δ
m3n3,

for M := (m(x),m1,m2,m3)
T , N := (n(x), n1, n2, n3)

T ∈ H.
Then, in the Hilbert space H, we define an operator T with domain

D(T ) = {Y = (y, y1, y2, y3)
T | y, py′ ∈ AC(I), ly ∈ L2(I),

y1 = α′
1y(a)− α′

2(py
′)(a), y2 = β′

1y(b)− β′
2(py

′)(b), y3 = δy(c−)}

and the rule

T Y=


1
ω ly

α1y(a)− α2(py
′)(a)

β2(py
′)(b)− β1y(b)

γ2(py
′)(c−)−(py′)(c+)

 for Y=


y

α′
1y(a)−α′

2(py
′)(a)

β′
1y(b)−β′

2(py
′)(b)

δy(c−)

∈D(T ).

For convenience, we shall use the following notations:

Nc(y) =γ2(py
′)(c−)− (py′)(c+), N ′

c(y) =δy(c−),

Qa(y) =α1y(a)− α2(py
′)(a), Q′

a(y) =α
′
1y(a)− α′

2(py
′)(a),

Qb(y) =β1y(b)− β2(py
′)(b), Q′

b(y) =β
′
1y(b)− β′

2(py
′)(b).

So, the problem (1.1)–(1.5) can be transformed into the following form

T Y = λY.

Then we have the following lemmas.
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Lemma 1. The eigenvalues of the problem (1.1)–(1.5) are consistent with the
eigenvalues of the operator T , and the eigenfunctions are the first component
of the corresponding eigenfunctions of operator T .

Lemma 2. D(T ) is dense in H.

Proof. Let M := (m(x),m1,m2,m3)
T ∈ H, H ⊥ D(T ) and C∞

0 be a func-
tional set such that

ψ(x) =

{
ψ1(x), x ∈ [a, c),

ψ2(x), x ∈ (c, b]

for ψ1(x)∈C∞
0 [a, c), ψ2(x) ∈ C∞

0 (c, b]. Since C∞
0

⊕
0
⊕

0
⊕

0 ⊂ D(T )(0 ∈ C),
any N = (n(x), 0, 0, 0)T ∈ C∞

0

⊕
0
⊕

0
⊕

0 is orthogonal to M , that is,

⟨M,N⟩ = γ1γ2

∫ c

a

mnωdx+

∫ b

c

mnωdx = 0.

We can obtain that m(x) is orthogonal to C∞
0 in H1, so m(x) = 0. So for

all T = (t(x), t1, 0, 0)
T ∈ D(T ), ⟨M,T ⟩ = γ1γ2

ρ1
m1t1 = 0. Thus, m1 = 0

since t1 can be chosen arbitrary. Further, for all J = (j(x), j1, j2, 0)
T ∈ D(T ),

⟨M,J⟩ = 1
ρ2
m2j2 = 0. Thus, m2 = 0 since j2 can be chosen arbitrary. Finally,

for all K = (k(x), k1, k2, k3)
T ∈ D(T ), ⟨M,K⟩ = γ1

δ m3k3 = 0, thus we can
obtain m3 = 0. So, m = (0, 0, 0, 0)T . ⊓⊔

Lemma 3. Linear operator T is symmetric.

Proof. Let M,N ∈ D(T ). Integration by parts we have

⟨TM,N⟩ − ⟨M, T N⟩ = γ1γ2W (m,n; c−)− γ1γ2W (m,n; a) +W (m,n; b)

−W (m,n; c+)+
γ1γ2
ρ1

[Qa(m)Q′
a(n)−Q′

a(m)Qa(n)] +
1

ρ2

[
−Qb(m)Q′

b(n)

+Q′
b(m)Qb(n)

]
+
γ1
δ
[Nc(m)N ′

c(n)−Nc(n)N
′
c(m)], (2.1)

here we useW (m,n;x) to denote the Wronskians m(x)(pn′)(x)−(pm′)(x)n(x).
From (1.4)–(1.5), we get

Nc(m)N ′
c(n)−Nc(n)N

′
c(m) =

δ

γ1
[W (m,n; c+)− γ1γ2W (m,n; c−)]. (2.2)

In addition, it is easy to prove that

Qa(m)Q′
a(n)−Q′

a(m)Qa(n) = ρ1W (m,n; a), (2.3)

Q′
b(m)Qb(n)−Qb(m)Q′

b(n) = −ρ2W (m,n; b). (2.4)

Substituting (2.2)–(2.4) into (2.1) yields ⟨TM,N⟩ = ⟨M, T N⟩. So T is sym-
metric. ⊓⊔

Theorem 1. Linear operator T is a self-adjoint operator in H.
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Proof. Since T is symmetric, we just have to prove that if ⟨TM,W ⟩ = ⟨M,T ⟩
for all M = (m(x), Q′

a(m), Q′
b(f), N

′
c(m))T ∈ D(T ), then W ∈ D(T ), and

TW = T , where W = (w(x), w1, w2, w3)
T , T = (t(x), t1, t2, t3)

T , i.e.,

(1) w(x), (pw′)(x) ∈ AC(I) and lw ∈ L2(I);

(2) w1 = α′
1w(a)− α′

2(pw
′)(a), w2 = β′

1w(b)− β′
2(pw

′)(b), w3 = δw(c−);

(3) L3(w) = 0;

(4) t(x) = 1
ω lw(x);

(5) t1 = α1w(a) − α2(pw
′)(a), t2 = β2(pw

′)(b) − β1w(b), t3 = γ2(pw
′)(c−) −

(pw′)(c+).

For ∀M ∈ C∞
0

⊕
0
⊕

0
⊕

0 ⊂ D(T ) such that

γ1γ2

∫ c

a

(lm)wωdx+

∫ b

c

(lm)wωdx = γ1γ2

∫ c

a

mtωdx+

∫ b

c

mtωdx,

that is, ⟨lm,w⟩1 = ⟨m, t⟩1. According to classical Sturm-Liouville theory, (1)
and (4) hold. By (4), equation ⟨TM,W ⟩ = ⟨M,T ⟩, for allM ∈ D(T ), becomes

γ1γ2
ρ1

[Q′
a(m)t1 −Qa(m)w1] +

1

ρ2
[Q′

b(m)t2 +Qb(m)w2] +
γ1
δ

[
N ′

c(m)t3

−Nc(m)w3]=γ1γ2[W (m,w; c−)−W (m,w; a)]+[W (m,w; b)−W (m,w; c+)].

By Naimark’s Patching Lemma, there is an M ∈ D(T ) satisfying

m(b) = (pm′)(b) = m(c± 0) = (pm′)(c± 0) = 0,m(a) = α′
2, (pm

′)(a) = α′
1.

Thus, w1 = α′
1w(a)− α′

2(pw
′)(a). Next, choose M ∈ D(T ) such that

m(a) = (pm′)(a) = m(c± 0) = (pm′)(c± 0) = 0,m(b) = β′
2, (pm)′(b) = β′

1.

Then, w2 = β′
1w(b)− β′

2(pw)
′(b). Finally, choose M ∈ D(T ) such that

m(a)=(pm′)(a)=m(b)=(pm′)(b)=m(c±)=(pm′)(c+) = 0, (pm′)(c−) = α1.

We have w3 = δw(c−), hence (2) is true. (5) can be proved in the same way.
Further, let M ∈ D(T ) and satisfy

m(a)=(pm′)(a)=m(b)=(pm′)(b)=m(c±)=(pm′)(c−) = 0, (pm′)(c+) = β1.

We have w(c+) − γ1w(c−) = 0. Consequently, the operator T is self-adjoint.
⊓⊔

Corollary 1. All eigenvalues of the problem (1.1)–(1.5) are real, and for two
different eigenvalues, the corresponding eigenfunctions m(x) and n(x) are or-
thogonal in the following sense

γ1γ2

∫ c

a

mnωdx+

∫ b

c

mnωdx+
γ1γ2
ρ1

Q′
a(m)Q′

a(n)

+
1

ρ2
Q′

b(m)Q′
b(n) +

γ1
δ
N ′

c(m)N ′
c(n) = 0.
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In what follows, we define two fundamental solutions of Equation (1.1)

θ(x, λ) =

{
θ1(x, λ), x ∈ [a, c),

θ2(x, λ), x ∈ (c, b];
η(x, λ) =

{
η1(x, λ), x ∈ [a, c),

η2(x, λ), x ∈ (c, b],

where θ1(x, λ) is the solution of Equation (1.1) on the interval [a, c), satisfying
the initial conditions (

θ1(a, λ)
(pθ′1)(a, λ)

)
=

(
λα′

2 − α2

λα′
1 − α1

)
. (2.5)

We can define the solution θ2(x, λ) of Equation (1.1) on the interval (c, b] by
the initial conditions(

θ2(c+)
θ′2(c+)

)
=

(
γ1θ1(c−)

γ2θ
′
1(c−)− λδθ1(c−)

)
. (2.6)

Similarly, define the solution η2(x, λ) and η1(x, λ) by the initial conditions(
η2(b)

(pη′2)(b)

)
=

(
λη′2 + β2
λη′1 + β1

)
, (2.7)(

η1(c−)
η′1(c−)

)
=

(
η2(c+)

γ1
γ1η

′
2(c+)+λδη2(c+)

γ1γ2

)
. (2.8)

Let us consider the Wronskians

wi(λ) =Wλ(θi, ηi;x) = θi(pη
′
i)− (pθ′i)ηi, (i = 1, 2),

where w1, w2 are entire functions of λ on the interval [a, c) and (c, b].

Lemma 4. For each λ ∈ C, γ1γ2w1(λ) = w2(λ).

Proof. According to (2.5)–(2.8), by simply calculation we can get

Wλ(θ2, η2; c+ 0) = γ1γ2Wλ(θ1, η1; c− 0),

so γ1γ2w1(λ) = w2(λ) for each λ ∈ C. ⊓⊔

Now, let w(λ) := w1(λ) =
1

γ1γ2
w2(λ).

Theorem 2. The eigenvalues of the problem (1.1)–(1.5) coincide with the zeros
of w(λ).

Proof. Using similar methods proposed in [1], we can prove the assertion. ⊓⊔

Corollary 2. Suppose λ = λ0 is an eigenvalue, then θ(x, λ0) and η(x, λ0) are
linearly independent.

Theorem 3. The eigenvalues of the problem (1.1)–(1.5) are analytically sim-
ple.
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Proof. Let λ = σ + it. For simplicity, let θ = θ(x, λ), θ1λ = ∂θ1
∂λ , (pθ′1)λ =

∂(pθ′
1)

∂λ . Differentiating the equation lη = λωη with respect to λ, we have

lηλ = ωη + λωηλ. (2.9)

Using integration by parts, we have〈 lηλ
ω
, θ
〉
1
−
〈
ηλ,

lθ

ω

〉
1
=γ1γ2(η1λ(pθ′1)−(pη′1)λθ1)|ca+(η2λ(pθ′2)− (pη′2)λθ2)|bc.

(2.10)
Substituting (2.9) and lθ = λωθ into the left side of (2.10), we have

λ⟨ηλ, θ⟩1 + ⟨η, θ⟩1 − ⟨ηλ, λθ⟩1 = ⟨η, θ⟩1 + 2it⟨ηλ, θ⟩1.

Furthermore,

γ1γ2(η1λ(pθ′1)− (pη′1)λθ1)|ca + (η2λ(pθ′2)− (pη′2)λθ2)|bc = (β′
2(pθ

′
2)(b)

− β′
1θ2(b))− γ1γ2[(λα

′
1 − α1)η1λ(a)− (λα′

2 − α2)(pη
′
1)λ(a)].

Note that

w′(λ) = α′
2(pη

′
1)(a)− α′

1η1(a) + (λα′
2 − α2)(pη

′
1)λ(a)− (λα′

1 − α1)η1λ(a),

so, Equation (2.10) becomes

γ1γ2w
′(λ) = ⟨η, θ⟩1 + 2it⟨ηλ, θ⟩1 − β′

2(pθ
′
2)(b) + β′

1θ2(b)

+γ1γ2[α
′
2(pη

′
1)(a)− α′

1η1(a). (2.11)

Then, let ξ be any zero of w(λ). As w(ξ) = 0, we have θ1(x, ξ) = c1η1(x, ξ) (c1 ̸=
0), θ2(x, ξ) = c2η2(x, ξ) (c2 ̸= 0), where c1, c2 ∈ C. From

θ2(c+, ξ) = γ1θ1(c−, ξ) = c1γ1η1(c−, ξ) = c1η2(c+, ξ)

we have c1 = c2 ̸= 0. Therefore, a short calculation (2.11) becomes

γ1γ2w
′(ξ)=c1(γ1γ2

∫ c

a

|η1(x, ξ)|2ω(x)dx+
∫ b

c

|η2(x, ξ)|2ω(x)dx+γ1γ2ρ1c0+ρ2).

Here, ρ1 > 0, ρ2 > 0, γ1γ2 > 0, c0 > 0 and c1 > 0, hence w′(ξ) ̸= 0. Therefore,
the analytic multiplicity of ξ is simple. ⊓⊔

Corollary 3. The eigenvalues of problem (1.1)–(1.5) are bounded below and can
be ordered to satisfy

−∞ < λ0 < λ1 < λ2 < ..., λn → +∞ as n→ +∞,

moreover, they are countably infinite and can cluster only at ∞.

Proof. The proof can be completed by using similar methods in [4], hence we
omit it here. ⊓⊔
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3 Continuity of eigenvalues and eigenfunctions

In this section, we prove continuity of the eigenvalues and normalized eigen-
functions for the problem (1.1)–(1.5).

Denote

A =

(
α′
1 α1

α′
2 α2

)
, B =

(
β′
1 β1
β′
2 β2

)
.

Consider a Banach space

B = L1(I)
⊕

L1(I)
⊕

L1(I)
⊕

M2×2(R)
⊕

M2×2(R)
⊕

R7

equipped with the norm

∥Z∥ :=

∫ c

a

(
1

|p|
+ |q|+ |ω|)dx+

∫ b

c

(
1

|p|
+ |q|+ |ω|)dx+ ∥A∥+ ∥B∥

+|γ1|+ |γ2|+ |δ|+ |a|+ |b|+ |c− |+ |c+ |

for any Z = ( 1p , q, ω,A,B, γ1, γ2, δ, a, b, c−, c+) ∈ B.

Let Ω = {Z ∈ B : (1.6)–(1.7) hold}. When considering the variables in
the parameter matrix of boundary conditions separately, we use the symbol
Ω1 = {Z = ( 1p , q, ω, α1, α2, α

′
1, α

′
2, β1, β2, β

′
1, β

′
2, γ1, γ2, δ, a, b, c−, c+) ∈ B1 :

(1.6)–(1.7) hold}, where

B1 := L1(I)
⊕

L1(I)
⊕

L1(I)
⊕

R15.

Then we get the continuous dependence of the eigenvalues on the parameters
in the SL problems.

Theorem 4. Let Z̃ = ( 1p̃ , q̃, ω̃, Ã, B̃, γ̃1, γ̃2, δ̃, ã, b̃, c̃−, c̃+) and λ(Z) be an eigen-

value of (1.1)–(1.5) with Z. Then, λ is continuous at Z̃. That is, give any

ε > 0 sufficiently small, there exists a σ > 0 such that |λ(Z̃) − λ(Z)| < ε if
Z = ( 1p , q, ω,A,B, γ1, γ2, δ, a, b, c−, c+) satisfies

∥∥∥Z − Z̃
∥∥∥ =

∫ c

a

(∣∣∣1
p
− 1

p̃

∣∣∣+ |q − q̃|+ |ω − ω̃|
)
dx+

∫ b

c

(∣∣∣1
p
− 1

p̃

∣∣∣+ |q − q̃|

+ |ω − ω̃|)dx+
∥∥A− Ã

∥∥+ ∥∥B − B̃
∥∥+ |γ1 − γ̃1|+ |γ2 − γ̃2|

+ |δ − δ̃|+ |a− ã|+ |b− b̃|+ |(c−)− (c̃−)|+ |(c+)− (c̃+)| < σ.

Proof. By Theorem 2, λ is an eigenvalue of (1.1)–(1.5) if and only if
w(Z, λ(Z)) = 0, for any Z ∈ Ω. It is easy to get that w(Z, λ) is an entire
function of λ and is continuous in Z. By Corollary 3, we get that λ(Z) is an
isolated eigenvalue, then w(Z, λ) is not a constant. By the well-known theorem
on continuity of the roots of an equation, the statements follows. ⊓⊔

Math. Model. Anal., 28(3):374–392, 2023.
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Definition 1. By a normalized eigenvector M = (m,m1,m2,m3)
T of the

problem (1.1)–(1.5), we mean M satisfies

⟨M,M⟩ = ⟨(m,m1,m2,m3)
T , ((m,m1,m2,m3)

T ⟩ = γ1γ2

∫ c

a

mm̄wdx

+

∫ b

c

mm̄wdx+
γ1γ2
ρ1

m1m1 +
1

ρ2
m2m2 +

γ1
δ
m3m3 = 1.

Next, we give the continuity of the corresponding eigenvector.

Theorem 5. Let λ(Z̃) be an eigenvalue of problems (1.1)–(1.5) with Z̃ ∈ Ω

and (f, f1, f2, f3) ∈ H be a normalized eigenvector for Z̃. Then there exists
a normalized eigenvector (g, g1, g2, g3) ∈ H for λ(Z) with Z ∈ Ω, which is

specified in Theorem 4, such that when Z → Z̃ ∈ Ω, we have

g(·, Z) → f(·, Z̃), (pg′)(·, Z) → (pf ′)(·, Z̃)

and g1 → f1, g2 → f2, g3 → f3 all uniformly on [a, c) ∪ (c, b].

Proof. As λ(Z̃) is simple, there exists a neighborhood M of Z̃ such that λ(Z)
is simple for any Z ∈ Ω. For each Z ∈ Ω, choose an eigenfunction v = v(·, Z)
of λ(Z) satisfying

∥V (c0, Z)∥ = |v(c0, Z)|+ |(pv′)(c0, Z)| = 1, v(x, Z) > 0

for some c0 ∈ [a, c) ∪ (c, b] and x near c0, where V (·, Z) = (v(·, Z), (pv′)(·, Z)).
In the following we prove

V (c0, Z) → V (c0, Z̃), Z → Z̃, Z ∈ Ω. (3.1)

If (3.1) does not holds, then there exists a sequence Zk → Z̃ such that

V (c0, Zk) → Y, Zk → Z̃, Z ∈ Ω,

where Y and V (c0, Z̃) are linearly independent vectors. LetW (x) be the vector

solutions of (1.1) with Z = Z̃, λ = λ(Z̃) and the initial condition W (c0) = Y .
Therefore, V (x, Zk) →W (x) uniformly on [a, c) ∪ (c, b]. In particular,

V (a, Zk)→W (a), V (b, Zk)→W (b), V (c−, Zk)→W (c−), V (c+, Zk) →W (c+).

Since Y (·, Zk) satisfies the conditions

Aλ(Zk)Y (a, Zk) +Bλ(Zk)Y (b, Zk) = 0, Y (c+, Zk) = Cλ(Zk)Y (c−, Zk).

Taking the limit k → ∞, we have

Aλ(Z̃)W (a) +Bλ(Z̃)W (b) = 0, W (c+) = Cλ(Z̃)W (c−).

Therefore, W (x) is a vector eigenfunction for Z = Z̃, λ = λ(Z̃), which contra-

dicts that λ(Z̃) is simple. Thus, (3.1) holds.
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Therefore, we have

v1(Z) → v1(Z̃), v2(Z) → v2(Z̃), v3(Z) → v3(Z̃), as Z → Z̃.

Let

(g, g1, g2, g3)
T =

(v(x, Z), v1(Z), v2(Z), v3(Z))
T

∥(v(x, Z), v1(Z), v2(Z), v3(Z))T ∥
,

(f, f1, f2, f3)
T =

(v(x, Z̃), v1(Z̃), v2(Z̃), v3(Z̃))
T

∥(v(x, Z̃), v1(Z̃), u2(Z̃), v3(Z̃))T ∥
,

pg′ = (pv′)(x, Z)/∥(v(x, Z), y1(Z), v2(Z), v3(Z))T ∥,
pf ′ = (pv′)(x, Z̃)/∥(v(x, Z̃), v1(Z̃), v2(Z̃), v3(Z̃))T ∥.

Then, Theorem 5 holds. ⊓⊔

4 Differential expression of eigenvalues

In this section we show that the eigenvalues are differentiable functions of all
the parameters of the problem.

Definition 2. [12] A map T from a Banach space X into another Banach
space Y is differentiable at a point x ∈ X if there exists a bounded linear
operator dTx : X → Y such that for h ∈ X

|T (x+ h)− T (x)− dTx(h)| = o(h), as h→ 0.

Theorem 6. Let Z = (K,M, γ1, γ2, δ,
1
p , q, ω) ∈ Ω with λ = λ(Z) be an eigen-

value of operator T connected with Z, and let (u, u1, u2, u3) be a normalized
eigenvector for λ(Z). Then λ is differential with respect to all the parameters
in Z, and more precisely, the derivative formulas of λ are given as follows:

(1) Fix all the parameters of Z except the boundary condition (1.2) parameter
matrix

K =

(
α′
1 α1

α′
2 α2

)
,

and let λ(K) := λ(Z). Then,

dλK(L) = γ1γ2(u(a),−(pu)′(a))[(E −K(K + L)−1)]

(
(pu′)(a)
u(a)

)
for all H satisfying det(K + L) = detK = ρ1.

(2) Fix all the parameters of Z except the boundary condition (1.3) parameter
matrix

M =

(
β′
1 β1
β′
2 β2

)
,

and let λ(K) := λ(Z). Then,

dλM (L) = (u(b),−(pu)′(b))[−E +M(M + L)−1)]

(
(pu′)(b)
u(b)

)
for all H satisfying det(M + L) = detM = ρ2.
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(3) Fix all the parameters of Z except p and let λ( 1p ) := λ(Z). Then, λ is
Frechet differentiable and

dλ 1
p
(h) = −γ1γ2

∫ c

a

|pu′|2hdx−
∫ b

c

|pu′|2hdx, h ∈ L(I).

(4) Fix all the parameters of Z except q and let λ(q) := λ(Z). Then, λ is Frechet
differentiable and

dλq(h) = γ1γ2

∫ c

a

|u|2hdx+

∫ b

c

|u|2hdx, h ∈ L(I).

(5) Fix all the parameters of Z except ω and let λ(ω) := λ(Z). Then, λ is
Frechet differentiable and

dλω(h) = −λ(Z)[γ1γ2
∫ c

a

|u|2hdx+

∫ b

c

|u|2hdx], h ∈ L(I).

Proof. Fix all but one of the parameters in Z and let λ(Z̃) be the eigenvalue

satisfying Theorem 6 when ∥Z − Z̃∥ ≤ ε for sufficiently small ε > 0. For the

above five cases, we replace λ(Z̃) by

λ(K + L), λ(M + L), λ(
1

p
+ h), λ(q + h), λ(ω + h).

Let (v, v1, v2, v3) be the corresponding normalized eigenvector.
(1) By (1.1) we have

−(pu′)′ + qu =λ(K)ωu, (4.1)

−(pv′)′ + qv =λ(K + L)ωv. (4.2)

It follows from (4.1) and (4.2) that

[λ(K + L)− λ(K)]uvω = −[pv′)′u− (pu′)′v].

Integrating from a to c and c to b, then we have

[λ(K + L)− λ(K)](γ1γ2

∫ c

a

uvωdx+

∫ b

c

uvωdx)

= [u(a)(pv′)(a)− v(a)(pu′)(a)]− [u(c−)(pv′)(c−)− v(c−)(pu′)(c−)]

+[u(c−)(pv′)(c+)− v(c+)(pu′)(c+)]− [u(b)(pv′)(b)− v(b)(pu′)(b)]

= −γ1γ2[u, v]c−a − [u, v]bc+. (4.3)

Let K + L =

(
α̃′
1 α̃1

α̃′
2 α̃2

)
. Then, it follows from (1.2) that

λ(K + L)[α̃′
1v(a)− α̃′

2(pv
′)(a)] =α̃1v(a)− α̃2(pv

′)(a),

λ(K)[α′
1u(a)− α′

2(pu
′)(a)] =α1u(a)− α2(pu

′)(a).
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Therefore,

[λ(K + L)− λ(K)]u1v1
γ1γ2
ρ1

=
γ1γ2
ρ1

[
(α′

1u(a)− α′
2(pu

′)(a))

× (α̃1v(a)−α̃2(pv
′)(a))− (α1u(a)−α2(pu

′)(a))(α̃′
1v(a)− α̃′

2(pv
′)(a))

]
. (4.4)

It follows from (1.3) that

λ(K + L)[β′
1v(b)− β′

2(pv
′)(b)] =β2(pv

′)(b)− β1v(b),

λ(K)[β′
1u(b)− β′

2(pu
′)(b)] =β2(pu

′)(b)− β1u(b).

Therefore,

[λ(K + L)− λ(K)]u2v2
1

ρ2
=

1

ρ2
[(β′

1u(b)− β′
2(pu

′)(b))(β2(pv
′)(b)− β1v(b))

− (β2(pu
′)(b)− β1u(b))(β

′
1v(b)− β′

2(pv
′)(b))]

=
1

ρ2
[(β′

1β2 − β1β
′
2)u(b)pv

′(b)− (β′
1β2 − β1β

′
2)(pu

′)(b)v(b)] = [u, v](b). (4.5)

It follows from (1.4) that

λ(K + L)δv(c−) = γ2(pv
′)(c−)− (pv′)(c+),

λ(K)δu(c−) = γ2(pu
′)(c−)− (pu′)(c+).

Therefore,

[λ(K + L)− λ(K)]u3v3
γ1
δ

=
γ1
δ
[(γ2(pv

′)(c−)− (pv′)(c+))δu(c−)

− (γ2(pu
′)(c−)− (pu′)(c+))δv(c−)] = γ1γ2[u, v](c−)− [u, v](c+). (4.6)

By (4.3)–(4.6) we have the following

[λ(K + L)− λ(K)]
(
γ1γ2

∫ c

a

uvωdx+

∫ b

c

uvωdx+
γ1γ2
ρ1

u1v1+
1

ρ2
u2v2

+
γ1
δ

)
u3v3 = −γ1γ2[u, v](c−)+[u, v](c+)+γ1γ2[u, v](a)−[u, v](b)

+(u(a),−(pu′)(a))

(
α′
1

α′
2

)
γ1γ2
ρ1

(−α̃2, α̃1)

(
(pv′)(a)
v(a)

)
−(u(a),−(pu′)(a))

(
α1

α2

)
γ1γ2
ρ1

(−α̃2
′, α̃1

′)

(
(pv′)(a)
v(a)

)
+[u, v](b) + [u, v](c−)− [u, v](c+)

= γ1γ2(u(a),−(pu′)(a))

(
α′
1

α′
2

)
[(E −K(K + L)−1)]

(
(pu′)(a)
u(a)

)
.

Let L→ 0, the desired result can be obtained by Theorem 3. Similarly, we can
get that (2) is also true.
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(3) For h ∈ L1(I), let 1
p + h = 1

p̃ . Integrating by parts, we have

[λ
(1
p
+h
)
−λ
(1
p

)
](γ1γ2

∫ c

a

uvωdx+

∫ b

c

uvωdx+
γ1γ2
ρ1

u1v1+
1

ρ2
u2v2+

γ1
δ
u3v3)

= γ1γ2[(pu
′)v − (pv′)u]|ca + [(pu′)v − (pv′)u]|bc

− (γ1γ2

∫ c

a

1

p
[(pu′)(pv′)− (pu′)(p̃v′)]dx+

∫ b

c

1

p
[(pu′)(pv′)− (pu′)(p̃v′)]dx).

Via (1.2)–(1.5), the above equality can be expressed as

[
λ
(1
p
+ h
)
− λ

(1
p

)](
γ1γ2

∫ c

a

uvωdx+

∫ b

c

uvωdx+
γ1γ2
ρ1

u1v1 +
1

ρ2
u2v2

+
γ1
δ
u3v3

)
) = −(γ1γ2

∫ c

a

1

p
[(pu′)(pv′)− (pu′)(p̃v′)]dx+

∫ b

c

1

p
[(pu′)(pv′)

− (pu′)(p̃v′)]dx) = −γ1γ2
∫ c

a

[(p− p̃)u′v′]dx−
∫ b

c

[(p− p̃)u′v′]dx

= −γ1γ2
∫ c

a

pp̃hu′v′dx−
∫ b

c

php̃u′v′dx.

Thus,

dλ 1
p
(h) = −γ1γ2

∫ c

a

|pu′|2hdx−
∫ b

c

|pu′|2hdx, h ∈ L(I).

Using the similar method, (4) and (5) hold. ⊓⊔

Theorem 7. (1) Fix all the data of Z except a and let λ = λ(a), u = u(·, a).
we know that λ is differentiable and

λ′(a) = γ1γ2[
1

p(a)
|(pu′)(a, a)|2 + (λ(a)ω(a)− q(a))|u(a, a)|2].

(2) Fix all the data of Z except b and let λ = λ(b), u = u(·, b). we know that λ
is differentiable and

λ′(b) = −[
1

p(b)
|(pu′)(b, b)|2 + (λ(b)ω(b)− q(b))|u(b, b)|2].

Proof. Direct computation yields that

[λ(a+ε)−λ(a)](γ1γ2
∫ c

a

uvωdx+

∫ b

c

uvωdx+
γ1γ2
ρ1

u1v1 +
1

ρ2
u2v2 +

γ1
δ
u3v3)

= −γ1γ2[u, v](c−) + γ1γ2[u, v](a)− [u, v](b) + [u, v](c+)

+ [λ(a+ ε)− λ(a)]
γ1γ2
ρ1

u1v1 + [λ(a+ ε)− λ(a)]
1

ρ2
u2v2

+ [λ(a+ ε)− λ(a)]
γ1
δ
u3v3, (4.7)
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[λ(a+ε)−λ(a)]γ1γ2
ρ1

u1v1=γ1γ2[(pu
′)(a, a+ε)u(a, a)−(pu′)(a, a)u(a, a+ε)],

(4.8)

[λ(a+ ε)− λ(a)]
1

ρ2
u2v2 = [u, v](b), (4.9)

[λ(a+ ε)− λ(a)]
γ1
δ
u3v3 = γ1γ2[u, v](c−)− [u, v](c+). (4.10)

Combining (4.7)–(4.10), we have

[λ(a+ε)−λ(a)]
[
γ1γ2

∫ c

a

uvωdx+

∫ b

c

uvωdx+
γ1γ2
ρ1

u1v1+
1

ρ2
u2v2 +

γ1
δ
u3v3

]
= γ1γ2[(pu

′)(a, a)(u(a+ ε, a+ ε)− u(a, a+ ε))

− u(a, a)((pu′)(a+ ε, a+ ε)− (pu′)(a, a+ ε))].

By Theorems 3.2 and 3.3 of [11], we get

lim
ε→0

(v(a+ ε)− v(a))/ε = (pu′)(a)/p(a),

lim
ε→0

(
(pv′)(a+ ε)− (pv′)(a)

)
/ε = [q(a)− λ(a)ω(a)]u(a).

Combining above two equation, we get

[λ(a+ε)−λ(a)](γ1γ2
∫ c

a

uvωdx+

∫ b

c

uvωdx+
γ1γ2
ρ1

u1v1 +
1

ρ2
u2v2 +

γ1
δ
u3v3)

= γ1γ2[
1

p(a)
|(pu′)(a, a)|2 + (λ(a)ω(a)− q(a))|u(a, a)|2].

Let h → 0, we can get the desired result. Using the similarly method, we can
get that (2) holds. ⊓⊔

Next we consider the derivative formula of λ with respect to the inner
discontinuity point c. Let c1 = c−, c2 = c+. Then the following conclusions
can be obtained.

Theorem 8. (1) Fix all the data of Z except c1 and let λ = λ(c1), u = u(·, c1).
and v = u(·, c1 + ε). Then, λ is differentiable about c1 and

λ′(c1) = γ1γ2[
1

p(c1)
|(pu′)(c1, c1)|2 + (λ(c1)ω(c1)− q(c1))|u(c1, c1)|2].

(2) Fix all the data of Z except c2 and let λ = λ(c2), u = u(·, c2). and v =
u(·, c2 + ε). Then, λ is differentiable about c2 and

λ′(c2) = −[
1

p(c2)
|(pu′)(c2, c2)|2 + (λ(c2)ω(c2)− q(c2))|u(c2, c2)|2].

Proof. We prove the first conclusion of the theorem. Fix all the data except
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c1 and let u = u(·, c1) and v = u(·, c1 + ε), since

[λ(c1+ε)−λ(c1)](γ1γ2
∫ c

a

uvωdx+

∫ b

c

uvωdx+
γ1γ2
ρ1

u1v1+
1

ρ2
u2v2+

γ1
δ
u3v3)

= −γ1γ2[u, v](c−) + γ1γ2[(pu
′)(c1 + ε, c1 + ε)u(c1, c1)]

= −γ1γ2[(pu′)(c1, c1)(u(c1 + ε, c1 + ε)− u(c1, c1 + ε))

− u(c1, c1)((pu
′)(c1 + ε, c1 + ε)− (pu′)(c1, c1 + ε))].

Let ε→ 0, and the desired result can be obtained. The second conclusion can
be obtained by using the similar method. ⊓⊔

Theorem 9. Let Z=( 1p , q, ω, α1, α2, α
′
1, α

′
2, β1, β2, β

′
1, β

′
2, γ1, γ2, δ, a, b, c−, c+)

∈ Ω1 with λ = λ(Z) be an eigenvalue of operator T , and let (u, u1, u2, u3) be
a normalized eigenvector corresponding to λ(Z). Then λ is differential with
respect to all the parameters in Z, the differential expression of λ for each
parameter are given below:

(1) Fix all the parameters of Z except α′
1. Then,

λ′(α′
1) = λγ1γ2|u(a)|2/

(
λα′

2 − α2

)
,

where λα′
2 − α2 ̸= 0.

(2) Fix all the parameters of Z except α1. Then,

λ′(α1) = −γ1γ2|u(a)|2/(λα′
2 − α2),

where λα′
2 − α2 ̸= 0.

(3) Fix all the parameters of Z except α′
2. Then,

λ′(α′
2) = −λγ1γ2|(pu′)(a)|2/(λα′

1 − α1),

where λα′
1 − α1 ̸= 0.

(4) Fix all the parameters of Z except α2. Then,

λ′(α2) = γ1γ2|(pu′)(a)|2/(λα′
1 − α1),

where λα′
1 − α1 ̸= 0.

(5) Fix all the parameters of Z except β′
1. Then,

λ′(β′
1) = −λ|u(a)|2/(λβ′

2 + β2),

where λβ′
2 + β2 ̸= 0.

(6) Fix all the parameters of Z except β1. Then,

λ′(β1) = −|u(a)|2/(λβ′
2 + β2),

where λβ′
2 + β2 ̸= 0.
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(7) Fix all the parameters of Z except β′
2. Then,

λ′(β′
2) = λ|(pu′)(a)|2/(λβ′

1 + β1),

where λβ′
1 + β1 ̸= 0.

(8) Fix all the parameters of Z except β2. Then,

λ′(β′
2) = |(pu′)(a)|2/(λβ′

1 + β1),

where λβ′
1 + β1 ̸= 0.

(9) Fix all the parameters of Z except γ1. Then,

dλγ1
(h) = (γ1 + h)(pu′)(c+)u(c+)/(γ1 + h), h ∈ R,

where γ1 + h ̸= 0.

(10) Fix all the parameters of Z except γ2. Then,

λ′(γ2) = γ1(pu
′)(c−)u(c−),

(11) Fix all the parameters of Z except δ. Then,

λ′(δ) = −λδ2|u(a)|2/γ1,

where γ1 ̸= 0.

Proof. (1) Let h ∈ R and fix all data except α′
1 , then direct caculation yields

that

[λ(α′
1 + h)− λ(α′

1)][γ1γ2

∫ c

a

uvωdx+

∫ b

c

uvωdx+
γ1γ2
ρ1

u1v1 +
1

ρ2
u2v2

+
γ1
δ
u3v3] = −γ1γ2[u, v](c−) + γ1γ2[u, v](a)− [u, v](b) + [u, v](c+)

+ [λ(α′
1 + h)− λ(α′

1)]
γ1γ2
ρ1

u1v1 + [λ(α′
1 + h)− λ(α′

1)]
1

ρ2
u2v2

+ [λ(α′
1 + h)− λ(α′

1)]
γ1
δ
u3v3 (4.11)

and

[λ(α′
1 + h)− λ(α′

1)]
γ1γ2
ρ1

u1v1

=
γ1γ2
ρ1

[(α1v(a)− α2(pv
′)(a))(α′

1u(a)− α′
2(pu

′)(a))

− (α1u(a)− α2(pu
′)(a))((α′

1 + h)v(a)− α′
2(pv

′)(a)]

=
γ1γ2
ρ1

[−hα1u(a)v(a) + hα2(pu
′)(a)v(a)

+ (α′
1α2 − α1α

′
2)(pu

′)(a)v(a)− (α′
1α2 − α1α

′
2)u(a)(pv

′)(a))]

=
γ1γ2
ρ1

[−hα1u(a)v(a) + hα2
λα′

1 − α1

λα′
2 − α2

− ρ1[u, v](a)]

=
γ1γ2hλ

λα′
2 − α2

u(a)v(a)− γ1γ2[u, v](a),
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[λ(α′
1 + h)− λ(α′

1)]
1

ρ2
u2v2 =

1

ρ2
[(β′

1u(b)− β′
2(pu

′)(b))(β2(pv
′)(b)

− β1v(b))− (β2(pu
′)(b)− β1u(b))(β

′
1v(b)− β′

2(pv
′)(b))]

=
1

ρ2
[(β′

1β2 − β1β
′
2)u(b)(pv

′)(b))− (β′
1β2 − β1β

′
2)(pu

′)(b))v(b)]

= [u, v](b),

[λ(α′
1 + h)− λ(α′

1)]
γ1
δ
u3v3] =

γ1
δ
[(γ2(pv

′)(c−)− (pv′)(c+))δu(c−)

− γ2(pu
′)(c−)− (pu′)(c+)δv(c−)] = γ1γ2[(pv

′)(c−)u(c−)

− (pu′)(c−)v(c−)]− γ1[(pu
′)(c+)v(c−)− (pv′)(c+)u(c−)]

= γ1γ2[u, v](c−)− [u, v](c+). (4.12)

Combining (4.11)–(4.12), we have

[λ(α′
1 + h)− λ(α′

1)][γ1γ2

∫ c

a

uvωdx+

∫ b

c

uvωdx

+
γ1γ2
ρ1

u1v1 +
1

ρ2
u2v2 +

γ1
δ
u3v3] =

γ1γ2hλ

λα′
2 − α2

u(a)v(a). (4.13)

Dividing both sides of Equation (4.13) by h and let h→ 0, we get

λ′(α′
1) =

λγ1γ2
λα′

2 − α2
|u(a)|2,

where λα′
2 − α2 ̸= 0. ⊓⊔

The proof for part (2) to part (11) can be given similarly.
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