Existence of Entropy Solution for a Nonlinear Parabolic Problem in Weighted Sobolev Space via Optimization Method

Lhoucine Hmidouch ${ }^{a}$, Ahmed Jamea ${ }^{b}$ and Mohamed Laghdir ${ }^{a}$
${ }^{a}$ Laboratoire LAROSERI, Université Chouaib Doukkali
Av. des Facultés, 24000 El Jadida, Morocco
${ }^{b}$ Equipe STIE, CRMEF Casablanca Settat
Casablanca, Morocco
E-mail(corresp.): a.jamea77@gmail.com
E-mail: hmidouchlhoucine@gmail.com
E-mail: laghdirm@gmail.com

Received May 23, 2022; accepted June 12, 2023

Abstract

This paper investigates the existence result of entropy solution for some nonlinear degenerate parabolic problem in weighted Sobolov space with Dirichlet type boundary conditions and L^{1} data.

Keywords: nonlinear parabolic problem, opimization method, Dirichlet type boundary, entropy solution, weighted Sobolev space.

AMS Subject Classification: 35A15; 35J60; 35J65; 74G30.

1 Introduction

In the recent years, the study of nonlinear parabolic equations and variational problems with growth conditions has attracted attention of many researchers, that is due to their applications in elastic mechanics, non-Newtonian fluids, gas flows in porous media, nonlinear elasticity, electrorheological fluids, etc. For more details, see, for example, [19, 20, 28]. In this paper, we deal with the

[^0]following nonlinear parabolic problem
\[

\left\{$$
\begin{array}{lc}
\frac{\partial u}{\partial t}-\operatorname{div}\left(\omega|\nabla u|^{p-2} \nabla u\right)+|u|^{p-2} u=f & \text { in } \quad Q:=] 0 ; T[\times \Omega \tag{1.1}\\
u=0 & \text { on } \quad \Gamma:=] 0 ; T[\times \partial \Omega \\
u(., 0)=u_{0} & \text { in } \quad \Omega
\end{array}
$$\right.
\]

where Ω is an open bounded subset of $\mathbb{R}^{N},(N \geq 2), T>0, p>1, f \in L^{1}(Q)$, $u_{0} \in L^{1}(\Omega), \nabla u$ is the gradient of u, and ω is a weight function (i.e., a locally integrable function on \mathbb{R}^{N}, such that $0<\omega(x)<\infty$ a.e. $\left.x \in \mathbb{R}^{N}\right)$, satisfied suitable assumptions (see Section 2 for more details). Many papers have dealt with the nonlinear elliptic or parabolic equations involving growth conditions and L^{q} data, when $1<q \leq \infty$. For example, in [25], Xu and Zho studied the existence and uniqueness of weak solution for the initial-boundary value problem of a fourth-order nonlinear parabolic equation. In [4], Bhuvaneswari, Lingeshwaran and Balachandran established the existence of weak solution for the degenerate p-Laplacian parabolic by using semi-discretization process. In the case where $p($.$) is a variable exponent and by variational methods, Ragusa,$ Razani and Safari proved in [18] the existence of at least one positive radial solution for the generalized $p($.$) -Laplacian problem. Also, in [13], Khaleghi$ and Razani investigated the existence and multiplicity of weak solution for an elliptic problem involving $p($.$) -Laplacian operator under Steklov boundary$ condition, the approach was based on variational methods. Moreover, in [2] and by applying Galerkin's method, Antontsev and Shmarev obtained the existence and uniqueness of weak solution with the assumption that the weight ω is bounded. Furthermore, in [21], Singer treats the existence question of weak solutions for some systems of equations of the type (1.1) with two growth conditions. Zhang and Zhou investigated in [27] the existence, uniqueness and long-time behavior of weak solution for fourth-order degenerate parabolic equation with variable exponents.

Recently, in [17] El Ouaarabi, Allalou and Melliani studied the existence of weak solution for a Dirichlet boundary value problems involving the $p($.$) -$ Laplacian operator depending on three real parameters. For more information, see, for example, the works $[7,12,16,22]$ and references therein.

The usual weak formulations of elliptic or parabolic problems in the case where the initial data are in L^{1} do not ensure existence and uniqueness of solution (see, for example, [5] for more details). In [3], Bénilan et al. have been proposed a new solution, called entropy solution. Later on, the notion of entropy solution was then adopted by many authors to study some nonlinear elliptic and parabolic problems. For example, in [6] and via the technique variation method, Cavalheiro proved the existence of entropy solution for the Dirichlet problem

$$
\begin{cases}-\operatorname{div}\left(\omega|\nabla u|^{p-2} \nabla u\right)=f-\operatorname{div} G & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where Ω is an open bounded subset of $\mathbb{R}^{N}(N \geq 2), 1<p, f \in L^{1}, G / \omega \in$ $\left[L^{p^{\prime}}(\Omega, \omega)\right]^{N}$ and ω is a weight function, which satisfy some assumptions (see

Section 2 for more details). When $G=0$ and $p($.$) is a variable exponent, Zhang$ treated the same problem in [26]. In addition, in [1], Abbassi, Allalou and Kassidi investigated the existence of an entropy solution to the unilateral problem for a class of nonlinear anisotropic elliptic equations. In [10], El Hachimi, Igbida and Jamea explained the existence of entropy solution of a nonlinear parabolic problem by using a time discretization of continuous problem. Besides that, the existence and uniqueness of degenerate parabolic equations of type (1.1) was proved by Weisheng et al. in [24].

The main purpose of this paper is to extend the result of [6] to the case of parabolic equations. In this paper, we study the existence question of entropy solution for Problem (1.1) with L^{1} data, by employing the optimization method combined with a difference scheme and a priori estimates.

This paper is organized as follows. In Section 2, we give some definitions and fundamental properties of weighted Sobolev spaces. Moreover, we recall some known Lemmas to be used in proof of main result. In Section 3, we first employ the difference and variation methods to prove the existence and uniqueness of weak solution for the approximate Problem of (1.1) under appropriate assumptions. In Section 4, we construct an approximate solution sequence and establish some a priori estimates, then, we draw a subsequence to obtain a limit function, and prove this function as an entropy solution.

2 Preliminaries and notations

This section gives some notations and definitions and state some result which we shall use in this work.

Let Ω be a smooth bounded domain in \mathbb{R}^{N}. By weight we mean a locally integrable function ω on \mathbb{R}^{N} such that $0<\omega<\infty$ for a.e. $x \in \mathbb{R}^{N}$. We shall denote by $L^{p}(\Omega, \omega)$ the set of all measurable functions u on Ω with the finite norm

$$
|u|_{L^{p}(\Omega, \omega)}^{p}=\left(\int_{\Omega} \omega(x)|u|^{p} d x\right)^{\frac{1}{p}}, 1 \leq p<\infty .
$$

The weighted Sobolev space $W^{1, p}(\Omega, \omega)$ is defined as the collection of all functions $u \in L^{p}(\Omega)$ having the derivatives $\nabla u \in L^{p}(\Omega, \omega)$ with the finite norm

$$
|u|_{W^{1, p}(\Omega, \omega)}:=|u|_{L^{p}(\Omega)}+|\nabla u|_{L^{p}(\Omega, \omega)^{N}} .
$$

The set $C_{0}^{\infty}(\Omega)$ denotes the space of all functions with compact support in Ω with continuous derivatives of arbitrary order.
The space $W_{0}^{1, p}(\Omega, \omega)$ denotes the closure $C_{0}^{\infty}(\Omega)$ in $W^{1, p}(\Omega, \omega)$. For a Banach space X and $a<b, L^{p}(a ; b ; X)$ is the space of measurable functions $u:[a ; b] \mapsto \mathrm{X}$ such that

$$
|u|_{L^{p}(a, b ; X)}:=\left(\int_{a}^{b}|u(t)|_{X}^{p} \mathrm{~d} t\right)^{1 / p}<\infty .
$$

In this work, the function ω satisfies the following hypothesis:
(H) $\omega \in L_{l o c}^{1}(\Omega), \omega^{\frac{-1}{p-1}} \in L_{l o c}^{1}(\Omega), \omega^{-s} \in L^{1}(\Omega)$, where
$s \in\left(\frac{N}{p}, \infty\right) \cap\left[\frac{1}{p-1}, \infty\right)$.
For more details on weighted Sobolev spaces, see, for example, [11, 14, 15, 23]. For $k>0$, the cut function T_{k} (see Proposition 1 for more details) is defined by $T_{k}: \mathbb{R} \rightarrow \mathbb{R}$

$$
T_{k}(s):= \begin{cases}s & \text { if }|s| \leq k \\ k \frac{s}{|s|} & \text { if }|s|>k\end{cases}
$$

For a function u defined on Ω, the truncated function $T_{k} u$ is defined by, for every $x \in \Omega$ the value of $T_{k} u$ at x is just $T_{k}(u(x))$.

For $k>0$, the primitive of cut function T_{k} is a function denoted by S_{k} and which is defined from \mathbb{R} to \mathbb{R}^{+}by

$$
S_{k}(x)=\int_{0}^{x} T_{k}(s) d s
$$

And by [9],

$$
\int_{0}^{T}\left\langle v_{t}, T_{k}(v)\right\rangle=\int_{\Omega} S_{k}(v(T)) d x-\int_{\Omega} S_{k}(v(0)) d x
$$

where \langle,$\rangle denotes the duality between W^{-1, p^{\prime}}(\Omega)$ and $W_{0}^{1, p}(\Omega)$.
The following proposition gives the definition of the very weak gradient of a measurable function u with $T_{k}(u) \in W_{0}^{1, p}(\Omega, \omega)$.

Proposition 1. [3] For every measurable function u with $T_{k}(u) \in W_{0}^{1, p}(\Omega, \omega)$, there exists a unique measurable function $v: \Omega \rightarrow \mathbb{R}^{\mathbb{N}}$, which we call the very weak gradient of u and denote $v=\nabla u$, such that

$$
\nabla T_{k}(u)=v 1_{\{|u|<k\}} \quad \text { for a.e. } \quad \Omega \quad \text { and for every } \quad k>0,
$$

where 1_{E} denotes the characteristic function of a measurable set E. Moreover, if u belongs to $W_{0}^{1, p}(\Omega, \omega)$, then v coincides with the weak gradient of u.

The notion of the very weak gradient allows us to give the definition of entropy solution for Problem (1.1).

Proposition 2. [8] Assume that the hypothesis (H) holds, then for $s+1 \leqslant p s<N(s+1)$, the following continuous embedding hold true,

$$
\begin{equation*}
W_{0}^{1, p}(\Omega, \omega) \hookrightarrow W_{0}^{1, p_{1}}(\Omega) \hookrightarrow L^{q}(\Omega), \tag{2.1}
\end{equation*}
$$

where $p_{1}=\frac{p s}{1+s}, 1 \leq q=\frac{N p_{1}}{N-p_{1}}=\frac{N p s}{N(s+1)-p s}$, and for $p s \geqslant N(s+1)$ the embedding (2.1) holds with arbitrary $1 \leq q<\infty$. Moreover, the compact embedding

$$
W_{0}^{1, p}(\Omega, \omega) \hookrightarrow \hookrightarrow L^{r}(\Omega)
$$

holds provided $1 \leq r<q$.

Proposition 3. [8] (Hardy-type inequality) There exists a weight function ω on Ω and a parameter $q, 1<q<\infty$ such that the inequality

$$
\begin{equation*}
\left(\int_{\Omega} \omega|u(x)|^{q} d x\right)^{\frac{1}{q}} \leqslant C\left(\int_{\Omega} \omega|\nabla u|^{p} d x\right)^{\frac{1}{p}} \tag{2.2}
\end{equation*}
$$

holds for every $u \in W_{0}^{1, p}(\Omega, \omega)$ with a constant $C>0$ independent of u, moreover the embedding

$$
W_{0}^{1, p}(\Omega, \omega) \hookrightarrow L^{q}(\Omega, \omega)
$$

determined by the inequality (2.2) is compact.
Lemma 1. For $\xi, \eta \in \mathbb{R}^{N}$ and $1<p<\infty$, we have

$$
\left(|\xi|^{p-2} \xi-|\eta|^{p-2} \eta\right) \cdot(\xi-\eta) \geq 0
$$

Lemma 2. For $a \geq 0, b \geq 0$ and $1 \leq p<\infty$, we have

$$
(a+b)^{p} \leq 2^{p-1}\left(a^{p}+b^{p}\right)
$$

3 Existence and uniqueness of weak solution for the parabolic problem

The goal of this Section is to prove the existence and uniqueness of weak solution for Problem (1.1) with L^{∞} data. Firstly, the next definition gives the notion of weak solution for Problem (1.1).

Definition 1. A measurable function u is a weak solution of the parabolic problem (1.1),
if $u \in L^{\infty}\left((0, T) ; L^{2}(\Omega)\right) \cap L^{p}\left((0, T) ; W_{0}^{1, p}(\Omega, \omega)\right) \cap C\left((0, T) ; L^{2}(\Omega)\right), \frac{\partial u}{\partial t} \in$ $L^{p^{\prime}}\left((0, T) ; W^{-1, p^{\prime}}(\Omega)\right)$ and

$$
\int_{Q} \frac{\partial u}{\partial t} \varphi d x d t+\int_{Q} \omega|\nabla u|^{p-2} \nabla u \nabla \varphi d x d t+\int_{Q}|u|^{p-2} u \varphi d x d t=\int_{Q} f \varphi d x d t
$$

for all $\varphi \in L^{p}\left((0, T) ; W_{0}^{1, p}(\Omega, \omega)\right) \cap L^{\infty}\left((0, T) ; L^{2}(\Omega)\right) \cap C^{1}(\bar{Q})$.
Now we state our main result of this section.
Theorem 1. Let $u_{0} \in L^{2}(\Omega), f \in L^{\infty}(Q)$ and let hypothesis (H) be satisfied. Then the Problem (1.1) has a unique weak solution.

The proof of above theorem can be established by investigating the existence and uniqueness of weak solution for the given semi-discrete elliptic problem

$$
\left\{\begin{array}{rr}
\frac{u_{k}-u_{k-1}}{h}-\operatorname{div}\left(\omega\left|\nabla u_{k}\right|^{p-2} \nabla u_{k}\right)+\left|u_{k}\right|^{p-2} u_{k}=[f]_{h}((k-1) h) \text { in } \Omega \tag{3.1}\\
\left.u_{k}\right|_{\partial \Omega}=0 & \text { for } k=1, \ldots, n
\end{array}\right.
$$

where $h>0, n$ is a positive integer such that $h=\frac{T}{n}$, and

$$
[f]_{h}(x, t)=\frac{1}{h} \int_{t}^{t+h} f(x, \tau) d \tau
$$

Recall that a function $u \in W_{0}^{1, p}(\Omega, \omega) \cap L^{2}(\Omega)$ is a weak solution of (3.1) if and only if for all $\varphi \in W_{0}^{1, p}(\Omega, \omega) \cap L^{2}(\Omega)$. We have

$$
\begin{aligned}
& \int_{\Omega} \frac{u_{k}-u_{k-1}}{h} \varphi \mathrm{~d} x+\int_{\Omega} \omega\left|\nabla u_{k}\right|^{p-2}\left(\nabla u_{k} \cdot \nabla \varphi\right) \mathrm{d} x+\int_{\Omega}\left|u_{k}\right|^{p-2} u_{k} \varphi \mathrm{~d} x \\
& \quad=\int_{\Omega}[f]_{h}(0) \varphi \mathrm{d} x
\end{aligned}
$$

Theorem 2. Let $u_{0} \in L^{2}(\Omega), f \in L^{\infty}(Q)$ and let hypothesis (H) be satisfied, then the Problem (3.1) has a unique weak solution.

Proof. The first step of proof is to establish the existence of a weak solution for the following elliptic problem:

$$
\begin{cases}\frac{u-u_{0}}{h}-\operatorname{div}\left(\omega|\nabla u|^{p-2} \nabla u\right)+|u|^{p-2} u=[f]_{h}(0) & \text { in } \Omega \tag{3.2}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

Consider the variational problem $\min \{J(u) / u \in V\}$, where $V:=W_{0}^{1, p}(\Omega, \omega) \cap$ $L^{2}(\Omega)$ and

$$
\begin{equation*}
J(u)=\frac{1}{2 h} \int_{\Omega}\left(u-u_{0}\right)^{2} d x+\frac{1}{p} \int_{\Omega} \omega|\nabla u|^{p} d x+\frac{1}{p} \int_{\Omega}|u|^{p} d x-\int_{\Omega}|f|_{h}(0) u d x \tag{3.3}
\end{equation*}
$$

We show that $J(u)$ has a minimizer $u \in V$ and this function is a weak solution of Problem (3.2).
Hölder's and Young's inequalities imply that

$$
\begin{equation*}
\left|\int_{\Omega}[f]_{h}(0) u \mathrm{~d} x\right| \leq \varepsilon|u|_{L^{p}(\Omega)}^{p}+C(\varepsilon)\left|[f]_{h}(0)\right|_{L^{p^{\prime}}(\Omega)}^{p^{\prime}}, \quad \text { for all } \varepsilon>0 \tag{3.4}
\end{equation*}
$$

This implies that

$$
J(u) \geq\left(\frac{1}{p}-\varepsilon\right)\|u\|_{L^{p}(\Omega)}^{p}-C(\epsilon)\left|[f]_{h}(0)\right|_{L^{p^{\prime}}(\Omega)}^{p^{\prime}}
$$

Choosing ε very small, then

$$
J(u) \geq-C\left|[f]_{h}(0)\right|_{L^{p^{\prime}}(\Omega)}^{p^{\prime}}
$$

It follows that

$$
-C\left|[f]_{h}(0)\right|_{L^{p^{\prime}}(\Omega)}^{p^{\prime}} \leq \inf _{u \in V} J(u) \leq \frac{1}{2 h}\left|u_{0}\right|_{L^{2}(\Omega)}^{2}
$$

Therefore, we can find a minimizing sequence $\left\{u_{m}\right\} \subset V$ such that

$$
\begin{equation*}
J\left(u_{m}\right) \leq J\left(u_{0}\right)+1, \quad \lim _{m \rightarrow \infty} J\left(u_{m}\right)=\inf _{u \in V} J(u) \tag{3.5}
\end{equation*}
$$

Then, from (3.3), (3.4) and (3.5), we get

$$
\begin{aligned}
& \frac{1}{2 h} \int_{\Omega}\left(u_{m}-u_{0}\right)^{2} d x+\frac{1}{p} \int_{\Omega}\left|u_{m}\right|^{p} d x+\frac{1}{p} \int_{\Omega} \omega\left|\nabla u_{m}\right|^{p} d x \\
& \quad \leq \varepsilon|u|_{L^{p}(\Omega)}^{p}+C(\varepsilon)\left|[f]_{h}(0)\right|_{L^{p^{\prime}}(\Omega)}^{p^{\prime}}+\frac{1}{2 h}\left|u_{0}\right|_{L^{2}(\Omega)}^{2}+1
\end{aligned}
$$

Choosing ε a small positive number, we obtain

$$
\frac{1}{2 h} \int_{\Omega}\left(u_{m}-u_{0}\right)^{2} d x+\frac{1}{p} \int_{\Omega} \omega\left|\nabla u_{m}\right|^{p} d x \leq C\left|[f]_{h}(0)\right|_{L^{p^{\prime}}(\Omega)}^{p^{\prime}}+\frac{1}{2 h}\left|u_{0}\right|_{L^{2}(\Omega)}^{2}+1
$$

Since $\frac{1}{2} u_{m}^{2}-u_{0}^{2} \leq\left(u_{m}-u_{0}\right)^{2}$, then

$$
\begin{aligned}
& \frac{1}{4 h} \int_{\Omega} u_{m}^{2} d x-\frac{1}{2 h} \int_{\Omega} u_{0}^{2} d x+\frac{1}{p} \int_{\Omega} \omega\left|\nabla u_{m}\right|^{p} d x \leq C\left|[f]_{h}(0)\right|_{L^{p^{\prime}}(\Omega)}^{p^{\prime}} \\
& \quad+\frac{1}{2 h}\left|u_{0}\right|_{L^{2}(\Omega)}^{2}+1
\end{aligned}
$$

This implies that

$$
\frac{1}{4 h}\left|u_{m}\right|_{L^{2}(\Omega)}^{2}+\frac{1}{p}\left|u_{m}\right|_{W_{0}^{1, p}(\Omega, \omega)}^{p} \leq C\left|[f]_{h}(0)\right|_{L^{p^{\prime}}(\Omega)}^{p^{\prime}}+\frac{1}{h}\left|u_{0}\right|_{L^{2}(\Omega)}^{2}+1
$$

Hence, the above inequality shows that u_{m} is bounded in V. Since the space V is reflexive, then, there exists a subsequence, still denoted by u_{m}, and a function $u \in V$ such that $u_{m} \rightharpoonup u$ in V. Therefore, by using Propositions 2 and 3 , we get

$$
\begin{align*}
& u_{m} \rightharpoonup u \text { weakly in } L^{p}(\Omega, \omega) \text { and } L^{p}(\Omega), \tag{3.6}\\
& u_{m} \rightarrow u \text { a.e in } \Omega . \tag{3.7}
\end{align*}
$$

Now, we show that

$$
\liminf _{m \rightarrow \infty} J\left(u_{m}\right) \geq J(u)
$$

By (3.7) and Fatou's Lemma, we have

$$
\begin{align*}
\liminf _{m \rightarrow \infty} \frac{1}{2 h} \int_{\Omega}\left(u_{m}-u_{0}\right)^{2} d x & \geq \frac{1}{2 h} \int_{\Omega}\left(u-u_{0}\right)^{2} d x \tag{3.8}\\
\text { and } \liminf _{m \rightarrow \infty} \frac{1}{p} \int_{\Omega}\left|u_{m}\right|^{p} d x & \geq \frac{1}{p} \int_{\Omega}|u|^{p} d x \tag{3.9}
\end{align*}
$$

Since $u_{m} \rightharpoonup u$ in $W_{0}^{1, p}(\Omega, \omega)$, then

$$
\begin{equation*}
\liminf _{m \rightarrow \infty} \frac{1}{p} \int_{\Omega} \omega\left|\nabla u_{m}\right|^{p} d x \geq \frac{1}{p} \int_{\Omega} \omega|\nabla u|^{p} d x \tag{3.10}
\end{equation*}
$$

By (3.6), we get

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \int_{\Omega}[f]_{h}(0) u_{m} \mathrm{~d} x=\int_{\Omega}[f]_{h}(0) u \mathrm{~d} x \tag{3.11}
\end{equation*}
$$

Combining (3.8), (3.9), (3.10) and (3.11), we obtain

$$
\liminf _{m \rightarrow \infty} J\left(u_{m}\right) \geq J(u)
$$

and thus, u is a minimizer of the functional $J(u)$ in V.
Next, we show that u is a weak solution of the elliptic Problem (3.2). Since u is a minimizer of the functional $J(u)$ in V, then for any $v \in V$ we have

$$
\begin{align*}
0 \leq & \frac{J(u+t v)-J(u)}{t}=\int_{\Omega} \frac{u-u_{0}}{h} v \mathrm{~d} x+\int_{\Omega} \frac{|u+t v|^{p}-|u|^{p}}{h t} \mathrm{~d} x \\
& +\int_{\Omega} \omega \frac{|\nabla u+t \nabla v|^{p}-|\nabla u|^{p}}{p t} \mathrm{~d} x-\int_{\Omega}[f]_{h}(0) v \mathrm{~d} x \tag{3.12}
\end{align*}
$$

Consider the following function G defined on $[0,1]$ by

$$
G(\mu)=\frac{|u+t \mu v|^{p}-|u|^{p}}{h t} .
$$

Note that G is continuous on $[0,1]$ and differentiable on $] 0,1[$. By mean value theorem, there exists $\gamma \in] 0,1[$ such that

$$
\frac{|u+t v|^{p}-|u|^{p}}{p t}=|u+t \gamma v|^{p-2}(u+t \gamma v) v .
$$

Since $\gamma, t \in[0,1]$, then by Young's inequality and by Lemma 2 , we get

$$
|u+t \gamma v|^{p-2}(u+t \gamma v) v \leq \frac{1}{p^{\prime}}|u+t \gamma v|^{p}+\frac{1}{p}|v|^{p} \leq \frac{2^{p-1}}{p^{\prime}}\left(|u|^{p}+|v|^{p}\right)+\frac{1}{p}|v|^{p}
$$

On the other hand,

$$
\lim _{t \rightarrow 0} \frac{|u+t v|^{p}-|u|^{p}}{p t}=|u|^{p-2} u v
$$

Hence, by the dominated convergence theorem, we get

$$
\lim _{t \rightarrow 0} \int_{\Omega} \frac{|u+t v|^{p}-|u|^{p}}{p t} \mathrm{~d} x=\int_{\Omega}|u|^{p-2} u v \mathrm{~d} x
$$

Note, if we consider again a function M defined on $[0,1]$ by

$$
M(\mu)=\omega \frac{|\nabla u+t \mu \nabla v|^{p}-|\nabla u|^{p}}{p t}
$$

in the same manner in G, we can show that

$$
\lim _{t \rightarrow 0} \int_{\Omega} \omega \frac{|\nabla u+t \nabla v|^{p}-|\nabla u|^{p}}{p t} \mathrm{~d} x=\int_{\Omega} \omega|\nabla u|^{p-2}(\nabla u \cdot \nabla v) \mathrm{d} x .
$$

Then, by letting $t \rightarrow 0$ in (3.12), we get

$$
\begin{aligned}
0 \leq & \int_{\Omega} \frac{1}{h}\left(u-u_{0}\right) v \mathrm{~d} x+\int_{\Omega}|u|^{p-2} u v \mathrm{~d} x+\int_{\Omega} \omega|\nabla u|^{p-2}(\nabla u \cdot \nabla v) \mathrm{d} x \\
& -\int_{\Omega}[f]_{h}(0) v \mathrm{~d} x .
\end{aligned}
$$

This allows us to deduce that

$$
\begin{aligned}
& \int_{\Omega} \frac{1}{h}\left(u-u_{0}\right) v \mathrm{~d} x+\int_{\Omega}|u|^{p-2} u v \mathrm{~d} x+\int_{\Omega} \omega|\nabla u|^{p-2}(\nabla u \cdot \nabla v) \mathrm{d} x \\
& =\int_{\Omega}[f]_{h}(0) v \mathrm{~d} x .
\end{aligned}
$$

Now, let's prove that the Problem (3.2) has a unique weak solution. For that, let u_{1} and u_{2} two weak solutions for Problem (3.2), then

$$
\begin{aligned}
& \int_{\Omega} \frac{1}{h}\left(u_{1}-u_{2}\right) v \mathrm{~d} x+\int_{\Omega}\left(\left|u_{1}\right|^{p-2} u_{1}-\left|u_{2}\right|^{p-2} u_{2}\right) v \mathrm{~d} x \\
& +\int_{\Omega} \omega\left(\left|\nabla u_{1}\right|^{p-2} \nabla u_{1}-\left|\nabla u_{2}\right|^{p-2} \nabla u_{2}\right) \cdot \nabla v \mathrm{~d} x=0
\end{aligned}
$$

Let $v=u_{1}-u_{2}$ in (3.2), then the above inequality becomes

$$
\begin{align*}
& \int_{\Omega} \frac{1}{h}\left(u_{1}-u_{2}\right)^{2} \mathrm{~d} x+\int_{\Omega}\left(\left|u_{1}\right|^{p-2} u_{1}-\left|u_{2}\right|^{p-2} u_{2}\right)\left(u_{1}-u_{2}\right) \mathrm{d} x \\
& +\int_{\Omega} \omega\left(\left|\nabla u_{1}\right|^{p-2} \nabla u_{1}-\left|\nabla u_{2}\right|^{p-2} \nabla u_{2}\right) \cdot\left(\nabla u_{1}-\nabla u_{2}\right) \mathrm{d} x=0 \tag{3.13}
\end{align*}
$$

Lemma 1 allows us to deduce that

$$
\left(\left|\nabla u_{1}\right|^{p-2}\left(\nabla u_{1}-\left|\nabla u_{2}\right|^{p-2} \nabla u_{2}\right) \cdot\left(\nabla u_{1}-\nabla u_{2}\right) \mathrm{d} x \geq 0 .\right.
$$

We recall that $\left(\left|u_{1}\right|^{p-2} u_{1}-\left|u_{2}\right|^{p-2} u_{2}\right)\left(u_{1}-u_{2}\right) \mathrm{d} x \geq 0$.
Then the equality (3.13) implies that

$$
\int_{\Omega}\left(u_{1}-u_{2}\right)^{2} \mathrm{~d} x=0
$$

Consequently, $u_{1}=u_{2}$ a.e. in Ω, which completes the proof of the existence and uniqueness of the weak solution to Problem (3.2). Let $k=1$, from the Equation (3.2), there exists a weak solution $u_{1} \in V$. By induction and in the same above manner, the Problem (3.1) has a unique weak solution $u_{k} \in V$, where $k=2, \ldots, n$.

Proof. [Proof of Theorem 1] Let n be a positive integer and $h=\frac{T}{n}$ and let the function

$$
u_{h}(x, t)= \begin{cases}u_{0}(x), & t=0 \tag{3.14}\\ u_{1}(x), & 0<t \leq h \\ \cdots, & \cdots \\ u_{j}(x), & (j-1) h<t \leq j h \\ \cdots, & \cdots \\ u_{n}(x), & (n-1) h<t \leq n h=T\end{cases}
$$

Let u_{k} be a test function in weak formulation of Problem (3.1), then

$$
\int_{\Omega} \frac{u_{k}^{2}}{h} \mathrm{~d} x+\int_{\Omega} \omega\left|\nabla u_{k}\right|^{p} \mathrm{~d} x+\int_{\Omega}\left|u_{k}\right|^{p} \mathrm{~d} x=\int_{\Omega}[f]_{h}(k-1) u_{k} \mathrm{~d} x+\int_{\Omega} \frac{u_{k-1} u_{k}}{h} \mathrm{~d} x .
$$

Applying Young's inequality, then

$$
\begin{aligned}
& \frac{1}{h} \int_{\Omega} u_{k}^{2} \mathrm{~d} x+\int_{\Omega} \omega\left|\nabla u_{k}\right|^{p} \mathrm{~d} x+\int_{\Omega}\left|u_{k}\right|^{p} \mathrm{~d} x \\
& \quad \leq \int_{\Omega}\left|u_{k}\right|^{p} \mathrm{~d} x+\frac{1}{p^{\prime}} \int_{\Omega}\left|[f]_{h}(k-1)\right|^{p^{\prime}} \mathrm{d} x+\frac{1}{h} \int_{\Omega} u_{k-1} u_{k} \mathrm{~d} x .
\end{aligned}
$$

Therefore,

$$
\int_{\Omega} \frac{u_{k}^{2}}{h} \mathrm{~d} x+\int_{\Omega} \omega\left|\nabla u_{k}\right|^{p} \mathrm{~d} x \leq \frac{1}{p^{\prime}} \int_{\Omega}\left|[f]_{h}(k-1)\right|^{p^{\prime}} \mathrm{d} x+\frac{1}{h} \int_{\Omega} u_{k-1} u_{k} \mathrm{~d} x .
$$

Since $\quad u_{k-1} u_{k} \leq \frac{u_{k-1}^{2}+u_{k}^{2}}{2}$, then

$$
\begin{equation*}
\frac{1}{2} \int_{\Omega} \frac{u_{k}^{2}}{h} \mathrm{~d} x+\int_{\Omega} \omega\left|\nabla u_{k}\right|^{p} \mathrm{~d} x \leq \frac{1}{p^{\prime}}\left|[f]_{h}(k-1)\right|_{L^{p^{\prime}}(\Omega)}^{p^{\prime}}+\frac{1}{2} \int_{\Omega} \frac{u_{k-1}^{2}}{h} \mathrm{~d} x \tag{3.15}
\end{equation*}
$$

Note, that for each $t \in] 0, T]$ there exists $j \in\{0, \ldots, n\}$ such that $t \in](j-1) h, j h]$. Therefore, by adding the inequality (3.15) from $k=1$ to $k=j$, we get

$$
\frac{1}{2} \int_{\Omega} u_{j}^{2} \mathrm{~d} x+h \sum_{k=1}^{j} \int_{\Omega} \omega\left|\nabla u_{k}\right|^{p} \mathrm{~d} x \leq \frac{h}{p^{\prime}} \sum_{i=1}^{j}\left|[f]_{h}(k-1)\right|_{L^{p^{\prime}}(\Omega)}^{p^{\prime}}+\frac{1}{2} \int_{\Omega} u_{0}^{2} \mathrm{~d} x .
$$

Then, (3.14) implies that

$$
\frac{1}{2}\left|u_{h}(t)\right|_{L^{2}(\Omega)}^{2}+\int_{0}^{t} \int_{\Omega} \omega\left|\nabla u_{h}(t)\right|^{p} \mathrm{~d} x \mathrm{~d} t \leq \frac{1}{2}\left|u_{0}\right|_{L^{2}(\Omega)}^{2}+\frac{1}{p^{\prime}} \int_{0}^{t}|f(t)|_{L^{p^{\prime}(\Omega)}}^{p^{\prime}} \mathrm{d} t
$$

This implies that

$$
\begin{array}{ll}
u_{h} \rightharpoonup u, & \text { weakly } * \quad \text { in } \quad L^{\infty}\left(0, T ; L^{2}(\Omega)\right), \\
u_{h} \rightharpoonup u, & \text { weakly in } L^{p}\left(0, T ; L^{p}(\Omega, \omega)\right), \\
\left|\nabla u_{h}\right|^{p-2} \nabla u_{h} \rightharpoonup \xi, & \text { weakly in } \quad L^{p^{\prime}}\left(0, T ; L^{p^{\prime}}\left(\Omega, \omega^{1-p^{\prime}}\right)\right) .
\end{array}
$$

Next, we prove that u is a weak solution for the $\operatorname{Problem}(1.1)$. Let $\varphi \in C^{1}(\bar{Q})$ with $\varphi(., T)=0$ and $\varphi(x, t)_{\Gamma}=0$. By taking $\varphi(x, k h)$ as test function for every $k \in\{1, \ldots, n\}$, we get

$$
\begin{aligned}
& \int_{\Omega} \frac{u_{k}-u_{k-1}}{h} \varphi \mathrm{~d} x+\int_{\Omega} \omega\left|\nabla u_{k}\right|^{p-2}(\nabla u \cdot \nabla \varphi) \mathrm{d} x+\int_{\Omega}\left|u_{k}\right|^{p-2} u_{k} \varphi \mathrm{~d} x \\
& =\int_{\Omega}[f]_{h}((k-1) h) \varphi(x, k h) \mathrm{d} x
\end{aligned}
$$

Then, by summing the above equalities, we have

$$
\begin{align*}
& \sum_{k=0}^{n-1} \int_{\Omega} u_{k}(\varphi(x, k h)-\varphi(x,(k+1) h)) \mathrm{d} x-\int_{\Omega} u_{0} \varphi(x, 0) \mathrm{d} x \\
& +h \sum_{k=1}^{n} \int_{\Omega}\left|u_{k}\right|^{p-2} u_{k} \varphi(x, k h) \mathrm{d} x+h \sum_{k=1}^{n} \int_{\Omega} \omega\left|\nabla u_{k}\right|^{p-2}\left(\nabla u_{k} \cdot \nabla \varphi(x, k h)\right) \mathrm{d} x \\
& \quad=h \sum_{k=1}^{n} \int_{\Omega}[f]_{h}((k-1) h) \varphi(x, k h) \mathrm{d} x . \tag{3.16}
\end{align*}
$$

On the other hand,

$$
\begin{aligned}
& \sum_{k=0}^{n-1} \int_{\Omega} u_{k}(x)[\varphi(x, k h)-\varphi(x,(k+1) h)] d x \\
& =-\sum_{k=0}^{n-1} \int_{k h}^{(k+1) h} \int_{\Omega} u_{h}(x, t) \frac{\partial \varphi(x, t)}{\partial t} \mathrm{~d} x \mathrm{~d} t \\
& =-\int_{Q} u_{h}(x, t) \frac{\partial \varphi(x, t)}{\partial t} \mathrm{~d} x \mathrm{~d} t \rightarrow-\int_{Q} u(x, t) \frac{\partial \varphi(x, t)}{\partial t} \mathrm{~d} x \mathrm{~d} t \quad \text { as } h \rightarrow 0, \\
& h \sum_{k=1}^{n} \int_{\Omega} \omega\left|\nabla u_{h}\right|^{p-2}\left(\nabla u_{h}(x, k h) \cdot \nabla \varphi(x, k h)\right) \mathrm{d} x=\left.\int_{Q} \psi \nabla u_{h}\right|^{p-2}\left(\nabla u_{h}(x, t)\right. \\
& \cdot \nabla \varphi(x, t)) \mathrm{d} x \mathrm{~d} t+\sum_{k=1}^{n} \int_{(k-1) h}^{k h} \int_{\Omega} \omega\left|\nabla u_{h}\right|^{p-2} \nabla u_{h}(x, t) \cdot(\nabla \varphi(x, k h) \\
& \quad-\nabla \varphi(x, t)) \mathrm{d} x \mathrm{~d} t \rightarrow \int_{Q} \omega \xi \cdot \nabla \varphi(x, \tau) \mathrm{d} x \mathrm{~d} \tau, \text { as } \quad h \rightarrow 0 .
\end{aligned}
$$

And also

$$
\begin{aligned}
& h \sum_{k=1}^{n} \int_{\Omega}[f]_{h}(x,(k-1) h) \varphi(x, k h) \mathrm{d} x \\
& =\sum_{k=1}^{n} \int_{(k-1) h}^{k h} \int_{\Omega} f(x,) \varphi(x, k h) \mathrm{d} x \mathrm{~d} t \rightarrow \int_{Q} f \varphi \mathrm{~d} x \mathrm{~d} t \quad \text { as } h \rightarrow 0 \\
& h \sum_{k=1}^{n} \int_{\Omega}\left|u_{k}\right|^{p-2} u_{k} \varphi(x, k h) \mathrm{d} x=-\sum_{k=1}^{n} \int_{(k-1) h}^{k h} \int_{\Omega}\left|u_{h}\right|^{p-2} u_{h}(\varphi(x, t) \\
& -\varphi(x, k h)) \mathrm{d} x \mathrm{~d} t+\int_{Q}\left|u_{h}\right|^{p-2} u_{h} \varphi(x, t) \mathrm{d} x \mathrm{~d} t \rightarrow \int_{Q}|u|^{p-2} u \varphi \mathrm{~d} x \mathrm{~d} t \quad \text { as } h \rightarrow 0 .
\end{aligned}
$$

Then, for $h \rightarrow 0$ in (3.16),

$$
\begin{align*}
& -\int_{Q} u \frac{\partial \varphi}{\partial t} \mathrm{~d} x \mathrm{~d} t-\int_{\Omega} u_{0}(x) \varphi(x, 0) \mathrm{d} x+\int_{Q}|u|^{p-2} u \varphi \mathrm{~d} x \mathrm{~d} t+\int_{Q} \omega \xi \cdot \nabla \varphi \mathrm{~d} x \mathrm{~d} t \\
& =\int_{Q} f \varphi \mathrm{~d} x \mathrm{~d} t \tag{3.17}
\end{align*}
$$

For $\varphi \in C_{c}^{\infty}(Q)$, the above inequality becomes

$$
\begin{equation*}
-\int_{Q} u \frac{\partial \varphi}{\partial t} \mathrm{~d} x \mathrm{~d} t+\left.\int_{Q} u\right|^{p-2} u \varphi \mathrm{~d} x \mathrm{~d} t+\int_{Q} \omega \xi \cdot \nabla \varphi \mathrm{~d} x \mathrm{~d} t=\int_{Q} f \varphi \mathrm{~d} x \mathrm{~d} t . \tag{3.18}
\end{equation*}
$$

This implies that $\frac{\partial u}{\partial t} \in L^{p^{\prime}}\left((0, T) ; W^{-1, p^{\prime}}(\Omega)\right)$.
Now, we prove that $\xi=|\nabla u|^{p-2} \nabla u$. Let $A u:=|\nabla u|^{p-2} \nabla u$ and $v \in$ $L^{p}\left(0 ; T ; W_{0}^{1, p}(\Omega ; \omega)\right) \cap L^{\infty}\left(0, T ; L^{2}(\Omega)\right)$, by summing the above inequalities (3.15) for $k=1, \ldots, n$, we get

$$
\frac{1}{2} \int_{\Omega} u_{h}^{2}(T) d x+\int_{Q} \omega A u_{h} \cdot \nabla u_{h} d x d t+\int_{Q}\left|u_{h}\right|^{p} d x d t \leq \int_{Q} f u_{h} d x d t+\frac{1}{2} \int_{\Omega} u_{0}^{2} d x
$$

The application of Lemma 1 implies that

$$
\int_{Q} \omega\left(A u_{h}-A v\right) \cdot\left(\nabla u_{h}-\nabla v\right) d x d t \geq 0
$$

Then, it follows from (3.17) that

$$
\begin{aligned}
& \frac{1}{2} \int_{\Omega} u_{h}^{2}(T) d x+\int_{Q} \omega\left(A u_{h}\right) \cdot \nabla v d x d t+\int_{Q} \omega(A v)\left(\nabla u_{h}-\nabla v\right) d x d t+\int_{Q}\left|u_{h}\right|^{p} d x d t \\
& \quad \leq \frac{1}{2} \int_{\Omega} u_{0}^{2} d x+\int_{Q} f u_{h} d x d t
\end{aligned}
$$

This implies for $h \rightarrow 0$ that

$$
\begin{align*}
& \frac{1}{2} \int_{\Omega} u^{2}(T) d x+\int_{Q} \omega(A u) \cdot \nabla v d x d t+\int_{Q} \omega(A v)(\nabla u-\nabla v) d x d t+\int_{Q}|u|^{p} d x d t \\
& \leq \frac{1}{2} \int_{\Omega} u_{0}^{2} d x+\int_{Q} f u d x d t \tag{3.19}
\end{align*}
$$

Let $\varphi=u$ in inequality (3.18), then

$$
\begin{equation*}
-\frac{1}{2} \int_{\Omega} u^{2}(T) \mathrm{d} x+\int_{0}^{T} \int_{\Omega}|u|^{p} \mathrm{~d} x \mathrm{~d} t+\int_{Q} \omega \xi \cdot \nabla \varphi \mathrm{~d} x \mathrm{~d} t=\int_{Q} f u \mathrm{~d} x \mathrm{~d} t \tag{3.20}
\end{equation*}
$$

Combining (3.19) with (3.20) to get

$$
\int_{Q} \omega(\xi-A v) \cdot(\nabla v-\nabla u) d x d t \leq 0
$$

For $v=u-\lambda \Psi$ for any $\lambda>0, \Psi \in L^{p}\left(0 ; T ; W_{0}^{1, p}(\Omega ; \omega)\right) \cap L^{\infty}\left(0, T ; L^{2}(\Omega)\right)$ in above inequality, it follows that

$$
\int_{Q} \omega(\xi-A(u-\lambda \Psi)) \cdot \nabla \Psi \mathrm{d} x \mathrm{~d} \tau \geq 0
$$

Passing to limits as $\lambda \rightarrow 0^{+}$and using Lebesgue's dominated convergence theorem to get

$$
\int_{Q} \omega(\xi-A u) \cdot \psi \mathrm{d} x \mathrm{~d} \tau \geq 0, \quad \text { for all } \psi \in\left(L^{p}\left(0 ; T ; W_{0}^{1, p}(\Omega ; \omega)\right)\right)^{N}
$$

Hence, $\xi=A u$, a.e. in Q. Therefore, for all $\varphi \in L^{p}\left((0, T) ; W_{0}^{1, p}(\Omega ; \omega)\right) \cap$ $L^{\infty}\left((0, T) ; L^{2}(\Omega)\right) \cap C^{1}(\bar{Q})$
$-\int_{Q} u \frac{\partial \varphi}{\partial t} \mathrm{~d} x \mathrm{~d} t+\int_{Q}|u|^{p-2} u \varphi \mathrm{~d} x \mathrm{~d} t+\int_{Q} \omega|\nabla u|^{p-2} \nabla u \cdot \nabla \varphi \mathrm{~d} x \mathrm{~d} t=\int_{Q} f \varphi \mathrm{~d} x \mathrm{~d} t$.
On the other hand, the fact that $u \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right) \cap L^{\infty}\left((0, T) ; L^{2}(\Omega)\right)$ and $\frac{\partial u}{\partial t} \in L^{p^{\prime}}\left((0, T) ; W^{-1, p^{\prime}}(\Omega)\right)$ implies that u belongs to $C\left((0, T) ; L^{2}(\Omega)\right)$, hence the existence of weak solution of the Problem (1.1). To show that this weak solution is unique, let u and v two weak solution for Problem (1.1), then for all $\varphi \in L^{p}\left((0, T) ; W_{0}^{1, p}(\Omega, \omega)\right) \cap L^{\infty}\left((0, T) ; L^{2}(\Omega)\right)$,

$$
\begin{aligned}
& -\int_{Q}(u-v) \frac{\partial \varphi}{\partial t} \mathrm{~d} x \mathrm{~d} t+\int_{Q}\left(|u|^{p-2} u-|v|^{p-2} v\right) \varphi \mathrm{d} x \mathrm{~d} t \\
& \quad+\int_{Q} \omega\left(|\nabla u|^{p-2} \nabla u-|\nabla v|^{p-2} \nabla v\right) \cdot \nabla \varphi \mathrm{d} x \mathrm{~d} t=0 .
\end{aligned}
$$

Let $u-v$ as a test function in the weak formulation of Problem (1.1), then

$$
\begin{aligned}
& \frac{1}{2} \int_{\Omega}(u(t)-v(t))^{2} \mathrm{~d} x+\int_{Q}\left(|u|^{p-2} u-|v|^{p-2} v\right)(u-v) \mathrm{d} x \mathrm{~d} t \\
& \quad+\int_{Q} \omega\left(|\nabla u|^{p-2} \nabla u-|\nabla v|^{p-2} \nabla v\right) \cdot(\nabla u-\nabla v) \mathrm{d} x \mathrm{~d} t=0
\end{aligned}
$$

This implies that

$$
\frac{1}{2} \int_{\Omega}(u(t)-v(t))^{2} \mathrm{~d} x=0
$$

Therefore, $u=v$ a.e. in Q, this completes the proof of uniqueness.

4 Entropy solution of continuous problem

The aim of this section is the proof of the main result of this article, it is the existence of an entropy solution of the Problem (1.1).

Definition 2. Let $f \in L^{1}(Q)$ and $u_{0} \in L^{1}(\Omega)$. A measurable function u defined on Q is an entropy solution of Problem (1.1) if and only if
$u \in C\left((0, T) ; L^{1}(\Omega)\right), T_{k}(u) \in L^{p}\left((0, T) ; W_{0}^{1, p}(\Omega, \omega)\right.$ and for all $k>0$,

$$
\begin{aligned}
& \int_{\Omega} S_{k}(u-\phi)(T) d x-\int_{\Omega} S_{k}(u-\phi)(0) d x+\int_{0}^{T}\left\langle\frac{\partial \phi}{\partial s}, T_{k}(u-\phi)\right\rangle d s \\
& \quad \quad+\int_{Q}|u|^{p-2} u T_{k}(u-\phi) d x d s+\int_{Q}|\nabla u|^{p-2} \nabla u \nabla T_{k}(u-\phi) d x d s \\
& \leq \\
& \leq \int_{Q} f T_{k}(u-\phi) d x d s
\end{aligned}
$$

for all $\phi \in L^{p}\left((0, T) ; W_{0}^{1, p}(\Omega) \cap L^{\infty}(Q) \cap C\left((0, T) ; L^{1}(\Omega)\right)\right.$ and $\frac{\partial \phi}{\partial t} \in L^{p^{\prime}}\left((0, T) ; W^{-1, p^{\prime}}(\Omega)\right.$.

Next, we give the main result of this paper.
Theorem 3. Let $f \in L^{1}(Q), u_{0} \in L^{1}(\Omega)$ and let the hypothesis (H) holds, the Problem (1.1) has an entropy solution.

Proof. Let the approximation problem

$$
\left\{\begin{array}{lc}
\frac{\partial u_{n}}{\partial t}-\operatorname{div}\left(\omega\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}\right)+\left|u_{n}\right|^{p-2} u_{n}=f & \text { in } \quad Q:=] 0 ; T[\times \Omega \tag{4.1}\\
u_{n}=0 & \text { on } \Gamma:=] 0 ; T[\times \partial \Omega \\
u_{n}(., 0)=u_{0 n} & \text { in } \Omega
\end{array}\right.
$$

where $f_{n} \in L^{\infty}(Q)$ such that $\left\|f_{n}\right\|_{L^{1}(Q)} \leq\|f\|_{L^{1}(Q)}, f_{n} \rightarrow f$ strongly in $L^{1}(Q)$ and $u_{0 n} \in L^{2}(\Omega)$ such that $\left\|u_{0 n}\right\|_{L^{1}(\Omega)} \leq\left\|u_{0}\right\|_{L^{1}(\Omega)}, u_{0 n} \rightarrow u_{0}$ strongly in $L^{1}(\Omega)$. By Theorem 1, the Problem (4.1) has a weak solution u_{n}. To prove that (1.1) has an entropy solution, it suffices to show the following lemmas.

Lemma 3. Let u_{n} be a solution of approximate Problem (4.1) and let $k>0$, we have

$$
\left|T_{k}\left(u_{n}\right)\right|_{L^{p}\left(0, T, W_{0}^{1, p}(\Omega, \omega)\right)} \leq C k^{1 / p} \quad \text { for all } n \in \mathbb{N}
$$

where C is a constant independent of n.
Proof. Taking $T_{k}\left(u_{n}\right)$ as a test function in (4.1) for get

$$
\begin{aligned}
& \int_{\Omega} S_{k}\left(u_{n}\right)(T) d x+\int_{Q}\left|u_{n}\right|^{p-2} u_{n} T_{k}\left(u_{n}\right) d x d s+\int_{Q} \omega\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla T_{k}\left(u_{n}\right) d x d s \\
& \quad=\int_{\Omega} S_{k}\left(u_{0}\right) d x+\int_{Q} f T_{k}\left(u_{n}\right) d x d s
\end{aligned}
$$

This implies that

$$
\begin{aligned}
& \int_{\Omega} S_{k}\left(u_{n}\right)(T) d x+\int_{Q}\left|u_{n}\right|^{p-2} u_{n} T_{k}\left(u_{n}\right) d x d s+\int_{Q}\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla T_{k}\left(u_{n}\right) d x d s \\
& \quad \leq \int_{\Omega} S_{k}\left(u_{0}\right) d x+k\|f\|_{L^{1}(Q)}
\end{aligned}
$$

Note that, $\left|u_{n}\right|^{p-2} u_{n} T_{k}\left(u_{n}\right) \geq 0, S_{k} \geq 0$ and $S_{k}(r) \leq k|r|$, therefore,

$$
\int_{Q} \omega\left|\nabla T\left(u_{n}\right)\right|^{p} \leq k\left(\left(\left\|u_{0 n}\right\|_{L^{1}(Q)}+\|f\|_{L^{1}(Q)}\right) \text { for all } k \geq 1\right.
$$

Thus,

$$
\left|T_{k}\left(u_{n}\right)\right|_{L^{p}\left(0, T, W_{0}^{1, p}(\Omega, \omega)\right)} \leq C k^{1 / p} \text { for all } n \in \mathbb{N}
$$

Lemma 4. Let u_{n} be a solution of approximate Problem (4.1), then there exists subsequence, still denoted u_{n}, such that
(i) $u_{n} \rightarrow u$ a.e. in Q;
(ii) $\nabla u_{n} \rightarrow u$ in Q;
(iii) $u_{n} \rightarrow u$ in $C\left((0, T) ; L^{1}(\Omega)\right)$.

Proof. (i) Let $k>0$ be large enough. We have by Markov's inequality, Proposition 3 and Lemma 3,
meas $\left\{\left|u_{n}\right|>k\right\} \leq \frac{\left\|T_{k}\left(u_{n}\right)\right\|_{L^{p}(Q, \omega)}^{p}}{k^{p}} \leq \frac{C_{1}\left|T_{k}\left(u_{n}\right)\right|_{\left.L^{p}(0, T) ; W_{0}^{1, p}(\Omega, \omega)\right)}^{p}}{k^{p}} \leq \frac{C_{2}}{k^{p-1}}$.
It yields

$$
\begin{equation*}
\text { meas }\left\{\left|u_{n}\right|>k\right\} \rightarrow 0, \quad \text { as } k \rightarrow+\infty \tag{4.2}
\end{equation*}
$$

Let $\delta>0, k>0$ and let the following sets

$$
E_{1}:=\left\{\left|u_{n}\right|>k\right\}, E_{2}:=\left\{\left|u_{m}\right|>k\right\}, E_{3}:=\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(u_{m}\right)\right|>\delta\right\} .
$$

Then,

$$
\begin{equation*}
\operatorname{meas}\left\{\left|u_{n}-u_{m}\right|>\delta\right\} \leq \operatorname{meas}\left(E_{1}\right)+\operatorname{meas}\left(E_{2}\right)+\operatorname{meas}\left(E_{3}\right) \tag{4.3}
\end{equation*}
$$

Let $\varepsilon>0$, by (4.2), we can choose $k=k(\varepsilon)$ such that

$$
\begin{equation*}
\text { meas }\left(E_{1}\right) \leq \varepsilon / 3 \quad \text { and } \quad \text { meas }\left(E_{2}\right) \leq \varepsilon / 3 \tag{4.4}
\end{equation*}
$$

Since $T_{k}\left(u_{n}\right)$ is bounded in $L^{p}\left((0, T) ; W_{0}^{1, p}(\Omega, \omega)\right)$, then there exists some η_{k} in $L^{p}\left((0, T) ; W_{0}^{1, p}(\Omega, \omega)\right)$ such that $T_{k}\left(u_{n}\right) \rightharpoonup \eta_{k}$ in $L^{p}\left((0, T) ; W_{0}^{1, p}(\Omega, \omega)\right)$ as $n \rightarrow \infty$ and by the embedding compact, it follows that

$$
\begin{equation*}
T_{k}\left(u_{n}\right) \rightarrow \eta_{k} \quad \text { in } L^{p}(Q, \omega) \text { and a.e. in } \Omega . \tag{4.5}
\end{equation*}
$$

Consequently, $\left(T_{k}\left(u_{n}\right)\right)_{n}$ is a Cauchy sequence in measure in Ω. Thus, for all $n, m \geq n_{0}(\delta, \varepsilon)$,

$$
\begin{equation*}
\operatorname{meas}\left(E_{3}\right) \leq \varepsilon / 3 \tag{4.6}
\end{equation*}
$$

Finally, from (4.3), (4.4) and (4.6), we obtain, for all $n, m \geq n_{0}(\delta, \varepsilon)$,

$$
\text { meas }\left\{\left|u_{n}-u_{m}\right|>\delta\right\} \leq \varepsilon
$$

This implies that $\left(u_{n}\right)$ is a Cauchy sequence in measure, then $u_{n} \rightarrow u$ in measure, up to a subsequence and we can assume that $u_{n} \rightarrow u$ a.e. in Q.
(ii) Let $\delta>0$ and let the following sets

$$
\begin{aligned}
& E_{11}:=\left\{\left|u_{n}\right|>h\right\} \cup\left\{\left|u_{m}\right|>h\right\}, E_{22}:=\left\{\left|u_{n}-u_{m}\right|>1\right\}, \\
& E_{33}:=\left\{\left|\nabla T_{k}\left(u_{n}\right)\right|>h\right\} \cup\left\{\left|\nabla T_{k}\left(u_{m}\right)\right|>h\right\}, \\
& E_{44}:=\left\{\left|\nabla T_{k}\left(u_{n}\right)\right| \leq h,\left|\nabla T_{k}\left(u_{m}\right)\right| \leq h,\left|u_{n}-u_{m}\right| \leq 1,\left|\nabla u_{n}-\nabla u_{m}\right|>\delta\right\} .
\end{aligned}
$$

It is obvious that

$$
\begin{equation*}
\left\{\left|\nabla u_{n}-\nabla u_{m}\right|>\delta\right\} \subset E_{11} \cup E_{22} \cup E_{33} \cup E_{44} . \tag{4.7}
\end{equation*}
$$

Let $\varepsilon>0$, we have by (i) and for h sufficiently large that

$$
\begin{equation*}
\text { meas }\left(E_{11}\right) \leq \varepsilon / 4, \text { for all } n, m \geq 0 . \tag{4.8}
\end{equation*}
$$

On the other hand, by $(i),\left(u_{n}\right)$ is a Cauchy sequence in measure, then there exists $N_{1}(\varepsilon) \in \mathbb{N}$ such that

$$
\begin{equation*}
\text { meas }\left(E_{22}\right) \leq \varepsilon / 4, \text { for all } n, m \geq N_{1}(\varepsilon) \tag{4.9}
\end{equation*}
$$

Since $u_{n} \rightarrow u$ a.e. in Q and by (4.5),

$$
\begin{array}{ll}
T_{k}\left(u_{n}\right) \rightarrow T_{k}(u) & \text { in } L^{p}\left((0, T) ; W_{0}^{1, p}(\Omega, \omega)\right), \tag{4.10}\\
T_{k}\left(u_{n}\right) \rightarrow T_{k}(u) & \text { in } L^{p}(Q, \omega) \text { and a.e. in } Q .
\end{array}
$$

Therefore, by using (4.10) and for h sufficiently large, we obtain

$$
\text { meas } E_{33} \leq \varepsilon / 4 \text { for all } n, m \geq 0
$$

Now, let the following function \mathcal{D} and the following set \mathbf{K}

$$
\begin{aligned}
& \mathcal{D}:(\xi, \eta) \mapsto \omega\left(|\xi|^{p-2} \xi-|\eta|^{p-2} \eta\right) \cdot(\xi-\eta), \\
& \mathbf{K}:=\left\{(\xi, \eta) \in \mathbb{R}^{N} \times \mathbb{R}^{N},|\xi| \leq k,|\eta| \leq k,|\xi-\eta|>s\right\} .
\end{aligned}
$$

Note, that \mathcal{D} is continuous and \mathbf{K} is compact, so by using the following inequality

$$
\begin{equation*}
\omega\left(|\xi|^{p-2} \xi-|\eta|^{p-2} \eta\right) \cdot(\xi-\eta)>0 \tag{4.11}
\end{equation*}
$$

The function \mathcal{D} attains its minimum on set \mathbf{K}, denoted it by β. It is easily to see that $\beta>0$ and

$$
\begin{aligned}
\int_{E_{44}} \beta d x & \leq \int_{E_{44}} \omega\left[\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}-\left|\nabla u_{m}\right|^{p-2} \nabla u_{m}\right] \cdot \nabla T_{l}\left(u_{n}-u_{m}\right) d x d s \\
& \leq \int_{Q} \omega\left[\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}-\left|\nabla u_{m}\right|^{p-2} \nabla u_{m}\right] \cdot \nabla T_{l}\left(u_{n}-u_{m}\right) d x d s
\end{aligned}
$$

Let $T_{l}\left(u_{n}-u_{m}\right)$ as a test function in (4.1), with $t \leq T$, therefore,

$$
\begin{aligned}
& \int_{Q}\left[\left|u_{n}\right|^{p-2} u_{n}-\left|u_{m}\right|^{p-2} u_{m}\right] T_{l}\left(u_{n}-u_{m}\right) d x d s+\int_{\Omega} S_{1}\left(u_{n}-u_{m}\right)(t) d x \\
& \quad+\int_{Q} \omega\left[\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}-\left|\nabla u_{m}\right|^{p-2} \nabla u_{m}\right] \cdot \nabla T_{l}\left(u_{n}-u_{m}\right) d x d s \\
& =\int_{Q}\left(f_{n}-f_{m}\right) T_{1}\left(u_{n}-u_{m}\right) d x d s+\int_{\Omega} S_{1}\left(u_{n}-u_{m}\right)(0) d x
\end{aligned}
$$

Using the fact that $\left[\left|u_{n}\right|^{p-2} u_{n}-\left|u_{m}\right|^{p-2} u_{m}\right] T_{l}\left(u_{n}-u_{m}\right) \geq 0, S_{l}(x) \geq 0$ and $S_{l}(x) \leq l|x|$ for all $x \in \Omega$, to get

$$
\begin{align*}
& \int_{Q} \omega\left(\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}-\left|\nabla u_{m}\right|^{p-2} \nabla u_{m}\right) \cdot \nabla T_{l}\left(u_{n}-u_{m}\right) d x d s \\
& \leq \int_{Q}\left(f_{n}-f_{m}\right) T_{1}\left(u_{n}-u_{m}\right) d x d s+\int_{\Omega} S_{1}\left(u_{n}-u_{m}\right)(0) d x \\
& \leq 2 l\left(\|f\|_{L^{1}(Q)}+\left\|u_{0}\right\|_{L^{1}(\Omega)}\right) . \tag{4.12}
\end{align*}
$$

The minimum $\beta>0$ of the function \mathcal{D} on \mathbf{K} is strictly positive, then, the above inequality (4.12) implies that

$$
\beta \text { meas }\left(E_{44}\right) \leq 2 l\left(\|f\|_{L^{1}(\Omega)}+\left\|u_{0}\right\|_{L^{1}(\Omega)}\right) .
$$

Hence,

$$
\begin{equation*}
\operatorname{meas}\left(E_{44}\right) \leq \varepsilon / 4, \tag{4.13}
\end{equation*}
$$

for every $m, n \in \mathbb{N}$, provided that l is sufficiently small. Thus, the inequalities (4.7), (4.8), (4.9) and (4.13) tell us that $\left(\nabla u_{n}\right)$ is actually a Cauchy sequence in measure. As a consequence, there exists a subsequent, still denoted by $\left(\nabla u_{n}\right)$, such that $\nabla u_{n} \rightarrow \nabla u$ a.e. in Q.
(iii) The sequence $\left(u_{n}\right)$ is a Cauchy sequence in $C\left((0, T) ; L^{1}(\Omega)\right)$, then there exists subsequence still denoted $\left(u_{n}\right)$ such that u_{n} converges to u and $u \in$ $C\left((0, T) ; L^{1}(\Omega)\right)$.

Let $T_{l}\left(u_{n}-u_{m}\right)$ as a test function in (4.1), with $t \leq T$, then,

$$
\begin{aligned}
& \int_{\Omega} S_{1}\left(u_{n}-u_{m}\right)(t) d x+\int_{Q}\left[\left|u_{n}\right|^{p-2} u_{n}-\left|u_{m}\right|^{p-2} u_{m}\right] T_{l}\left(u_{n}-u_{m}\right) d x d s \\
& \quad+\int_{0}^{t} \int_{\Omega} \omega\left[\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}-\left|\nabla u_{m}\right|^{p-2} \nabla u_{m}\right] \cdot \nabla T_{l}\left(u_{n}-u_{m}\right) d x d s \\
& \leq T \int_{\Omega}\left|f_{n}-f_{m}\right| d x+\int_{\Omega} S_{1}\left(u_{0 n}-u_{0 m}\right) d x:=b_{n, m} .
\end{aligned}
$$

Moreover, by using Lemma 1 and (4.11), we obtain

$$
\begin{equation*}
\int_{\Omega} S_{1}\left(u_{n}-u_{m}\right)(t) d x \leq b_{n, m} \tag{4.14}
\end{equation*}
$$

Since

$$
\int_{\left|u_{n}-u_{m}\right|<1}\left|u_{n}-u_{m}\right|^{2}(t)+\int_{\left|u_{n}-u_{m}\right|>1} \frac{\left|u_{n}-u_{m}\right|(t)}{2} \leq \int_{\Omega} S_{1}\left(u_{n}-u_{m}\right)(t)
$$

then, (4.14) implies that

$$
\int_{\left|u_{n}-u_{m}\right|<1}\left|u_{n}-u_{m}\right|^{2}(t)+\int_{\left|u_{n}-u_{m}\right|>1} \frac{\left|u_{n}-u_{m}\right|(t)}{2} \leq b_{n, m}
$$

which yields

$$
\begin{aligned}
& \int_{\Omega}\left|u_{n}-u_{m}\right|(t)=\int_{\left|u_{n}-u_{m}\right|<1}\left|u_{n}-u_{m}\right|(t)+\int_{\left|u_{n}-u_{m}\right|>1}\left|u_{n}-u_{m}\right|(t) \\
& \leq\left(\int_{\left|u_{n}-u_{m}\right|<1}\left|u_{n}-u_{m}\right|^{2}(t)\right)^{\frac{1}{2}} \operatorname{meas}(\Omega)^{\frac{1}{2}}+2 b_{n, m} \leq(2 \text { meas }(\Omega))^{\frac{1}{2}} b_{n, m}^{\frac{1}{2}}+2 b_{n, m} .
\end{aligned}
$$

Since $\left(f_{n}\right)$ and $\left(u_{n}\right)$ converge in $L^{1}(Q)$, then $b_{n, m} \rightarrow 0$ for m and $n \rightarrow \infty$. Thus, $\left(u_{n}\right)$ is a Cauchy sequence in $C\left((0, T) ; L^{1}(\Omega)\right)$. Moreover, there exists a subsequence, still denoted $\left(u_{n}\right)$, such that $u_{n} \rightarrow u$ in $C\left((0, T) ; L^{1}(\Omega)\right)$ and $u \in C\left((0, T) ; L^{1}(\Omega)\right)$. Now, we can show that u is an entropy solution.

Let $\varphi \in L^{p}\left((0, T) ; W_{0}^{1, p}(\Omega) \cap L^{\infty}(Q) \cap C\left((0, T) ; L^{1}(\Omega)\right)\right.$, choosing $T_{k}\left(u_{n}-\varphi\right)$ as a test function in (4.1), then

$$
\begin{align*}
& \int_{\Omega} S_{k}\left(u_{n}-\varphi\right)(T) d x+\int_{\Omega} S_{k}\left(u_{0 n}-\varphi(0)\right) d x+\int_{0}^{T}\left\langle\frac{\partial \varphi}{\partial s}, T_{k}\left(u_{n}-\varphi\right)\right\rangle d s \\
& \quad+\int_{Q}\left|u_{n}\right|^{p-2} u_{n} T_{k}\left(u_{n}-\varphi\right) d x d s+\int_{Q}\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla T_{k}\left(u_{n}-\varphi\right) d x d s \\
& =\int_{Q} f_{n} T_{k}\left(u_{n}-\varphi\right) d x d s \tag{4.15}
\end{align*}
$$

The results of Lemma 4 allow us to conclude that the function S_{k} is $k-$ Lipschitz, thus,

$$
\begin{align*}
\int_{\Omega} & S_{k}\left(u_{n}-\varphi\right)(T) \mathrm{d} x+\int_{\Omega} S_{k}\left(u_{0 n}-\varphi\right)(0) \mathrm{d} x \\
& \rightarrow \int_{\Omega} S_{k}(u-\varphi)(T) \mathrm{d} x+\int_{\Omega} S_{k}\left(u_{0}-\varphi(0)\right) \mathrm{d} x \tag{4.16}
\end{align*}
$$

Therefore, the fact that $\frac{\partial \varphi}{\partial s} \in L^{p^{\prime}}\left((0, T) ; W^{-1, p^{\prime}}(\Omega)\right)$, implies for $n \rightarrow \infty$ that

$$
\begin{equation*}
\int_{0}^{T}<\frac{\partial \varphi}{\partial t}, T_{k}\left(u_{n}-\varphi\right)>d s \rightarrow \int_{0}^{T}<\frac{\partial \varphi}{\partial s}, T_{k}(u-\varphi)>d s \tag{4.17}
\end{equation*}
$$

Let $M=\|\varphi\|_{\infty}, G_{n, k}=\left\{\left|T_{k+M}\left(u_{n}\right)-\varphi\right| \leq k\right\}, G_{k}=\left\{\left|T_{k+M}(u)-\varphi\right| \leq k\right\}$ then,

$$
\begin{aligned}
& \int_{Q} \omega\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \cdot \nabla T_{k}\left(u_{n}-\varphi\right) d x d s=\int_{Q} \omega\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \cdot \nabla T_{k}\left(T_{k+M}\left(u_{n}\right)\right. \\
& \quad-\varphi) d x d s=\int_{Q} \omega\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \cdot \nabla T_{k+M}\left(u_{n}\right) 1_{G_{n, k}} d x d s \\
& \quad-\int_{Q} \omega\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \cdot \nabla \varphi 1_{G_{n, k}} d x d s
\end{aligned}
$$

The sequel $\left(T_{k+M}\left(u_{n}\right)\right)$ is bounded in $L^{p}\left(0, T ; W_{0}^{1, p}(\Omega, \omega)\right)$ and $\nabla u_{n} \rightarrow \nabla u$ a.e. in Q, then $\nabla T_{k+M}\left(u_{n}\right) \rightarrow \nabla T_{k+M}(u)$ a.e. in Q and Lebesgue's theorem
implies that

$$
\begin{aligned}
& \int_{Q} \omega\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \cdot \nabla T_{k+M}\left(u_{n}\right) 1_{G_{n, k}} d x d s \\
& \quad \rightarrow \int_{Q} \omega|\nabla u|^{p-2} \nabla u \cdot \nabla T_{k+M} 1_{G_{k}} d x d s \\
& \int_{Q} \omega\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \cdot \nabla \varphi 1_{G_{n, k}} d x d s \rightarrow \int_{Q} \omega|\nabla u|^{p-2} \nabla u \cdot \nabla \varphi 1_{G_{k}} d x d s
\end{aligned}
$$

Thus, implies that

$$
\begin{equation*}
\int_{Q} \omega\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \cdot \nabla T_{k}\left(u_{n}-\varphi\right) d x d s \rightarrow \int_{Q} \omega|\nabla u|^{p-2} \nabla u \cdot \nabla T_{k}(u-\varphi) d x d s \tag{4.18}
\end{equation*}
$$

On the other hand, we have

$$
\begin{aligned}
& \int_{Q}\left|u_{n}\right|^{p-2} u_{n} T_{k}\left(u_{n}-\varphi\right) d x d s=\int_{Q}\left(\left|u_{n}\right|^{p-2} u_{n}-|\varphi|^{p-2} \varphi\right) \\
& \quad \times T_{k}\left(u_{n}-\varphi\right) d x d s+\int_{Q}|\varphi|^{p-2} \varphi T_{k}\left(u_{n}-\varphi\right) d x d s
\end{aligned}
$$

Note that $\left(\left|u_{n}\right|^{p-2} u_{n}-|\varphi|^{p-2} \varphi\right) T_{k}\left(u_{n}-\varphi\right) \geq 0$ and converges to $\left(|u|^{p-2} u-\right.$ $\left.|\varphi|^{p-2} \varphi\right) T_{k}(u-\varphi)$ a.e. in Q, then, so the use of Fatou's lemma implies that

$$
\begin{gathered}
\liminf _{n \rightarrow \infty} \int_{Q}\left(\left|u_{n}\right|^{p-2} u_{n}-|\varphi|^{p-2} \varphi\right) T_{k}\left(u_{n}-\varphi\right) d x d s \\
\geq \int_{Q}\left(|u|^{p-2} u-|\varphi|^{p-2} \varphi\right) T_{k}(u-\varphi) d x d s
\end{gathered}
$$

Since $T_{k}\left(u_{n}-\varphi\right)$ converges weakly $*$ to $T_{k}(u-\varphi)$ in $L^{\infty}(Q)$ and $|\varphi|^{p-2} \varphi \in L^{1}(Q)$, then

$$
\int_{Q}|\varphi|^{p-2} \varphi T_{k}\left(u_{n}-\varphi\right) d x d s \rightarrow \int_{Q}|\varphi|^{p-2} \varphi T_{k}(u-\varphi) d x d s
$$

Hence,

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \int_{Q}\left|u_{n}\right|^{p-2} u_{n} T_{k}\left(u_{n}-\varphi\right) d x d s \geq \int_{Q}|u|^{p-2} u T_{k}(u-\varphi) d x d s \tag{4.19}
\end{equation*}
$$

For the last term, as we know that $T_{k}\left(u_{n}-\varphi\right)$ converges weakly $*$ to $T_{k}(u-\varphi)$ in $L^{\infty}(Q)$ and $f_{n} \rightarrow f$ in $L^{1}(Q)$, then

$$
\begin{equation*}
\int_{Q} f_{n} T_{k}\left(u_{n}-\varphi\right) d x d s \rightarrow \int_{Q} f T_{k}(u-\varphi) d x d s \tag{4.20}
\end{equation*}
$$

Finally, by passing to limit, as $n \rightarrow \infty$, in (4.15) and by using the results (4.16), (4.17), (4.18), (4.19) and (4.20), we deduce that u is an entropy solution of the Problem (1.1).

5 Conclusion and perspectives

In this work, we study the question of existence of entropy solution for the parabolic Problem (1.1) in weighted Sobolov space with Dirichlet type boundary condition, by using optimization method combined with a difference scheme and a priori estimates. Other questions are still being processed, it is the question of uniqueness entropy solution of this problem and the question of existence and uniqueness solution of this problem in the case where the data are in L^{1} and the exponent is variable.

References

[1] A. Abbassi, C. Allalou and A. Kassidi. Existence of entropy solutions for anisotropic elliptic nonlinear problem in weighted Sobolev space. In The International Congress of the Moroccan Society of Applied Mathematics, pp. 102-122. Springer, 2019. https://doi.org/10.1007/978-3-030-62299-2_8.
[2] S. Antontsev and S. Shmarev. Anisotropic parabolic equations with variable nonlinearity. Publicacions Matematiques, pp. 355-399, 2009. https://doi.org/10.5565/PUBLMAT_53209_04.
[3] P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J. Vázquez. An l^{1}-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 22(2):241-273, 1995.
[4] V. Bhuvaneswari, S. Lingeshwaran and K. Balachandran. Weak solutions for p-Laplacian equation. Advances in Nonlinear Analysis, 1(4):319-334, 2012. https://doi.org/10.1515/anona-2012-0009.
[5] L. Boccardo and Th. Gallouët. Non-linear elliptic and parabolic equations involving measure data. Journal of Functional Analysis, 87(1):149-169, 1989. https://doi.org/10.1016/0022-1236(89)90005-0.
[6] A. Cavalheiro. Weighted Sobolev spaces and degenerate elliptic equations. Boletim da Sociedade Paranaense de Matemática, 26(1-2):117-132, 2008. https://doi.org/10.5269/bspm.v26i1-2.7415.
[7] A. Cianchi and V. Maz'ya. Second-order regularity for parabolic p-Laplace problems. The Journal of Geometric Analysis, 30(2):1565-1583, 2020. https://doi.org/10.1007/s12220-019-00213-3.
[8] P. Drabek, A. Kufner and V. Mustonen. Pseudo-monotonicity and degenerated or singular elliptic operators. Bulletin of the Australian Mathematical Society, 58(2):213-221, 1998. https://doi.org/10.1017/S0004972700032184.
[9] G. Gagneux and M. Madaune-Tort. Analyse mathématique de modéles non linéaires de l'ingénierie pétroliére, volume 22. Springer Science \& Business Media, 1995.
[10] A. El Hachimi, J. Igbida and A. Jamea. Existence result for nonlinear parabolic problems with l^{1}-data. Appl. Math.(Warsaw), 37(4):483-508, 2010. https://doi.org/10.4064/am37-4-6.
[11] J. Heinonen, T. Kilpelanen and O. Martio. Nonlinear Potential Theory of Degenerate Elliptic Equations. Dover Publications, Inc., Mineola, New York, 2006.
[12] L. Hmidouch, A. Jamea and M. Laghdir. Optimization method for a nonlinear degenerate parabolic problem in weighted Sobolev spaces. Discussiones Mathematicae: Differential Inclusions, Control \mathcal{G} Optimization, 41(1), 2021. https://doi.org/10.7151/dmdico. 1225.
[13] A. Khaleghi and A. Razani. Existence and multiplicity of solutions for $p(x)$ Laplacian problem with Steklov boundary condition. Boundary Value Problems, 2022(1):1-11, 2022. https://doi.org/10.1186/s13661-022-01624-y.
[14] M. El Ouaarabi, A. Abbassi and C. Allalou. Existence result for a Dirichlet problem governed by nonlinear degenerate elliptic equation in weighted Sobolev spaces. Journal of Elliptic and Parabolic Equations, 7(1):221-242, 2021. https://doi.org/10.1007/s41808-021-00102-3.
[15] M. El Ouaarabi, A. Abbassi and C. Allalou. Existence and uniqueness of weak solution in weighted Sobolev spaces for a class of nonlinear degenerate elliptic problems with measure data. International Journal of Nonlinear Analysis and Applications, 13(1):2635-2653, 2022.
[16] M. El Ouaarabi, C. Allalou and A. Abbassi. On the Dirichlet problem for some nonlinear degenerated elliptic equations with weight. In 2021 7th International Conference on Optimization and Applications (ICOA), pp. 1-6. IEEE, 2021. https://doi.org/10.1109/ICOA51614.2021.9442620.
[17] M. El Ouaarabi, C. Allalou and S. Melliani. Existence of weak solution for a class of $p(x)$-Laplacian problems depending on three real parameters with Dirichlet condition. Boletín de la Sociedad Matemática Mexicana, 28(2):1-16, 2022. https://doi.org/10.1007/s40590-022-00427-6.
[18] M. Ragusa, A. Razani and F. Safari. Existence of radial solutions for $p(x)-$ Laplacian Dirichlet problem. Advances in Difference Equations, 2021(1):1-14, 2021. https://doi.org/10.1186/s13662-021-03369-x.
[19] K. Rajagopal and M. Ružička. Mathematical modeling of electrorheological materials. Continuum mechanics and thermodynamics, 13(1):59-78, 2001. https://doi.org/10.1007/s001610100034.
[20] M. Růžička. Electrorheological fluids: modeling and mathematical theory. Lecture Notes in Math, 1748:16-38, 2000. https://doi.org/10.1007/BFb0104029.
[21] T. Singer. Existence of weak solutions of parabolic systems with $p, \quad q$-growth. manuscripta mathematica, 151(1):87-112, 2016. https://doi.org/10.1007/s00229-016-0827-1.
[22] M. Tsutsumi. Existence and nonexistence of global solutions for nonlinear parabolic equations. Publications of the Research Institute for Mathematical Sciences, 8(2):211-229, 1972. https://doi.org/10.2977/prims/1195193108.
[23] B.O. Turesson. Nonlinear potential theory and weighted Sobolev spaces, volume 1736. Springer Science \& Business Media, 2000. https://doi.org/10.1007/BFb0103908.
[24] N. Weisheng, M. Qing and C. Xiaojuan. Asymptotic behavior for nonlinear degenerate parabolic equations with irregular data. Applicable Analysis, 100(16):3391-3405, 2021. https://doi.org/10.1080/00036811.2020.1721470.
[25] M. Xu and S. Zhou. Existence and uniqueness of weak solutions for a generalized thin film equation. Nonlinear Analysis: Theory, Methods Ef Applications, $\mathbf{6 0 (4) : 7 5 5 - 7 7 4 , ~ 2 0 0 5 . ~ h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 / j . n a . 2 0 0 4 . 0 1 . 0 1 3 . ~}$
[26] C. Zhang. Entropy solutions for nonlinear elliptic equations with variable exponents. Electronic Journal of Differential Equations, 92(2014):1-14, 2014.
[27] C. Zhang and S. Zhou. A fourth-order degenerate parabolic equation with variable exponent. J. Partial Differ. Equ, 22(4):376-392, 2009. https://doi.org/10.4208/jpde.v22.n4.6.
[28] V. Zhikov. On density of smooth functions in Sobolev-Orlich spaces. Zapiski Nauchnykh Seminarov POMI, 310:67-81, 2004.

[^0]: Copyright (C) 2023 The Author(s). Published by Vilnius Gediminas Technical University This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

