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Abstract. In this paper, a regular discontinuous Sturm-Liouville problem which
contains eigenparameter in both boundary and interface conditions is investigated.
Firstly, a new operator associated with the problem is constructed, and the self-
adjointness of the operator in an appropriate Hilbert space is proved. Some properties
of eigenvalues are discussed. Finally, the continuity of eigenvalues and eigenfunctions
is investigated, and the differential expressions in the sense of ordinary or Fréchet of
the eigenvalues concerning the data are given.
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1 Introduction

For the classical Sturm-Liouville problems, the eigenparameter A\ generally only
appears in differential equation. However, for many practical problems in
physics, engineering, and other fields, the corresponding mathematical mod-
els require that the eigenparameter A not only appears in differential equation,
but also in boundary conditions. For the classical Sturm-Liouville problems

Copyright © 2023 The Author(s). Published by Vilnius Gediminas Technical University
This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided the original author and source are credited.


https://doi.org/10.3846/mma.2023.17094
mailto:jiajiazhenghh@163.com
mailto:qslikun@163.com
mailto:zhwzheng@126.com
http://creativecommons.org/licenses/by/4.0/

Eigenvalues of Sturm-Liouville Problems 375

with eigenparameter dependent boundary conditions, there have been a sea of
research results, (see, for example, [3,7,8,9] and references cited therein).

Recently, there has been increasing interest in Sturm-Liouville problems
with discontinuity and eigenparameter dependent boundary conditions, that
is, a discontinuous point appears in the interval, namely, problems are consid-
ered in two disjoint intervals. To deal with such problems, some conditions are
imposed on these points, which are also called transmission conditions, inter-
face conditions etc [20,30]. Such problems arise in many problems of physics
and mechanics [14,24]. For example, heat and mass transfer problems. For such
problems, many researchers study the asymptotic of eigenvalues and eigenfunc-
tions, inverse problems, the completeness of eigenfunctions and resolvent and
so on. Many important results have been obtained for this kind of problems
(see [1,2,4,13,15,16,17,18,19, 20,22, 23, 25,27, 30]).

The dependence of eigenvalues for regular or singular Sturm-Liouville op-
erators has been well investigated in recent years, see [26,28,29]. This kind
of problems consists of a certain second-order differential expression with self-
adjoint boundary conditions, and study the continuity and differentiability of
eigenvalues with respect to the given parameters appear in the equation and
boundary conditions. These results provided a fundamental to the numeri-
cal computation of spectrum, for example, the codes SLEUTH and SLEIGN2
constructed by Greenberg, Bailey et al. [6].

Kong and Zettl in [12] showed the continuity of eigenvalue of regular Sturm-
Liouville problems and each eigenvalue is differentiable with respect to a given
parameter. Such a problem gained various generalizations since then, for exam-
ple, Sturm-Liouville operators with interface conditions, third-order and fourth-
order differential operators, and general even order case, etc. [10, 13, 21, 30].
Particularly, in recent papers, we generalized these results to third-order differ-
ential operators with eigen-dependent boundary conditions [5], and Ao et al.
considered the case of third-order differential operators with discontinuity [27].

Inspired by the above results, we consider the following differential equation

ly=— (py') + qy= wy, on I = [a,c) U (c,b], —co <a<c<b<oo, (I
Ly = Maly(a) — 0(py')(a)) — (ary(a) — as(py')(a)) = O, .
Loy := MBry(b) — Ba(py") (b)) — (B2(py')(b) — Bry(b)) = 0, (1.
Lgy := y(ct+) —myle—) =0, (1.
Lay = My(c—) = [(v2(py')(c=) = (py) ()] = 0, (1.

here )\ is a complex spectral parameter;

T o W N =

)
)
)
)
)

1
—,¢,weL(I)and have finite left and right limits at ¢, p,w > Oa.e. onl, (1.6)
p

ai?ﬂi7a;7ﬂ1{)7’i7§ S ]Ra 1= 172 and C =mMY2 > Oa
p1 = 06/1062 — 0410/2 > 0, p2 = ,Biﬁg — ,31,8& > 0. (17)

Then we consider a discontinuous Sturm-Liouville problem with eigenparam-
eter contained in both boundary and interface conditions (1.1)—(1.5). Noting
that the problem (1.1)—(1.5) can be gotten by using the method of separation
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of variables to various physical problems in some special cases. For example,
some boundary-value problems arising in diffraction problems etc. (see [14,24]).
Using operator theory and analysis technique, the problem (1.1)—(1.5) is trans-
ferred to a self-adjoint operator in a proper Hilbert space. We introduce some
properties of eigenvalues and eigenfunctions of this operator. Moreover, we in-
troduce the dependence of eigenvalues of the problem (1.1)—(1.5) with respect
to the parameters given in the problem.

The outline of this paper is arranged as follows: in Section 2, a new Hilbert
space related to the problem is constructed, and a new operator is defined in
this space such that the eigenvalues of the problem are consistent with the
eigenvalues of this operator. The fundamental solutions are constructed, and
it is proved that the new operator is self-adjoint, and the simplicity of the
eigenvalue is proved. The continuity of eigenvalues and eigenfunctions are
proved in Section 3, followed by the differential expressions of eigenvalues about
each parameter are given in Section 4.

2 Preliminaries and basic results

In this section, we define a new Hilbert space H = H; @ C?, where H; =
L?[a,c) @ L?(c,b], C3 denotes three-dimension complex vector space. And the
inner product in H is defined as

c b
1
(M,N) = 7172/ mnwdzr + / mnwdzr + Nz mim + —Mmalg + ﬂmg,ﬁg,,
a c f1 P2 )

for M := (m(x), m1,ma,m3)T, N := (n(z),n1,n2,n3)T € H.
Then, in the Hilbert space H, we define an operator 7 with domain

D(T)={Y = (y7y1,y27y3)T| y,py € AC(I), lye L2(I)7
y1 = ajy(a) — db(py')(a), y2 = Biy(b) — Bo(py’)(b), ys = dy(c—)}

and the rule

Sl y
_ | oayla) — aa(py’)(a) _ | ya)—az(py')(a
Y= aey)o) - swe) | Y| swe-smene) | P
Y2 (py')(e—)—(py')(c+) 6y (c—)
For convenience, we shall use the following notations:

Ne(y) =r2(py')(c—=) = (py')(c+), Ni(y) =0y(c—),

Qu(y) =any(a) — az(py’)(a), Q. (y) =ayy(a) — as(py')(a),

Qv(y) =Pry(b) — B2(py)(b), Qu(y) =B1y(b) — Ba(py')(b)

So, the problem (1.1)-(1.5) can be transformed into the following form
TY =)\Y.

Then we have the following lemmas.
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Lemma 1. The eigenvalues of the problem (1.1)-(1.5) are consistent with the
eigenvalues of the operator T, and the eigenfunctions are the first component
of the corresponding eigenfunctions of operator T .

Lemma 2. D(T) is dense in H.
Proof. Let M := (m(x),m1,ma,m3)T € H, H L D(T) and C§° be a func-
tional set such that
x), x € la,c),
sy~ [n(@ vl
bal2), 7 € (c,1]
for yn (z)eC§°[a, c), a(x) € C§°(c,b]. Since CFEP0PH0H0 C D(T)(0 € C),
any N = (n(z),0,0,0)T € Cg° @0@0@0 is orthogonal to M, that is,

c b
(M,N) = 7172/ mnwdzx + / mnwdz = 0.
a c

We can obtain that m(z) is orthogonal to C§° in Hy, so m(z) = 0. So for
all T = (t(x),£1,0,0)" € D(T), (M,T) = 22mit; = 0. Thus, m; = 0
since t; can be chosen arbitrary. Further, for all J = (j(z), 1, j2,0)T € D(T),
(M, J) = m2 jo = 0. Thus, m = 0 since j3 can be chosen arbitrary. Finally,

for all K (k(x), k1, ko, k3)T € D(T), (M,K) = %mgks = 0, thus we can
obtain m3 = 0. So, m = (0,0,0,0)". O

Lemma 3. Linear operator T is symmetric.
Proof. Let M,N € D(T). Integration by parts we have
(TM,N) — (M, TN) = y172.W(m,n;c—) — y172W(m,n;a) + W(m,7;b)
= Wm0+ 2221, (m) Q4 (1) Qi) Qu ()] + - [ — Qu(m)Q4(7)

+ Q(m)Qy(M)] + - [N(m)NL(T) — N.(F)N(m)] (2.1)

here we use W (m, n; x) to denote the Wronskians m(x)(pn’)(x)—(pm’)(z)n(z).
From (1.4)—(1.5), we get

Ne(m)N((1) — Ne(m)Ni(m) = %[W(mﬁ;ﬁ)—%%W(maﬁ;c—)}- (2.2)

In addition, it is easy to prove that

Qa(m)Qq (M) — Qu(m)Qa (M) = p1 W (m, 7; a), (2.3)
Qy(m)Qu(M) — Qu(m)Qy (M) = —p2W (m, 75 b). (2.4)

Substituting (2.2)—(2.4) into (2.1) yields (TM,N) = (M, TN). So T is sym-
metric. O

Theorem 1. Linear operator T is a self-adjoint operator in H.

Math. Model. Anal., 28(3):374-392, 2023.
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Proof. Since T is symmetric, we just have to prove that if (T M, W) = (M, T)
for all M = (m(z), Q. (m),Q;(f),N.(m))T € D(T), then W € D(T), and
TW =T, where W = (w(x),wy,ws, w3)T, T = (t(x),t1,t2,t3)7, i.e.,

(1) w(x), (pw')(z) € AC(I) and lw € L*(I);

(2) w1 = ejw(a) — as(pw’)(a), wy = Brw(b) — B (pw’) (), ws = dw(c—);

(3) La(w) = 0;

(4) Hz) = Slw();

(5) t1 = aqw(a) — az(pw’)(a), t2 = B2(pw’)(b) — frw(b), t3 = y2(pw’)(c—) —

For VM € C* 0P 0P 0 C D(T) such that

c b c b
'ng/ (lm)@wdm—&—/ (lm)@wdaczfyl’yg/ mfwdx—i—/ mitwdzx,

that is, (Im,w); = (m,t)1. According to classical Sturm-Liouville theory, (1)
and (4) hold. By (4), equation (TM,W) = (M, T), for all M € D(T), becomes

B2 Qs m) = Qulm) ] + Q4T + Qu(m) ] + 2 [NL(m)Es

— Ne(m)ws]=y1y2[W (m,w; c—) =W (m, w; a)|+[W (m, w; b)—W (m, w; c+)].
By Naimark’s Patching Lemma, there is an M € D(T) satisfying

m(b) = (pm’)(b) = m(c % 0) = (pm')(c £ 0) = 0,m(a) = a}, (pm")(a) = o,
Thus, w; = ajw(a) — ob(pw’)(a). Next, choose M € D(T) such that

m(a) = (pm’)(a) = m(c+0) = (pm’)(c £ 0) = 0,m(b) = B3, (pm)'(b) = .
Then, we = Biw(b) — B5(pw)’(b). Finally, choose M € D(T) such that

m(a)=(pm’)(a)=m(b)=(pm’)(b)=m(cE)=(pm)(c+) = 0, (pm")(c—) = a1

We have w3 = Jw(c—), hence (2) is true. (5) can be proved in the same way.
Further, let M € D(T) and satisfy

m(a)=(pm’)(a)=m(b)=(pm’)(b)=m(cE)=(pm)(c=) = 0, (pm')(c+) = B1.

We have w(c+) — yyw(e—) = 0. Consequently, the operator T is self-adjoint.
(|

Corollary 1. All eigenvalues of the problem (1.1)—(1.5) are real, and for two
different eigenvalues, the corresponding eigenfunctions m(z) and n(z) are or-
thogonal in the following sense

c b
7172/ mnwdzr + / mawdzx + MQ;(m)Q; (m)
a P

NN (m)N!(7) = 0.

1
er*sz( m)Qy (M) + 5
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In what follows, we define two fundamental solutions of Equation (1.1)

) bi(z, ), z€a,c), m(z,N), € a,c),
b, A) = { x ; @A) = {ng(x,)\), x € (e,b],

where 61 (z, A) is the solution of Equation (1.1) on the interval [a, ¢), satisfying

the initial conditions
01(a, N o Aah—
( (p0;)(a, N ) - ( raf —ar ) (2:5)

We can define the solution 65(z, A) of Equation (1.1) on the interval (¢, b] by
the initial conditions

() = (o ey ) 29)

Similarly, define the solution ns(x, \) and 7y (x, \) by the initial conditions
( 12(b) ) :< Anjy + B2 ) (2.7)
(pm13) () A+ B )

g
m(e-) .
( i (c—) ) = e Promen |- (2.8)

Y172

Let us consider the Wronskians
wi(A) = Wx(0i,mi5 ) = 0;(pn;) — (p0;)ms, (i = 1,2),
where w1, wy are entire functions of A on the interval [a, ¢) and (e, b].
Lemma 4. For each A € C, y172w1(A\) = wa(A).
Proof. According to (2.5)—(2.8), by simply calculation we can get
Wix(02,m25¢ +0) = y172 Wi (01,113 ¢ — 0),

50 172w (A) = wa(A) for each A € C. O

Now, let w(\) := wi(\) = —L-wy(N).

Y172

Theorem 2. The eigenvalues of the problem (1.1)-(1.5) coincide with the zeros
of w(A).

Proof. Using similar methods proposed in [1], we can prove the assertion. 0O

Corollary 2. Suppose A = )¢ is an eigenvalue, then 6(z, \g) and n(x, \y) are
linearly independent.

Theorem 3. The eigenvalues of the problem (1.1)-(1.5) are analytically sim-
ple.

Math. Model. Anal., 28(3):374-392, 2023.
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Proof. Let A = o + it. For simplicity, let § = 6(z, A), 61\ = %, (P =
8(5%21). Differentiating the equation In = Awn with respect to A, we have
Iny = wn + Awny. (2.9)
Using integration by parts, we have
(2 6), (a2 = ()~ (o)) L+ s (05) — ()T

(2.10)
Substituting (2.9) and [0 = Awf into the left side of (2.10), we have

Ax, )1+ (0,0)1 — (na, A0)1 = (1,0)1 + 2it(nx, 0)1.

Furthermore,

7172(771,\(]097/1) - (pni)ﬁi)ﬁ + (ﬁzA(pQZ) - (pﬁlz)/\g”g = (55 (pglz)(b)
— 6102(0)) = M2[(Aa) — er)ma(a) — (Aah — az)(pny)a(a)].

Note that
w'(A) = az(pny)(a) — aimi(a) + (Aah — a2)(pn))a(a) — (A — ar)mia(a),

so, Equation (2.10) becomes

YW () = (1,8)1 + 2it(nx, 0)1 — B5(pBy) (b) + B102(b)
el (ph) (@) — alm (a). (2.11)

Then, let € be any zero of w(A). Asw(§) = 0, we have 0 (x, &) = cami(x,€) (1 #
0), O2(x,&) = camz(x, &) (c2 # 0), where ¢q, ¢3 € C. From

O2(c+, &) = 11b1(c—, &) = cryaini(c—, &) = cina(c+,§)

we have ¢; = ¢y # 0. Therefore, a short calculation (2.11) becomes

c b
’ylvzw’(f)=él(vwz/ Im(xaﬁ)l%(m)dﬁ/Inz(fff,5)\2w($)dw+vmmco+pz).

Here, p1 > 0, p2 > 0, 7172 > 0, ¢co > 0 and ¢ > 0, hence w’(£) # 0. Therefore,
the analytic multiplicity of £ is simple. O

Corollary 3. The eigenvalues of problem (1.1)—(1.5) are bounded below and can
be ordered to satisfy

—0 < A <AL <A< oes, Ap = +0 as n— +oo,

moreover, they are countably infinite and can cluster only at co.

Proof. The proof can be completed by using similar methods in [4], hence we
omit it here. O
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3 Continuity of eigenvalues and eigenfunctions

In this section, we prove continuity of the eigenvalues and normalized eigen-
functions for the problem (1.1)—(1.5).

Denote
A !
A= ap a1 ) B = < ﬁl 61 > )
( ay az )’ By B2

Consider a Banach space

B=L'()@P L' )P L' (1) P Maxa(R) P Ma2(R) PR

equipped with the norm

1 b1
12l = /(*+|Q\+|W|)d$+/ (— +lgl + lwhdz + | A| + [| B
o Pl e Pl

Fml+ vl + 0]+ la] + o] + e — [+ [e + |

for any Z = (%,q,w,A7B7'71,’yg,6,a,b,c—,c+) € B.

Let 2 = {Z € B : (1.6)—(1.7) hold}. When considering the variables in
the parameter matrix of boundary conditions separately, we use the symbol
91 = {Z = (%’ q,Ww, a1, 2, allv a/27 617 627 ﬂia Bé”yla V25 57 a, b, C—, C+) € Bl :
(1.6)—(1.7) hold}, where

B, =L' ()P L ()EPLa)Pr>.

Then we get the continuous dependence of the eigenvalues on the parameters
in the SL problems.

Theorem 4. Let Z = (%,Q,Q,A,B,ﬂ,%,g,d,g, c—,ct) and \(Z) be an eigen-
value of (1.1)-(1.5) with Z. Then, X\ is continuous at Z. That is, give any

e > 0 sufficiently small, there exists a o > 0 such that |\(Z) — MZ)| < ¢ if
Z = (%,q,w,A7B771,72,5,a,b,c—,c+) satisfies

~ ca1 1 b1
-2l [ (33l oy (23
o« Mp oD e Np oD

+ |w — @|)dz + HA—/IH + HB—BH + v =Tl + 2 — 72l
+16 =6l +la—al+ b= b+ [(c=) = (=) + [(c4) = ()] < 0.

Proof. By Theorem 2, X is an eigenvalue of (1.1)—(1.5) if and only if
w(Z,\(Z)) = 0, for any Z € 2. It is easy to get that w(Z,\) is an entire
function of A and is continuous in Z. By Corollary 3, we get that A(Z) is an
isolated eigenvalue, then w(Z, A) is not a constant. By the well-known theorem
on continuity of the roots of an equation, the statements follows. 0O

Math. Model. Anal., 28(3):374-392, 2023.
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DEFINITION 1. By a normalized eigenvector M = (m,m,mz,m3)T of the
problem (1.1)—(1.5), we mean M satisfies

(M, MY = ((m, my, ma,m) s ((my my, ma, ms)T) = 7172 / —

1
NV o TT + — Tz + mngTig = 1.
P1 P2 1)

b
—|—/ mmwdz +
(&

Next, we give the continuity of the corresponding eigenvector.

Theorem 5. Let A(Z) be an eigenvalue of problems (1.1)-(1.5) with Z € 2
and (f, f1, f2, f3) € H be a normalized eigenvector for Z. Then there exists
a normalized eigenvector (g,91,92,93) € H for X(Z) with Z € {2, which is
specified in Theorem 4, such that when Z — 7€ (2, we have

9(72)*)]0(72)7 (pg/)(,Z)%(pf/)(,Z)
and g1 = f1, 92 = fa, g3 — f3 all uniformly on [a,c) U (¢, b].
Proof. As A(Z) is simple, there exists a neighborhood M of Z such that \(Z)

is simple for any Z € 2. For each Z € {2, choose an eigenfunction v = v(-, Z)
of M(Z) satistying

IV (co, Z)|| = [v(co, Z)| + [(pv") (o, Z)| = 1, v(x, Z) > 0

for some ¢y € [a,c) U (¢, b] and x near ¢y, where V (-, Z) = (v(-, Z), (pv') (-, Z)).
In the following we prove

Vico,Z) = Vo, 2), Z—Z, Zef (3.1)
If (3.1) does not holds, then there exists a sequence Zj, — Z such that

Vieo, Zy) =Y, Zn—Z, Ze,

where Y and V' (cg, Z) are linearly independent vectors. Let W (z) be the vector
solutions of (1.1) with Z = Z, A = A(Z) and the initial condition W (cy) =Y.
Therefore, V(x, Zy) — W (z) uniformly on [a, ¢) U (¢, b]. In particular,

V(a, Zx)—=W(a),V (b, Z) =W (b),V(c—, Zi) =W (c—),V(c+, Zx) = W(c+).
Since Y'(-, Zy,) satisfies the conditions
AxiznY (a, Zy) + Bxz)Y (b, Zy) =0, Y(c+,Zy) = Criz,)Y (c—, Z).
Taking the limit k — co, we have

AA(Z)W(G) + BA(Z)W(b) =0, W(c+)= C)\(Z)W(c—).

Therefore, W (x) is a vector eigenfunction for Z = Z, A\ = A(Z), which contra-

dicts that A(Z) is simple. Thus, (3.1) holds.
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Therefore, we have

v1(2) 5 vi(2), v(Z) = va(Z), vs(Z) = vs(Z), as Z— Z.

Let
r (@, 2),0(2),05(2), v5(2))"
(9:91:92:05)" = 102 2), 01(2), 02(2). 0 2) T
v (2. 2),0(2),v(2),vs(2)T
Ut fo ) =0 2 o1 (B, wal B, 2T
p = )@ 2/, 2), 1(2),02(2), e5(2) |
pf! = (00") (. 2)/ | (0(z, Z), 01(Z), va(Z), v5(2)) 7.

Then, Theorem 5 holds. O

4 Differential expression of eigenvalues

In this section we show that the eigenvalues are differentiable functions of all
the parameters of the problem.

DEFINITION 2. [12] A map T from a Banach space X into another Banach
space Y is differentiable at a point z € X if there exists a bounded linear
operator dT,, : X — Y such that for h € X

|T(z+ h) —T(z) — dT.(h)| = o(h),as h — 0.

Theorem 6. Let Z = (K, M, 1,72, 9, %,q,w) € 2 with A = \(Z) be an eigen-
value of operator T connected with Z, and let (u,u1,us,us) be a normalized
eigenvector for \(Z). Then X is differential with respect to all the parameters
i Z, and more precisely, the derivative formulas of A are given as follows:

(1) Fiz all the parameters of Z except the boundary condition (1.2) parameter
matric )
K<% ”),
a2 (65
and let N(K) := A(Z). Then,
BAae(L) = (o).~ @)I(E - K + 1)) (P08 )

for all H satisfying det(K + L) = det K = py.

(2) Fiz all the parameters of Z except the boundary condition (1.8) parameter
matrix g 3
M= "7 7 ) :
(5 5
and let \(K) := XN(Z). Then,
’ -1 (pi (b)
dAn (L) = (u(b), —(pu) (b)) [-E + M(M + L))
for all H satisfying det(M + L) = det M = po.

Math. Model. Anal., 28(3):374-392, 2023.
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(3) Fiz all the parameters of Z except p and let /\(%) = MZ). Then, X\ is
Frechet differentiable and

i

1
P

c b
(W) =~z [ o' Phda ~ [ fpu'Phd, e L2)

(4) Fiz all the parameters of Z except q and let \(q) := A(Z). Then, X is Frechet
differentiable and

c b
dg(h) :ym/ |u|2hdx+/ |u|?hdz, h € L(I).

(5) Fiz all the parameters of Z except w and let A(w) = NZ). Then, X is
Frechet differentiable and

c b
A (h) :-A(Z)[wz/ |u|2hdx+/ luf2hda], b e L(D).

Proof. Fix all but one of the parameters in Z and let A\(Z) be the eigenvalue
satisfying Theorem 6 when ||Z — Z|| < ¢ for sufficiently small ¢ > 0. For the
above five cases, we replace A(Z) by

MK + L), A(M + L),A(% FR), A (g + h), Aw + ).

Let (v, v1,v9,v3) be the corresponding normalized eigenvector.
(1) By (1.1) we have

—(pu') + qu =\(K)wu, (4.1)
—(p0') + qv =A\(K + L)wo. (4.2)

It follows from (4.1) and (4.2) that
MK + L) — MK)|Juvw = —[pv')'u — (pu’)'v].

Integrating from a to ¢ and ¢ to b, then we have

c b
MK +L)— )\(K)](ng/ uowdx +/ utwdzx)

= [u(@)(@?)(a) - 5(a)(pw')(@)] — [u(c=)(pv")(c=) = le=) (p') ()
+u(e=)(p)(e+) — Blet) (pu')(e+)] — [w(b)(pv) (b) — B(b) (pu) (b))
= —yvelu,vls — ]l (4.3)

-
Let K+ L = ( @ ) . Then, it follows from (1.2) that

Gy (2
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Therefore,

MK + L) = AJurar 2 = 22 [(0fu(a) — ab(pu') (@)
x (dr7(a) @ (p1')(@)) — (aru(a)—as(pu')(a))(}7(a) — ab(p)(@)]. (44)
It follows from (1.3) that
MK + L)[B00) — (00 ) (0)] =62(07)(0) — 517(0),
AE)[B{u(b) — B (o) (B)] = o)) — Bru(b).

Therefore,

MK + L) - /\(K)]w%é = p%[(ﬁiu(b) — Ba(pu) (0))(B2(pv") (b) — B10(b))
= (B2(pu”) (b) — Bru(b)) (B17(b) — B3 (p") (1))]
= %[(ﬁiﬁz — B1B3)u(b)pv’ (b) — (8182 — B183) (pw) (0)D(b)] = [u, v](b). (4.5)

It follows from (1.4) that

Therefore,
A + ) = A st 2 = 2 [((07') (e) — () (o)) u(e—)
= (r2(pu’) (=) = (pu')(c+))0T(c—)] = 11y2[u, v](c=) = [u,v](c+).  (4.6)
By (4.3)-(4.6) we have the following

(&

K + 1) = AR )7z [ e+ | ot R
+2usts = el vl(e=)+u, o] e+ 4l vl (@) [, v](0)
Hatw)~Gu)@) (0 ) 22 ) (P2

~Guta =) (@) ( 02) 22 -y ()

+[u, v](b) + [u, v](c—) = [u, v](c+)
= utota) o) ( of ) - K e (A ).

2

Let L — 0, the desired result can be obtained by Theorem 3. Similarly, we can
get that (2) is also true.
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(3) For h € LY(I), let % +h= %. Integrating by parts, we have

1 ge!
ulvl—l—fuzvz—&— U3U3)
P2 0

1
(p ) /\(1;) vlyg/uvwdx / vwda:+
=m72((p /)7 (pt")ullg + [(pu')o — (pT )]|b
b1
(pu)(p0") — (pu') (P0"))dz + / 5[(19”’)(27@’) — (pu') (pv"))dx).

Via (1.2)—(1.5), the above equality can be expressed as

b
1
uvwdx + / uvwdr + Nz U101 + —UgTs
c P2

C

P1

MG+ =AC) e |

a

c b
+ ) = —on [ < {0)07) = ()Mo + [ 1) 0)
c b
= (o) )lde) = —r2 [ (0= Pl — [ - puvide
c b
:—7172/ pﬁhulﬁ/dx—/ phpu'v' dx.

Thus,
c b
d\1(h) = —ym/ |pu'\2hdx—/ lpu'|*hdz, h € L(I).

1
Using the similar method, (4) and (5) hold. O
Theorem 7. (1) Fiz all the data of Z except a and let A = A(a),u = u(-,a).
we know that X\ is differentiable and

N(a) = vlvz[p(l)l(pU)( a,a)|* + (A(a)w(a) — q(a))lu(a, a) ’].

(2) Fiz all the data of Z except b and let A = A(b),u = u(-,b). we know that A
1s differentiable and

N(b) = —[pi\(pu’xb, D + (ABw(d) — a(8))[u(b, b)),

Proof. Direct computation yields that

¢ ’ 7172 1 ge!
[)\((14-8)—)\(@)](71’)/2 / uﬁwdw—i—/ uowdx+ P u1v1 + ;Uz@z + Fu?,ﬁg)
c 1 2

a

=) + 2l v)(@) = [u, v](b) + [u, v)(ct)

= —7172[u, v)(c
+{Ma+d—AWﬂ%wuﬁy+Mw+5y—M®h%m@

+pm+a—xmﬁ§mm, (4.7)
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[Ma-+e)—A(a)] 7;?2 w1 T =172 [(p) (@, a+e)u(a, a)—(pu') (a, a)t(a, a+e)],

(4.8)
Na+e)— A(a)%um — [u, 0](b), (4.9)
(@ +e) = A(@)] sy = 172(u o] (e=) = [, o] (c+). (4.10)

Combining (4.7)—(4.10), we have

c b
1
Aate)=A(a)] [n72 / uvwdz+ / ufwdaﬂ-v;w waDruTy + %ugﬁ‘z]
a c 1 2

= y172[(p)(a, a)(@(a + &,a + €) — U(a,a + ¢))
—u(a,a)((p7)(a+e,a+¢) — (p7)(a,a +¢))].

By Theorems 3.2 and 3.3 of [11], we get

lim (v(a +¢) —v(a))/e = (pu')(a)/p(a),

e—=0

lim ((pv')(a + ) = (pv)(a)) /2 = [a(a) = Ma)w(a)]u(a).

Combining above two equation, we get

c b

1

[Aa+e)—A(a)] (172 / uowdx+ / u@wderrY;fyz w101 + p—u2@2 + %u;ﬁg)
a c 1 2

1
= 7172[m|(pu’)(a, a)* + (Ma)w(a) — gq(a))[u(a, a)[’].
Let h — 0, we can get the desired result. Using the similarly method, we can
get that (2) holds. O

Next we consider the derivative formula of A with respect to the inner
discontinuity point ¢. Let ¢; = ¢—, ca = c+. Then the following conclusions
can be obtained.

Theorem 8. (1) Fiz all the data of Z except ¢; and let X = X(c1),u = u(-, ¢1).
and v = u(-,c1 +¢€). Then, X is differentiable about c1 and

1
N(e1) = 7172[2)(61) [(pu')(er, en)|? + (Men)w(er) = glen))fuler, en) ).
(2) Fiz all the data of Z except co and let A = A(ca),u = u(-,c2). and v =
u(-,co + ). Then, X is differentiable about co and

1
p(cz2)

Proof. We prove the first conclusion of the theorem. Fix all the data except

N(e2) = ] [(pu)(c2, c2)]* 4+ (A(c2)w(cz) — qlc2))|ulca, c2) ).
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c1 and let u = u(-,¢1) and v = u(-, ¢; + €), since

c b

1

[)\(Cl"’@)—)\(cl)](’yl'YQ/U@WdI‘F/U@Cddﬂf‘"’}/;’}?U161+;U262+%U363)
a c 1 2

= =172, v](c—) + 1172 [(pT)(c1 + €, 1 + €)uler, )]
= —y172[(pu)(e1, e1)(@(er + €, 1 +€) —T(er, e1 +¢))
—u(er, ) ((pu')(er +&,¢1 +€) — (pu') (c1, 1 +€))].

Let ¢ — 0, and the desired result can be obtained. The second conclusion can
be obtained by using the similar method. O

Theorem 9. Let Z:(%v q,w, a1, 02, a/lv O/Zv 517 ﬂ% ﬂia Bév V15725 67 a, bv C—, C+)
€ 1 with A = A(Z) be an eigenvalue of operator T, and let (u,uq,us,us) be
a normalized eigenvector corresponding to A(Z). Then X is differential with
respect to all the parameters in Z, the differential expression of A for each
parameter are given below:

(1) Fiz all the parameters of Z except o/y. Then,
N(at) = )\7172|u(a)\2/()\a’2 - 042),
where Aoy — ag # 0.
(2) Fiz all the parameters of Z except «y. Then,
N(a1) = —mrelu(a)]?/(Aah — az),
where Aoy — ag # 0.
(3) Fiz all the parameters of Z except o/y. Then,
N(ah) = =Xyl (p') (@) /(A — an),
where Aoy — ay # 0.
(4) Fiz all the parameters of Z except as. Then,
N (az) =yl (pu) (@) /(M) — ax),
where Aaj — ay # 0.
(5) Fiz all the parameters of Z except B;. Then,
N (81) = =Alu(a)*/ (A + B2),
where A3 + B2 # 0.
(6) Fizx all the parameters of Z except B1. Then,
X (B1) = ~[u(@)]*/(A\Bs + Ba),
where A3 + B2 # 0.
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(7) Fiz all the parameters of Z except B5. Then,
X (B2) = A(pu') (@) */ (N} + Br),
where A3 + 1 # 0.
(8) Fiz all the parameters of Z except Ba. Then,
X (82) = () (@)]?/ (B} + Br),
where A3 + 1 # 0.

(9) Fiz all the parameters of Z except v1. Then,
dXy, (h) = (71 + h)(pu) (cH)ule+) /(71 + h), hER,

where y1 + h # 0.
(10) Fizx all the parameters of Z except 2. Then,
N (72) = m(pw)(e=)ule-),

(11) Fiz all the parameters of Z except §. Then,
X (8) = =&%[u(a) /71,

where y1 # 0.
Proof. (1) Let h € R and fix all data except o] , then direct caculation yields
that

c b
1
A + h) — X))z / uvwdzr + / uvwdr + 7;72 u 0 + p—uzﬁg
a c 1 2

+ Rugws] = =717 [u, o] (c=) + 1172[u, v)(a) — [u, 0] (B) + [u, v)(c+)

)
+[A\a) +h) — A(a&)]”;fml + M +h) — A(ag)%um
+ [Maf + h) = Aa})] SugTs (4.11)
and
N +h) — A(ai)]”;jzuml
= 12 ((0y5(a) — as (57 (@) (@ u(a) — ah(p)(a))

p1
— (enu(a) — az(pu')(a))((af + h)v(a) — a5 (pv')(a))]

= 7;'172 [—hayu(a)v(a) + hos(pu')(a)v(a)

+ (@102 — a1ab)(pu’) (a)v(a) — (ayez — azah)u(a)(pv’)(a))]

Aoy —
=, [Phonu(@)T(@) + hoa S =l )
2
A
- %u(a)”(@ - m72(u, v](a),
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M@} + 1) = Ao = —[(Bu(b) = By (1) (a5} 1)
— B13(b)) — (Balpu') (8) — Bru(b)) (B,(b) — By ) (b))

= (1816 = BrBR)u(B) ) 0) = (B3 = Ba5) () ) )

— [u,v](b),

(@ + ) = )] Fusts] = S [(2(p7)(e=) = (p7') (e+))du(e-)

—Y2(pu’)(c—) — (pu')(c+)60(c—)] = 1172[(P0) (c—)u(c—)
= (pu)(c=)v(c=)] = ml(pu') (c+)v(c—) = (PV') (c+)u(c—)]

=172 [u,v](c—) - [ u, ](C+)' (4'12)

Combining (4.11)—(4.12), we have

c b
Ao + h) — X))z / utwdx + / utwdx

1 hA
RANE: U101 + — U2V + ﬂ’u,gfg] = %u(a)ﬁ(a).
Aoy, —

_l’_
p1 p2 d

Dividing both sides of Equation (4.13) by h and let h — 0, we get

AV172 2
rpory
N(ay) = FYTa—— lu(a)l

)

where Ao, —ag #0. O

The proof for part (2) to part (11) can be given similarly.

Acknowledgements

(4.13)

This research is partly funded by the Natural Science Foundation of Shandong
Province (Nos. ZR2020QA009, ZR2020QA010, ZR2021MA047, ZR2019MA034),
China Postdoctoral Science Foundation (Grant 2019M662313), and the Youth
Creative Team Sci-Tech Program of Shandong Universities (No.2019KJI007).

References

1]

2]

Z. Akdogan, M. Demirci and O.Sh. Mukhtarov. Sturm-Liouville problems with
eigendependent boundary and transmission conditions. Acta Mathematica Sci-
entia., 25(4):731-740, 2005. https://doi.org/10.1016/50252-9602(17)30213-8.

Z. Akdogan, M. Demirci and O.Sh. Mukhtarov. Green function
of discontinuous boundary-value problem with transmission conditions.
Mathematical Methods in the Applied Sciences, 30(14):1719-1738, 2007.
https://doi.org/10.1002/mma.867.

B.P. Allahverdiev. Spectral analysis of singular Hamiltonian systems with an
eigenparameter in the boundary condition. FElectronic Journal of Differential
Equations, 2019(2):1-14, 2019. Available from Internet: https://digital.
library.txstate.edu/handle/10877/14645.


https://doi.org/10.1016/S0252-9602(17)30213-8
https://doi.org/10.1002/mma.867
https://digital.library.txstate.edu/handle/10877/14645
https://digital.library.txstate.edu/handle/10877/14645

Eigenvalues of Sturm-Liouville Problems 391

[4] K. Aydemir and O.Sh. Mukhtarov. Class of Sturm-Liouville prob-
lems with eigenparameter dependent transmission conditions. Nu-
merical Functional Analysis and Optimization, 38(10):1260-1275, 2017.
https://doi.org/10.1080/01630563.2017.1316995.

[5] Y. Bai, W. Wang, K. Li and Z. Zheng. Eigenvalues of a class of eigenparameter
dependent third-order differential operators. Journal of Nonlinear Mathematical
Physics, 29(3):477-492, 2022. https://doi.org/10.1007/s44198-022-00032-1.

[6] P. Bailey, W. Everitt and A. Zettl The SLEIGN2 Sturm-Liouville
code. ACM Transactions on Mathematical Software, 27(2):143-192, 2001.
https://doi.org/10.1145/383738.383739.

[7] P.A. Binding, P.J. Browne and B.A. Watson. Equivalence of inverse Sturm-
Liouville problems with boundary conditions rationally dependent on the eigen-
parameter. Journal of Mathematical Analysis and Applications, 291(1):246-261,
2004. https://doi.org/10.1016/j.jmaa.2003.11.025.

[8] C.T. Fulton. Two-point boundary value problems with eigenvalue pa-
rameter contained in the boundary conditions. Proceedings of the Royal
Society of Edinburgh:  Section A Mathematics, T7(3-4):293-308, 1977.
https://doi.org/10.1017/S030821050002521X.

[9] N.J. Guliyev. Schrédinger operators with distributional potentials and boundary
conditions dependent on the eigenvalue parameter. Journal of Mathematical
Physics, 60(6):063501, 2019. https://doi.org/10.1063/1.5048692.

[10] Q. Kong, H. Wu and A. Zettl. Dependence of eigenvalues on the problem.
Mathematische Nachrichten, 188(1):173-201, 1997.
https://doi.org/10.1002/mana.19971880111.

[11] Q. Kong and A. Zettl. Dependence of eigenvalues of Sturm-Liouville prob-
lems on the boundary. Journal of Differential Equations, 126(2):389-407, 1996.
https://doi.org/10.1006/jdeq.1996.0056.

[12] Q. Kong and A. Zettl. Eigenvalues of regular Sturm-Liouville problems. Journal
of Differential Equations, 131(1):1-19, 1996.
https://doi.org/10.1006/jdeq.1996.0154.

[13] K. Li, J. Sun and X. Hao. Eigenvalues of regular fourth-order Sturm-Liouville
problems with transmission conditions. Mathematical Methods in the Applied
Sciences, 40(10):3538-3551, 2017. https://doi.org/10.1002/mma.4243.

[14] A.V. Likov and Y. Mikhailov. The Theory of Heat and Mass Transfer. Qosen-
ergaizdat, 1963. (in Russian)

[15] O.Sh. Mukhtarov and K. Aydemir. Minimization principle and general-
ized Fourier series for discontinuous Sturm-Liouville systems in direct sum
spaces. Journal of Applied Analysis & Computation, 8(5):1511-1523, 2018.
https://doi.org/10.11948,/2018.1511.

[16] O.Sh. Mukhtarov and K. Aydemir. Oscillation properties for non-
classical Sturm-Liouville problems with additional transmission condi-
tions. Mathematical Modelling and Analysis., 26(3):432-443, 2021.
https://doi.org/10.3846/mma.2021.13216.

[17] O.Sh. Mukhtarov and K. Aydemir. Two-linked periodic Sturm-Liouville prob-
lems with transmission conditions. Mathematical Methods in the Applied Sci-
ences, 44(18):14664-14676, 2021. https://doi.org/10.1002/mma.7734.

Math. Model. Anal., 28(3):374-392, 2023.


https://doi.org/10.1080/01630563.2017.1316995
https://doi.org/10.1007/s44198-022-00032-1
https://doi.org/10.1145/383738.383739
https://doi.org/10.1016/j.jmaa.2003.11.025
https://doi.org/10.1017/S030821050002521X
https://doi.org/10.1063/1.5048692
https://doi.org/10.1002/mana.19971880111
https://doi.org/10.1006/jdeq.1996.0056
https://doi.org/10.1006/jdeq.1996.0154
https://doi.org/10.1002/mma.4243
https://doi.org/10.11948/2018.1511
https://doi.org/10.3846/mma.2021.13216
https://doi.org/10.1002/mma.7734

392

18]

[19]

20]

21]

22]

23]

24]

[25]

[26]
[27]

28]

29]

(30]

J. Zheng, K. Li and Z. Zheng

H. Olgar and O.Sh. Mukhtarov. Weak eigenfunctions of two-interval Sturm-
Liouville problems together with interaction conditions. Journal of Mathematical
Physics, 58(4):042201, 2017. https://doi.org/10.1063/1.4979615.

E. Sen. A class of second-order differential operators with eigenparameter-
dependent boundary and transmission conditions. Mathematical Methods in the
Applied Sciences, 37(18):2952-2961, 2014. https://doi.org/10.1002/mma.3033.

E. Tung and O.Sh. Mukhtarov. Fundamental solutions and eigen-
values of one boundary-value problem with transmission condi-
tions. Applied Mathematics and Computation, 157(2):347-355, 2004.
https://doi.org/10.1016/j.amc.2003.08.039.

E. Ugurlu. Regular  third-order  boundary value  problems.
Applied Mathematics and Computation, 343:247-257, 2019.
https://doi.org/10.1016/j.amc.2018.09.046.

E. Ugurlu. Third-order boundary value transmission problems. Turkish Journal
of Mathematics, 43(3):1518-1532, 2019. https://doi.org/10.3906/mat-1812-36.

E. Ugurlu and E. Bairamov. Spectral analysis of eigenparam-
eter dependent boundary value transmission problems. Journal
of Mathematical Analysis and Applications, 413(1):482-494, 2014.
https://doi.org/10.1016/j.jmaa.2013.11.022.

N.N. Voitovich, B.Z. Katsenelbaum and A.N. Sivov. Generalized method of
eigen-vibration in the theory of diffraction. Nakua, Mockow., 373(22):1901—
2000, 1997. https://doi.org/10.1016/j.physleta.2009.03.060.

X.-C. Xu and C.-F Yang. Inverse spectral problems for the Sturm-Liouville
operator with discontinuity. Journal of Differential Equations, 262(3):3093—
3106, 2017. https://doi.org/10.1016/j.jde.2016.11.024.

A. Zettl. Sturm-Liouville Theory. American Mathematical Society, 2005.

H-Y. Zhang, J-J. Ao and D. Mu. Eigenvalues of discontinuous third-order
boundary value problems with eigenparameter-dependent boundary conditions.
Journal of Mathematical Analysis and Applications., 506(2):125680, 2022.
https://doi.org/10.1016/j.jmaa.2021.125680.

M. Zhang and K. Li. Dependence of eigenvalues of Sturm—Liouville problems
with eigenparameter dependent boundary conditions. Applied Mathematics and
Computation, 378:125214, 2020. https://doi.org/10.1016/j.amc.2020.125214.

M. Zhang, J. Sun and A. Zettl. Eigenvalues of limit-point Sturm-Liouville prob-
lems. Journal of Mathematical Analysis and Applications, 419(1):627-642, 2014.
https://doi.org/10.1016/j.jmaa.2014.05.021.

M. Zhang and Y. Wang. Dependence of eigenvalues of Sturm-Liouville problems
with interface conditions. Applied Mathematics and Computation, 265:31-39,
2015. https://doi.org/10.1016/j.amc.2015.05.002.


https://doi.org/10.1063/1.4979615
https://doi.org/10.1002/mma.3033
https://doi.org/10.1016/j.amc.2003.08.039
https://doi.org/10.1016/j.amc.2018.09.046
https://doi.org/10.3906/mat-1812-36
https://doi.org/10.1016/j.jmaa.2013.11.022
https://doi.org/10.1016/j.physleta.2009.03.060
https://doi.org/10.1016/j.jde.2016.11.024
https://doi.org/10.1016/j.jmaa.2021.125680
https://doi.org/10.1016/j.amc.2020.125214
https://doi.org/10.1016/j.jmaa.2014.05.021
https://doi.org/10.1016/j.amc.2015.05.002

	Introduction
	Preliminaries and basic results
	Continuity of eigenvalues and eigenfunctions
	Differential expression of eigenvalues
	References

