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Abstract. Considering a minimization problem according to the Byrd-Nocedal
measure function together with the secant equation, a diagonal quasi-Newton updat-
ing formula is suggested. To find the optimal elements of the updating matrix, the
well-known algorithm of the alternating direction method of multipliers (ADMM) is
employed. Moreover, convergence analysis is conducted based on a modified non-
monotone Armijo line search incorporating the simulated annealing strategy. Lastly,
performance of the method is numerically tested on a set of CUTEr functions and on
a smooth transcendental approximation of the compressive sensing problem. Across
the computational spectrum, the given method turns out to be successful.

Keywords: large-scale optimization, quasi-Newton update, ADMM strategy, nonmonotone

line search, simulated annealing, compressive sensing, smoothing technique.

AMS Subject Classification: 90C53; 90C59; 94A08.

1 Introduction

Quasi-Newton (QN) algorithms demonstrate potential competence for solving
unconstrained optimization problems. So, enriching their efficiency has trig-
gered the interest of optimization scholars. In particular, QN methods are
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efficient because under standard circumstances, the algorithms generate de-
scent search directions and have reasonable global as well as local superlinear
convergence features [37].

In the QN methods, starting with some positive definite matrices, successive
estimations of the (inverse) Hessian are updated to guarantee the secant (QN)
equation [37]. To make the generated matrix approximations well-conditioned,
the scaled QN updates have been developed based on the eigenvalue analyses
[33,34]. Moreover, to adjust the methods for large-scale problems, memoryless
QN techniques have been proposed with significantly reduced calculations [8].

Recently, the QN methods have been much heeded in practical applications
such as image processing, time series prediction, neural networks training, doc-
ument categorization, managing demands in the water distribution networks,
machine learning, robotics, solving systems of nonlinear equations, curve fit-
ting by B-splines, matrix approximation in Frobenius norm, computation of
the matrix geometric mean and estimating unitary symmetric eigenvalues of
the complex tensors; for more details see [11] and references therein. The
methods have also been well-combined with classical optimization tools such
as conjugate gradient methods [12] as well as metaheuristic algorithms [32].

Real-world applications of the QN algorithms motivated the researchers
to ardently improve efficiency of the methods. Such attempts can be mainly
categorized into modifying the secant equation to approximate the curvature
more accurately [36] or to achieve convergence without convexity assumptions
[30], improving the scaling scheme [10], and structuring the updating formulas
to solve special problems such as nonlinear least squares models [1].

As an underpinning improvement devised to address big data models, re-
searchers were eager to find diagonal matrices with positive diagonal elements
to approximate the Hessian. Such efforts were principally begun by Zhu et
al. [40] via considering various versions of the secant equation. Hassan et
al. [27] developed another diagonal matrix based on the Barzilai-Borwein ap-
proach [14]. Leong et al. [29] advanced the issue by giving some effective diag-
onal QN matrices that preserve the positive definiteness. In another attempt,
Andrei [6] proposed a diagonal QN update by minimizing the measure function
of Byrd and Nocedal [17], based on forward and central finite differences [7].
A family of diagonal QN updates was suggested in [3] in accordance to the
DFP (Davidon-Fletcher-Powell) and the BFGS (Broyden-Fletcher-Goldfarb-
Shanno) updating formulas. A tridiagonal Hessian approximation has also
been developed in [9].

Here, in an attempt to deliver progress in the diagonal Hessian approxima-
tions’ scope, we mainly focus on the following issues in the given order:

1. Finding a diagonal QN updating formula is becoming pervasive, due to
tying to the big data minimization problems. By the same token, An-
drei [6] presented a minimization subproblem taking the weak secant
condition into account to find elements of the Hessian matrix approxi-
mation. However, the weak secant equation may be far from the original
secant equation. So, in a direct response to this issue, the least squares
approach is employed to find an appropriate minimization model of the
diagonal approximation of the Hessian matrix.
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2. For solving the given subproblem and consequently, finding the optimal
elements of the Hessian estimation effectively, an ADMM approach is
applied.

3. To establish the global convergence of the proposed QN method without
convexity assumption and what’s more to upgrade the performance of the
line search strategy, an improved version of the nonmonotone line search
of [39] is developed. To do so, we incorporate it by a simulated annealing
technique.

4. We evaluate performance of the proposed method on the CUTEr test
functions and the compressive sensing problem for which a smooth ap-
proximation model is rendered as well.

Mainstream theme of Section 2 is comprised of dealing with a diagonal QN
updating formula by proposing an efficient minimization problem and solving
it with the ADMM technique. Analyzing the global convergence according
to a modification of the nonmonotone line search of [39] incorporated by the
simulated annealing (SA) strategy is carried out in Section 3. Conducting
practical tests is performed in Section 4.

2 A diagonal ADMM-based quasi-Newton update

QN iterations for finding the solution of the unconstrained optimization prob-
lem

min
x∈Rn

f(x), (2.1)

are generally generated via

xk+1 = xk + sk, k = 0, 1, ..., (2.2)

initiated by some x0 ∈ Rn, with sk = αkdk where dk is a descent direction
and the step size αk > 0 is determined by a line search along dk [35]. In QN
methods, we have

d0 = −g0, dk = −B−1
k gk, k = 1, 2, ..., (2.3)

where gk = ∇f(xk) and Bk ∈ Rn×n is a positive definite approximation of
∇2f(xk). Especially, in diagonal matrix estimation of the Hessian, it needs to
find appropriate diagonal components Bki , i = 1, ..., n, to obtain Bk as follows:
Bk = diag(Bk1 ,Bk2 , ...,Bkn).

Associated with the measurement of the well-conditioning of a positive defi-
nite matrix A ∈ Rn×n, Byrd and Nocedal [17] suggested the following function:

ψ(A) = tr(A)− ln(det(A)), (2.4)

which has been essentially employed in the convergence analysis of the QN
algorithms. Taking (2.4) into account, Andrei [6] dealt with the following
minimization problem:

min
Bk∈D

ψ(Bk), s.t. s
T
kBksk = sTk yk, (2.5)
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in which D is the set of all diagonal n × n matrices. The constraint of (2.5)
is called the weak secant equation [20], being a scalar (relaxed) version of the
standard secant equation Bksk = yk. The model (2.5) yields the following
formula for the elements of Bk:

Bki = 1/(1 + λs2ki
), i = 1, ..., n,

where λ is the Lagrange multiplier computed from an extended conjugacy con-
dition [19] as follows:

λ =

{
r + ε, λ̂ < r,

λ̂, otherwise,

in which r = max
i=1,...,n, s2ki

̸=0

{
−1/s2ki

}
, ε is a small positive constant and also,

λ̂ = (tsTk gk+1 − yTk gk+1)/
∑n

i=1 yki
gk+1is

2
ki
, where t > 0 is the Dai-Liao param-

eter [19]. In another attempt, Babaie-Kafaki et al. [11] suggested the following
penalized version of (2.5):

min
Bk∈D

ψ(Bk) + ∥Bksk − yk∥2, (2.6)

where ∥.∥ stands for the ℓ2 norm. By this model, doing some arithmetic we
obtain

Bki
=

2skiyki − 1 +
√
(2skiyki − 1)2 + 8s2ki

4s2ki

, i = 1, ..., n,

which are positive and well-defined for ski
̸= 0.

As known, ADMM has been proven to be a powerful approach to address
a wide range of practical fields, particularly machine learning and signal pro-
cessing models [38]. Stimulated by merits of the ADMM approach, we intend
to broaden the model (2.6) for finding an appropriate diagonal approximation
for the Hessian of the cost function, in the sense of

min
B,C∈D

ψ(B) + ∥Csk − yk∥2, s.t. B = C,

for which the augmented Lagrangian function [35] can be rendered as

L(B,C, τ, µ) = ψ(B) + ∥Csk − yk∥2 − τT (B − C) +
µ

2
∥B − C∥2, (2.7)

where τ ∈ Rn is the vector of Lagrange multipliers (dual variables), B and C
respectively denote the vectors which contain the diagonal elements of B and
C, and µk > 0 is a constant. The ADMM-based technique finds the solution
of (2.7) by executing the next process in each iteration:

τk+1 = τk − µk(Bk − Ck), Bk+1 = argmin
B∈D
L(B,Ck, τk+1), (2.8)

Ck+1 = argmin
C∈D
L(Bk+1, C, τk+1), µk+1 = ρµk, (2.9)

where ρ ≥ 1 is a constant.
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To give some details for the solution process of (2.8) and (2.9), we have in
view the following componentwise definition of (2.7):

L(B,C, τ, µ) =

n∑
i=1

Bk+1,i − ln

(
n∏

i=1

Bk+1,i

)
+

n∑
i=1

(Ck+1,isk,i − yk,i)2

−
n∑

i=1

τk+1,i(Bk+1,i − Ck+1,i) +
µ

2

n∑
i=1

(Bk+1,i − Ck+1,i)
2.

Therefore, answer of the mentioned problems can be obtained exactly by solving
the equations ∂L

∂Bi
= 0 and ∂L

∂Ci
= 0, for i = 1, ..., n, yielding

Bk+1,i =
µkCk,i + τk+1,i − 1 +

√
(µkCk,i + τk+1,i − 1)2 + 4µk

2µk
, (2.10)

Ck+1,i = (2sk,iyk,i + µkBk+1,i − τk+1,i)/(2s
2
k,i + µk).

Note that for arbitrary constants a and b ̸= 0, we have a <
√
a2 + b2. Thus, if

we let a = µkCk,i+τk+1,i−1 and b =
√
4µk, then from (2.10) we have Bk+1,i > 0

which ensures the matrix Bk is positive semidefinite and consequently, the
search direction (2.3) is nonincreasing.

3 A nonmonotone line search technique with the
simulated annealing strategy

Imposing monotone reduction on the successive function values in the classical
iterative schemes for solving (2.1) may cause losing the efficiency when an
iteration confines close to the bottom of a narrow curved valley of the cost
function. Actually, a monotone scheme is forced to creep along the valley’s
floor, making too short steps or even undesired zigzagging trajectories [39]. As
a remedy, scholars put their best efforts into developing nonmonotone schemes
which guarantee the global convergence. One of the pioneering nonmonotone
schemes was proposed by Zhang and Hager [39], which specifies the smallest
integer h ≥ 0 fulfilling

f(xk + σhadk) ≤ Ck + γ(σha)gTk dk, (3.1)

where γ ∈ (0, 1) is the Armijo constant and

Ck+1 = (ηkqkCk + fk+1)/qk+1,

in which fk+1 = f(xk+1), the parameter ηk ∈ [ηmin, ηmax] with the constants
0 ≤ ηmin ≤ ηmax ≤ 1 handles the nonmonotonicity measure and

q0 = 1, qk+1 = ηkqk + 1,∀k ≥ 0. (3.2)

In a backtracking scheme, the step size αk is the largest member of {σja}j≥0

with a > 0 and σ ∈ (0, 1).
As a well-known classic metaheuristic algorithm, SA is a probabilistic tech-

nique for approximating the global optimum of an optimization model [15],
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being efficient practically and well-developed theoretically. It originates from
the impact of effective control of the temperature in the annealing procedure
of a substance. With a view of improving performance of the nonmonotone
scheme, here we incorporate the line search strategy (3.1) with the SA algo-
rithm. As a matter of fact, taking inspiration from SA, the line search accepts
the iterate xk+1 with some probability specified by the temperature parameter
even when it does not guarantee the condition (3.1). The probability of accept-
ing the iterates is gradually decreased by decreasing the temperature during
execution to enhance the exact exploration capabilities of the algorithm near
the optimal solution. To provide a detailed description of the nonmonotone
Armijo line search with the SA technique, the iterate xk+1 = xk + σhadk is
accepted when σh fulfills (3.1) or pk ≥ rk, in which

rk ∈ (e−ϑ, e−
1
ϑ ), (3.3)

for an integer ϑ ≥ 1, and pk = e−∆k/Tk , where ∆k = f(xk + σhadk) − Fk −
γ(σha)gTk dk, and Tk > 0 is the temperature parameter. Hence, the incorpora-
tive line search can be presented as follows:

f(xk + σhadk) ≤ Fk + γσhagTk dk − Tk ln rk, (3.4)

in which Tk = θkT0 with θ ∈ (0, 1), and T0 is the initial temperature, and also,

Fk+1 =
ηkqk(Fk − Tk ln rk) + fk+1

qk+1
,

with F0 = f(x0) and the parameter qk is defined by (3.2). Now, we are in a
position to spell out our algorithm.

Algorithm 1. The nonmonotone ADMM-based diagonal quasi-Newton algorithm
(DQNADMM)

Step 0: Choose an initial point x0 ∈ Rn, the line search parameters T0 > 0,
ϑ > 0, a > 0, γ, θ, σ ∈ (0, 1), and the tolerance ϵ > 0. Set d0 = −g0 and
k = 0.

Step 1: If ∥gk∥ < ϵ, then stop.

Step 2: Update the QN matrix Bk by (2.10).

Step 2: Compute the search direction dk by (2.3).

Step 3: Compute the step length αk satisfying (3.4).

Step 4: Set xk+1 = xk + αkdk.

Step 5: Set k = k + 1 and goto Step 1.

To establish global convergence of the iterative method (2.2) with the back-
tracking line search satisfying (3.4), hereafter, we suppose that the following
assumption holds.
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Assumption 1. (i) The cost function f is coercive. (ii) The gradient of f is
Lipschitz continuous; that is, there exists a positive constant L such that

∥g(x)− g(y)∥ ≤ L∥x− y∥, ∀x, y ∈ Rn.

(iii) The search direction dk satisfies the following conditions for some positive
constants c1 and c2:

dTk gk ≤ −c1∥gk∥2, (3.5)

∥dk∥ ≤ c2∥gk∥. (3.6)

Lemma 1. The backtracking line search strategy based on (3.4) is well-defined.

Proof. Firstly, we define Ak+1 : R+ → R, given by

Ak+1(t) =
(
t(Fk − Tk ln rk) + fk+1

)
/(t+ 1),

which yields
A′

k+1(t) =
(
Fk − Tk ln rk − fk+1

)
/(t+ 1)2.

Since, from (3.4) and (3.5), fk+1 ≤ Fk−Tk ln rk, we get A′
k+1 ≥ 0 for all t ̸= −1.

Therefore, since Ak+1(t) is nondecreasing, we have fk+1 = Ak+1(0) ≤ Ak+1(t),
for all t ≥ 0. Particularly, by taking t = ηkqk into account,

fk+1 = Ak+1(0) ≤ Ak+1(ηkqk) = Fk+1. (3.7)

By contrary, assume that for all j, thanks to Tk ln rk ≤ 0,

f(xk + σjadk) > Fk + aσjδgTk dk − Tk ln rk ≥ fk + aσjδgTk dk.

Therefore,
f(xk + σjadk)− fk

aσj
> δgTk dk.

Hence, there exists ϖ ∈ (0, 1) so that

g(xk +ϖσjadk)
T dk > δgTk dk.

Now, when k tends to infinity, (1 − δ)gTk dk > 0, which violates (3.5). In the
following, we find the constant α > 0 such that αk ≥ α, for all k ≥ 0.

Exploiting the Cauchy-Schwarz inequality and the mean value theorem, we
have

f(xk + αdk) = fk + αgTk dk +

∫ 1

0

α(g(xk + tαdk)− gk)T dkdt ≤ fk + αgTk dk

+ α∥dk∥
∫ 1

0

∥g(xk + tαdk)− gk∥dt ≤ Fk + αgTk dk +
L

2
α2∥dk∥2. (3.8)

By setting α =
αk

σ
in (3.8) and applying the fact that

f
(
xk +

αk

σ
dk

)
> Fk +

αk

σ
δgTk dk,

Math. Model. Anal., 28(4):673–688, 2023.
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from (3.5) and (3.6) we get

(δ − 1)gTk dk <
L

2

αk

σ
∥dk∥2 ≤

L

2

αk

σ

(
−c

2
2

c1

)
gTk dk.

Therefore,

αk >
2σc1
Lc22

(1− δ) := α,

which completes the proof. ⊓⊔

In light of the convergence analysis conducted in [22, 39], now we should
deal with the following theorem.

Theorem 1. For the sequence {xk}k≥0 defined by (2.2) with the backtracking
line search (3.4), {xk}k≥0 ⊂ Ω0 = {x ∈ Rn : f(x) ≤ f(x0) +

T0ϑ
1−θ} and for

every accumulation point x̄ of {xk}k≥0, we have ∇f(x̄) = 0.

Proof. Considering Theorem 2 of [5], the continuity of f yields the closedness
and consequently compactness of Ω0. From (3.4), we have

Fk+1 =
ηkqk
qk+1

(Fk − Tk ln rk) +
1

qk+1
fk+1 ≤

ηkqk
qk+1

(Fk − Tk ln rk)

+
1

qk+1
(Fk + γαkg

T
k dk − Tk ln rk) = Fk +

γαk

qk+1
gTk dk − Tk ln rk. (3.9)

Now, since F0 = f(x0), and due to (3.3), we get

fk+1 ≤ Fk − Tk ln rk ≤ F0 −
k∑

i=0

Ti ln ri ≤ f(x0) +
k∑

i=0

T0θ
iϑ ≤ f(x0) +

ϑT0
1− θ

,

which leads to {xk}k≥0 ⊂ Ω0. Exploiting (3.7) together with continuity of f
leads to Fk ≥ β, for some constant β. Alternatively, from (3.9),

− γαk

qk+1
gTk dk ≤ Fk − Fk+1 − Tk ln rk. (3.10)

Now, using Assumption 1(iii) and summing both sides of (3.10) from k = 0 to
K − 1, we get

c1γ

K∑
k=0

αk

qk+1
∥gk∥2 ≤ F0 − FK −

K∑
k=0

Tk ln rk ≤ F0 − FK +
ϑT0
1− θ

. (3.11)

On the other hand, according to (3.4) and since ηmax < 1,

qk+1 = 1 +

k∑
j=0

j∏
i=0

ηk−i ≤ 1 +

k∑
j=0

ηj+1
max ≤

∞∑
j=0

ηjmax =
1

1− ηmax
,

which coupled with (3.11),

c1γ(1− ηmax)

K∑
k=0

αk∥gk∥2 ≤ F0 − FK +
ϑT0
1− θ

.
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Now, when K tends to infinity, from (3.6),

lim
k→∞

αk∥gk∥2 = 0.

Besides, using Lemma 1, lim
k→∞

∥gk∥ = 0, and so, the proof is complete. ⊓⊔

In account of supposition (iii) of Assumption 1, Bki
(i = 1, 2, ..., n) given by

(2.10) must be uniformly bounded. In order to ensure boundedness of Bki
,

we can set Bki ← min {max{Bki , η}, 1/η}, for all i = 1, 2, ..., n, where η is an
enough small positive constant.

4 Numerical experiments

To uphold the theoretical results, here we compare performance of the DQ-
NADMM algorithm with the two well-known QN methods, namely, the modi-
fied memoryless BFGS (MMLBFGS) method and the modified limited memory
BFGS (MLMBFGS) method, both devised based on the modified secant con-
dition proposed in [30]. It can be observed that MMLBFGS and MLMBFGS
generate descent directions regardless of the line search. Furthermore, we con-
sider the diagonal QN methods proposed in [6], [11] and [26] in our comparisons,
here respectively named by DQNBN1, DQNBN2 and DQNMSG.

For DQNADMM, we set ρ = 10 and µ0 = 1 in (2.9). The scaling parameter
of MSMLBFGS and MSLMBFGS was tuned by

υk = min
{
1010,max

{
10−10, ∥sk∥/∥yk∥

}}
,

as suggested in [33]. Information of the hardware and software applied in
the implementations have been provided in [2]. Besides, line search has been
performed employing nonmonotone backtracking Armijo condition (3.4) using
a = 1, γ = 10−4, σ = 0.85, T0 = ∥gk∥ and ϑ = 2. The algorithms were ended
up to an iterate satisfying k > 10000 or ∥gk∥ < 10−5(1 + |fk|). To compare
efficiency of the algorithms, the CPU time (CPUT) and the total number of
function and gradient evaluations (TNF), introduced in [25], have been assessed
using the Dolan-Moré (DM) technique [21], following the notations of [2]. The
test problems data including 147 functions of the CUTEr library [23] is provided
in Table 1.

The results of comparisons are illustrated by Figure 1 upon which DQ-
NADMM decidedly outperforms the others with respect to the running time,
while considering TNF into account, DQNADMM and DQNMSG are compet-
itive and both of them are preferable to the other algorithms.

To assess the efficiency of the given nonmonotone line search technique,
we investigated performance of DQNADMM together with the nonmonotone
line search technique (3.4) and the nonmonotone approaches proposed in [39]
and [24]. The corresponding methods are here respectively called DQNADMM-
NMi, for i = 1, 2, 3. The results have been shown in Figure 2. According
to Figure 2(a), DQNADMM-NM1 is preferable to the others with respect to
TNF. Nevertheless, from Figure 2(b), it can be concluded that performing extra

Math. Model. Anal., 28(4):673–688, 2023.
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Table 1. Test problems data

Function n Function n Function n

AKIVA 2 DIXMAANH 3000 HUMPS 2
ALLINIT 4 DIXMAANK 3000 JENSMP 2
ALLINITU 4 DIXMAANL 3000 KOWOSB 4
ARGLINA 200 DIXMAANM 15 LOGHAIRY 2
ARGLINB 200 DIXMAANN 15 MANCINO 100
BARD 3 DIXON3DQ 10000 MARATOSB 2
BDEXP 5000 DJTL 2 MEXHAT 2
BDQRTIC 5000 DJTL 2 MOREBV 5000
BEALE 2 DMN15102 66 MSQRTALS 1024
BENNETT5 3 DMN15103 99 MSQRTBLS 1024
BIGGS3 6 DMN37142 66 NONCVXU2 5000
BIGGS5 6 DMN37143 99 NONDIA 5000
BIGGS6 6 DQRTIC 5000 NONDQUAR 5000
BIGGSB1 5000 DRCAV1LQ 4489 OSBORNEB 11
BOX 10000 DRCAV2LQ 4489 OSCIPATH 10
BOX3 3 DRCAV3LQ 4489 PALMER1D 7
BQP1VAR 1 ECKERLE4 3 PALMER2C 8
BQPGABIM 50 EG2 1000 PALMER3C 8
BQPGASIM 50 EIGENALS 2550 PALMER4C 8
BQPGAUSS 2003 EIGENCLS 2652 PALMER6C 8
BRATU1D 5003 ENGVAL1 5000 PALMER7C 8
BRKMCC 2 ENGVAL2 3 PALMER8C 8
BROWNAL 200 ERRINROS 50 PARKCH 15
BROWNBS 2 EXPFIT 2 PENALTY1 1000
BROWNDEN 4 EXTROSNB 1000 PENALTY2 200
BROYDN7D 5000 FLETCBV2 5000 PENALTY3 200
CHAINWOO 4000 FLETCBV3 5000 POWER 10000
CHENHARK 5000 FLETCHBV 5000 QUARTC 5000
CHNROSNB 50 FMINSRF2 5625 S308 2
CHWIRUT2 3 FMINSURF 5625 SINEVAL 2
CLIFF 2 GAUSS1LS 8 SINQUAD 5000
CLPLATEB 5041 GAUSS3LS 8 SISSER 2
CRAGGLVY 5000 GENHUMPS 5000 SNAIL 2
CUBE 2 GENROSE 500 SPARSINE 5000
CURLY10 10000 GROWTHLS 3 SPARSQUR 10000
CURLY20 10000 GULF 3 TESTQUAD 5000
CURLY30 10000 HAIRY 2 TOINTGOR 50
DECONVU 63 HATFLDD 3 TOINTGSS 5000
DENSCHNA 2 HATFLDE 3 TOINTPSP 50
DENSCHNB 2 HATFLDFL 3 TOINTQOR 50
DENSCHNC 2 HEART6LS 6 TQUARTIC 5000
DENSCHND 3 HEART8LS 8 TRIDIA 5000
DENSCHNE 3 HELIX 3 VARDIM 200
DENSCHNF 2 HILBERTA 2 VAREIGVL 50
DIXMAANA 3000 HILBERTB 10 VIBRBEAM 8
DIXMAANB 3000 HIMMELBB 2 WATSON 12
DIXMAANC 3000 HIMMELBF 4 WOODS 4000
DIXMAAND 3000 HIMMELBG 2 YFITU 3
DIXMAANG 3000 HIMMELBH 2 ZANGWIL2 2

computations to evaluate simulated annealing condition (to be used in (3.4))
is time-consuming. As a result, DQNADMM-NM1 is slightly competitive with
the other algorithms in the perspective of CPUT.
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(a) (b)

Figure 1. DM performance profile outputs for TNF (a) and CPUT (b) of DQNADMM,
MMLBFGS, MLMBFGS, DQNBN1, DQNBN2 and DQNMSG.

(a) (b)

Figure 2. DM performance profile outputs for TNF (a) and CPUT (b) of
DQNADMM-NM1, DQNADMM-NM2 and DQNADMM-NM3.

We also render an application of the presented method for the compressive
sensing (CS) problem as a practical issue. The CS problem is a rapidly growing
field that has picked up considerable attention in a broad-ranging of scientific
areas. CS addresses a framework for simultaneous sensing and compression of
finite-dimensional vectors. To be more specific, CS exploits the sparse signal by
solving an underdetermined linear system in the following unified formulation:

min
x∈Rn

1

2
∥ψx− y∥22 + ς∥x∥1, (4.1)

with the sampling matrix ψ ∈ Rm×n (m ≪ n), and the measurement vector
y ∈ Rm [16], where ∥.∥1 represents the ℓ1 norm and also, the regularization
parameter ς > 0 keeps the balance between the sparsity and the measurements
coupled with the additive white Gaussian noise. Smoothing strategies, as a
remedy to combat nonsmoothness of the ℓ1 regularizer, are one of the methods
for solving problem (4.1) [28,31].

Smooth approximations for optimization problems have been scrutinized for
decades including complementarity problems, variational inequalities, second-
order cone complementarity problems, semidefinite programming, semi-infinite
programming, optimal control, eigenvalue optimization, penalty methods and
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mathematical programs with equilibrium constraints; see [18] and references
therein, for instance. The smoothing techniques are advantageous thanks to
the rich theory and powerful methods provided for continuously differentiable
cost functions, and the guarantee for finding a local minimizer or stationary
point.

Recently, Bagul [13] proposed the following smooth transcendental approx-
imation of |x|:

φ(x) = x tanh (x/ν) , (4.2)

where the small constant ν > 0 is called smoothing parameter. As established
in Theorem 1 of [13], ||x| − φ(x)| < ν. Hence, the CS cost function can be
approximated by

min
x∈Rn

1

2
∥ψx− y∥22 + ς

n∑
i=1

φ(xi),

which is (smooth and) solvable via the given algorithm.

We generated the random test functions by choosing the signal dimension
equal to n = 213 and the sampling matrix ψ as the Hadamard matrix, utilizing
the approach of [4]. The initial point has been set as 0 ∈ Rn. We also set
ς = max(0.001∥ψT y∥∞, 2−8) in (4.1) and ν = 0.001 in (4.2). To make a mean-
ingful comparison on the performance of the methods, we scrutinized the out-
puts with respect to relative error (RelErr) [4]. Results are shown by Figure 3.
In the figure, the initial and the noisy signals have been pictured by subfigures
(a) and (b), respectively. Also, reconstructed signals (marked by the red circles)
obtained by DQNADMM, MMLBFGS, MLMBFGS, DQNBN1, DQNBN2 and
DQNMSG over the initial signals (marked by the blue endpoints) have been pic-
tured by subfigures (c)–(h), respectively. The figure reveals that DQNADMM,
DQNBN2 and MLMBFGS work better than the other techniques.

5 Conclusions

To take advantage of the significant aspects of the diagonal quasi-Newton up-
dates for handling the big data optimization models, inspired by [6], we have
proposed a minimization problem founded upon the popular Byrd-Nocedal
measure function as well as the secant equation. The proposed minimization
problem has been solved utilizing the alternating direction method of multi-
pliers strategy. Besides, we have addressed convergence of the algorithm using
the classic nonmonotone line search of [39] attached by the simulated annealing
algorithm. To evaluate the effect of our theoretical arguments, we performed
some computational tests using a class of problems of the CUTEr library. Re-
sults showed that the given method is computationally promising.

A special numerical experiment has been also performed on the well-known
compressive sensing problem for which a smooth transcendental function has
been employed to approximate the ℓ1 regularizer term. The outputs showed
that our algorithm is capable of delivering progress in sparse signal recovery.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3. CS visual output data.
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[21] E.D. Dolan and J.J. Moré. Benchmarking optimization software with
performance profiles. Math. Programming, 91(2, Ser. A):201–213, 2002.
https://doi.org/10.1007/s101070100263.

[22] W.L. Dong, X. Li and Z. Peng. A simulated annealing-based Barzilai-Borwein
gradient method for unconstrained optimization problems. Asia–Pac. J. Oper.
Res., 36(4):1950017, 2019. https://doi.org/10.1142/S0217595919500179.

[23] N.I.M. Gould, D. Orban and Ph.L. Toint. CUTEr: a constrained and uncon-
strained testing environment, revisited. ACM Trans. Math. Software, 29(4):373–
394, 2003. https://doi.org/10.1145/962437.962439.

[24] L. Grippo, F. Lampariello and S. Lucidi. A nonmonotone line search tech-
nique for Newton’s method. SIAM J. Numer. Anal., 23(4):707–716, 1986.
https://doi.org/10.1137/0723046.

[25] W.W. Hager and H. Zhang. Algorithm 851: CG−Descent, a conjugate gradient
method with guaranteed descent. ACM Trans. Math. Software, 32(1):113–137,
2006. https://doi.org/10.1145/1132973.1132979.

[26] L. Han, G. Yu and L. Guan. Multivariate spectral gradient method for
unconstrained optimization. Appl. Math. Comput., 201(1-2):621–630, 2008.
https://doi.org/10.1016/j.amc.2007.12.054.

[27] M.A. Hassan, W.J. Leong and M. Farid. A new gradient method via quasi-
Cauchy relation which guarantees descent. J. Comput. Appl. Math., 230(1):300–
305, 2009. https://doi.org/10.1016/j.cam.2008.11.013.

[28] P.J. Huber. Robust regression: asymptotics, conjectures and Monte Carlo. Ann.
Stat., 1(5):799–821, 1973. https://doi.org/10.1214/aos/1176342503.

[29] W.J. Leong, M. Farid and M.A. Hassan. Scaling on diagonal quasi-Newton
update for large-scale unconstrained optimization. B. Malays. Math. Sci. So.,
35(2):247–256, 2012.

[30] D.H. Li and M. Fukushima. On the global convergence of the BFGS method for
nonconvex unconstrained optimization problems. SIAM J. Optim., 11(4):1054–
1064, 2001. https://doi.org/10.1137/S1052623499354242.

[31] Y. Nesterov. Smooth minimization of nonsmooth functions. Math. Programming,
103(1):127–152, 2005. https://doi.org/10.1007/s10107-004-0552-5.

Math. Model. Anal., 28(4):673–688, 2023.

https://doi.org/10.1137/060657704
https://doi.org/10.1137/0726042
https://doi.org/10.1007/s10107-012-0569-0
https://doi.org/10.1007/s002450010019
https://doi.org/10.1137/0730067
https://doi.org/10.1007/s101070100263
https://doi.org/10.1142/S0217595919500179
https://doi.org/10.1145/962437.962439
https://doi.org/10.1137/0723046
https://doi.org/10.1145/1132973.1132979
https://doi.org/10.1016/j.amc.2007.12.054
https://doi.org/10.1016/j.cam.2008.11.013
https://doi.org/10.1214/aos/1176342503
https://doi.org/10.1137/S1052623499354242
https://doi.org/10.1007/s10107-004-0552-5


688 Z. Aminifard and S. Babaie-Kafaki

[32] A.M. Nezhad, R.A. Shandiz and A.E. Jahromi. A particle swarm-BFGS algo-
rithm for nonlinear programming problems. Comput. Oper. Res., 40(4):963–972,
2013. https://doi.org/10.1016/j.cor.2012.11.008.

[33] S.S. Oren and D.G. Luenberger. Self-scaling variable metric (SSVM) algorithms.
I. Criteria and sufficient conditions for scaling a class of algorithms. Management
Sci., 20(5):845–862, 1973. https://doi.org/10.1287/mnsc.20.5.845.

[34] S.S. Oren and E. Spedicato. Optimal conditioning of self-scaling
variable metric algorithms. Math. Programming, 10(1):70–90, 1976.
https://doi.org/10.1007/BF01580654.

[35] W. Sun and Y.X. Yuan. Optimization Theory and Methods: Nonlinear Program-
ming. Springer, New York, 2006.

[36] Z. Wei, G. Li and L. Qi. New quasi-Newton methods for unconstrained
optimization problems. Appl. Math. Comput., 175(2):1156–1188, 2006.
https://doi.org/10.1016/j.amc.2005.08.027.

[37] C. Xu and J.Z. Zhang. A survey of quasi-Newton equations and quasi-Newton
methods for optimization. Ann. Oper. Res., 103(1–4):213–234, 2001.

[38] Y. Xu, M. Liu, Q. Lin and T. Yang. ADMM without a fixed penalty param-
eter: faster convergence with new adaptive penalization. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan and R. Garnett
(Eds.), Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017.

[39] H. Zhang and W.W. Hager. A nonmonotone line search technique and its appli-
cation to unconstrained optimization. SIAM J. Optim., 14(4):1043–1056, 2004.
https://doi.org/10.1137/S1052623403428208.

[40] M. Zhu, J.L. Nazareth and H. Wolkowicz. The quasi-Cauchy rela-
tion and diagonal updating. SIAM J. Optim., 9(4):1192–1204, 1999.
https://doi.org/10.1137/S1052623498331793.

https://doi.org/10.1016/j.cor.2012.11.008
https://doi.org/10.1287/mnsc.20.5.845
https://doi.org/10.1007/BF01580654
https://doi.org/10.1016/j.amc.2005.08.027
https://doi.org/10.1137/S1052623403428208
https://doi.org/10.1137/S1052623498331793

	Introduction
	A diagonal ADMM-based quasi-Newton update
	A nonmonotone line search technique with the simulated annealing strategy
	Numerical experiments
	Conclusions
	References

