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Abstract. In this paper, we consider the proximal mapping of a bifunction. Under
the Lipschitz-type and the strong monotonicity conditions, we prove that the proximal
mapping is contractive. Based on this result, we construct an iterative process for
solving the equilibrium problem over the fixed point sets of a nonexpansive semigroup
and prove a weak convergence theorem for this algorithm. Also, some preliminary
numerical experiments and comparisons are presented.
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1 Introduction

Let C be a nonempty, closed, convex subset of a real Hilbert space H and
f : C × C → R be a bifunction such that f(x, x) = 0 for all x ∈ C. Such a
bifunction is called an equilibrium bifunction. The equilibrium problem for f
on C can be formulated as

find x∗ ∈ C such that f(x∗, y) ≥ 0, ∀y ∈ C. (EP (f, C))

It is well-known that equilibrium problems include, as special cases, many
important problems, such as optimization problems, variational inequalities,
saddle point problems, Nash equilibrium problems, fixed point problems, and
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others; see, for instance, [1, 9, 10, 11, 12, 14, 19, 20, 25] and references therein.
Equilibrium problems have been generalized and extensively studied in many
directions due to its importance. For example, in [2, 24], the authors consider
the problem of finding a common element of the solution set of equilibrium
problems and the solution set of fixed point problems.

Find x∗ ∈ C such that

{
fi(x

∗, y) ≥ 0, ∀y ∈ C, i = 1, . . . , p,

Tj(x
∗) = x∗, ∀j = 1, . . . , q,

where fi : C×C → R, i = 1, . . . , p, are equilibrium bifunctions and Tj : C → C,
j = 1, . . . , q, are nonexpansive mappings. This approach is very interesting
from the theoretical point of view, it gives us the ability to combine techniques
in the area of fixed point theory and the one of the equilibrium problems.

Another approach of equilibrium problems comes from real-world problems.
In [11, 12], Iiduka considered the power control problem for the CDMA data
networks. This problem can be modeled as an equilibrium problem with an
implicit constraint set. In this situation, all existing solving method for equi-
librium problems cannot be applied directly. To overcome this difficulty, the
author introduced a nonexpansive mapping T , the fixed point set of which is co-
incident with the constraint set. The initial equilibrium problem now becomes

find x∗ ∈ Fix(T ) such that f(x∗, y) ≥ 0 for all y ∈ Fix(T ), (1.1)

where Fix(T ) := {x ∈ H : T (x) = x} is the fixed point set of T . Although this
problem is very interesting, it is hard to solve. To the best of our knowledge,
there are very few methods for solving (1.1). In [13], the authors proposed a
subgradient method:

Choose x1 ∈ Rm. Set ρ1 := ‖x1‖ and n = 1.

Find yn ∈ Kn := {x ∈ Rm : ‖x‖ ≤ ρn + 1} such that

f(xn, yn) ≥ 0 and maxy∈Kn
f(y, xn) ≤ f(yn, xn) + εn,

xn+1 = T (xn − λnf(yn, xn)ξn); ρn+1 = max{ρn, ‖xn+1‖}.

Under the assumptions that {ξk} is bounded, i.e., ‖ξk‖ ≤ N , ∀n ≥ 1, λn ∈
[a, b] ⊂ (0, 2/N2), ∀n ≥ 1 and the set Ω := {u ∈ Fix(T ) : f(yn, u) ≤ 0, n ≥ 1}
is nonempty, the authors proved that the sequence {xn} generated by the
above algorithm converges to a solution of (1.1). However, as we can see, the
assumptions of this algorithm are very difficult to verify.

Very recently, in [8], Hai introduced a contraction-mapping algorithm for
solving (1.1). Under the assumptions that f is strongly monotone and Lipschitz
type continuous, the author proved that the mapping Uλ defined by

Uλ : C → C, x 7→ argmin
{
λf(x, y) +

1

2
‖y − x‖2 : y ∈ C

}
is contractive when λ is small enough. Moreover, the sequence {xn} generated
by

x0 ∈ C, xn+1 = UλnTx
n (1.2)
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converges to a solution of (1.1). Note that Algorithm (1.2) is still applicable in
the case when C is the set of common fixed points of a finite family of nonex-
pansive mappings {Tj}nj=1. In this case, it is sufficient to set T =

∑n
j=1 wjTj ,

where wj ∈ (0, 1),
∑n
j=1 wj = 1. However, this is not true if the family {Tj}

is infinite and how to solve the equilibrium problem over the fixed point set of
an infinite of family of nonexpansive mappings is still an open question.

In this paper, we will find the answer to this question in a special case,
when the constraint set C is given by the fixed point set of a nonexpansive
semigroup. More precisely, let T (s)s∈R+ be a nonexpansive semigroup on H
with nonempty fixed point set

⋂
s∈R+ Fix(T (s)). We consider the problem:

find x∗∈
⋂
s∈R+

Fix(T (s)) such that f(x∗, y)≥0 for all y ∈
⋂
s∈R+

Fix(T (s)). (1.3)

Motivated by the results in [8], we introduce a contraction algorithm for solving
problem (1.3). In contrast to [8], the main contribution of this paper is twofold:
the considered problem is more general and the convergence conditions are
weakened. In this paper, we assume that the bifunction f is Lipschitz-type
continuous on bounded sets instead of the whole space H. Moreover, to prove
the contraction of the proximal mapping Uλ, we introduce a new type of the
Lipschitz continuity, which is a relaxation of the one used in [8].

The rest of the paper is organized as follows. Section 2 briefly explains the
necessary mathematical background. In Section 3, we prove the contraction
of the proximal mapping. In the next section, we introduce a new algorithm
for solving (1.3) and perform a convergence analysis on it. We close the paper
with some computational experiments in Section 5.

2 Preliminaries

In this section, we present some basic concepts, properties, and notations that
we will use in the sequel. The reader is referred to, for example, [7, 21] for
more details. Let H be a real Hilbert space, whose inner product and norm are
denoted by 〈., .〉 and ‖.‖, respectively. Let C be a nonempty closed convex set
in H. For a given bifunction f : C × C → R, consider the problem of finding
x∗ ∈ C such that

f(x∗, y) ≥ 0, ∀y ∈ C, (2.1)

which is known as the equilibrium problem, considered and investigated by
Fan [6], Blum, Muu and Oettli [5, 17]. If we have f(x, y) := 〈F (x), y − x〉,
where F : C → C is a mapping, then problem (2.1) collapses to the problem

find x∗ ∈ C such that 〈F (x∗), y − x∗〉 ≥ 0, ∀y ∈ C,

which is called the variational inequality, introduced and studied by Stampac-
chia [23]. Let us start with some well known definitions arising from algorithms
for variational inequalities and equilibrium problems.

Definition 1. [20] (I) The mapping F : C → H is said to be

Math. Model. Anal., 24(1):43–61, 2019.
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1. γ-strongly monotone on C iff there exists a constant γ > 0 such that for
all x, y ∈ C,

〈F (x)− F (y), x− y〉 ≥ γ‖x− y‖2;

2. monotone on C iff for all x, y ∈ C,

〈F (x)− F (y), x− y〉 ≥ 0;

3. γ-strongly pseudomonotone on C iff there exists a constant γ > 0 such
that for all x, y ∈ C,

〈F (y), x− y〉 ≥ 0⇒ 〈F (x), x− y〉 ≥ γ‖x− y‖2;

4. pseudomonotone on C iff for all x, y ∈ C,

〈F (y), x− y〉 ≥ 0⇒ 〈F (x), x− y〉 ≥ 0.

(II) The bifunction f : C × C → R is said to be

1. γ-strongly monotone on C iff there exists a constant γ > 0 such that for
all x, y ∈ C,

f(x, y) + f(y, x) ≤ −γ‖x− y‖2;

2. monotone on C iff for all x, y ∈ C,

f(x, y) + f(y, x) ≤ 0;

3. γ-strongly pseudomonotone on C iff there exists a constant γ > 0 such
that for all x, y ∈ C,

f(x, y) ≥ 0⇒ f(y, x) ≤ −γ‖x− y‖2;

4. pseudomonotone on C iff for all x, y ∈ C,

f(x, y) ≥ 0⇒ f(y, x) ≤ 0.

The definitions of monotonicity for bifunctions are generalizations of the
ones for mappings. If the mapping F is γ-strongly monotone (monotone, γ-
strongly pseudomonotone, pseudomonotone) then so is the bifunction f(x, y) :=
〈F (x), y − x〉.

Definition 2. The mapping F : C → H is said to be Lipschitz continuous on
C iff there exists a constant L > 0 such that for all x, y ∈ C,

‖F (x)− F (y)‖ ≤ L‖x− y‖. (2.2)

If L = 1, then F is said to be nonexpansive and if L ∈ (0, 1), then we call F
contractive.
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Definition 3. The bifunction f : C × C → R is said to be Lipschitz-type
continuous on C iff it satisfies one of the following conditions:

f(x, y) + f(y, z)− f(x, z) ≥
p∑
i=1

〈ui(x, y), vi(y − z)〉 , ∀x, y, z ∈ C,

f(x, y) + f(y, z)− f(x, z) ≥
p∑
i=1

〈ui(y, z), vi(x− y)〉 , ∀x, y, z ∈ C, (2.3)

where vi : C → C, (i = 1, . . . , p) are αi-Lipschitz mappings satisfying vi(0) = 0,
ui : C × C → C, (i = 1, . . . , p) are mappings satisfying ui(x, y) + ui(y, x) = 0
and there exist βi > 0 such that ‖ui(x, y)‖ ≤ βi‖x−y‖, ∀x, y ∈ C, i = 1, . . . , p.

The constant L :=
p∑
i=1

αiβi is called the Lipschitz constant of the bifunction f .

We note that there exist several definitions of the Lipschitz-type continuity
of bifunctions [1, 4, 8, 15]. The Lipschitz-type condition used in this paper is
a relaxation of the one introduced in [8]. Moreover, if f(x, y) := 〈F (x), y −
x〉, where F : C → C is a mapping, then the Lipschitz-type condition (2.3)
collapses into the classical one (2.2). In the next Proposition, we establish
the relationship between the constants of the Lipschitz-type continuity and the
strong monotonicity of a bifunction.

Proposition 1. Let f : C × C → R be a L-Lipschitz-type continuous and
γ-strongly monotone equilibrium bifunction. Then γ ≤ L.

Proof. In the condition (2.3), let x = z 6= y. It implies that

−γ‖x− y‖2 ≥ f(x, y) + f(y, x) ≥ −
p∑
i=1

αiβi‖x− y‖‖y − x‖ = −L‖x− y‖2,

which implies the desired result. ut

Let f : C × C → R be a bifunction such that for all x ∈ C, the function
f(x, .) is proper, convex and lower semicontinuous. For a constant λ > 0, the
proximal mapping Uλ of the bifunction f is defined as

Uλ : C → C, Uλ(x) := argmin
{
λf(x, y) +

1

2
‖x− y‖2 : y ∈ C

}
. (2.4)

The term ”proximal mapping” was first used by Moreau [16] in 1963 to describe
the mapping

Proxg(z) = argmin
{
g(u) +

1

2
‖u− z‖2 : u ∈ C

}
,

where g is a lower semicontinuous, proper and convex function. This mapping
is known to be a very useful tool in optimization. In practice, the proximal
mapping can be computed easily by the Matlab Optimization Toolbox.

Math. Model. Anal., 24(1):43–61, 2019.
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Let g : C → R be a function. We call the set

∂g(x) := {w ∈ H : g(y)− g(x) ≥ 〈w, y − x〉, ∀y ∈ C}.

the subdifferential of g at x . The normal cone NC(x) of C at x ∈ C is

NC(x) := {q ∈ H : 〈q, y − x〉 ≤ 0, ∀y ∈ C}.

It is well known that NC(x) is nonempty, closed and convex. For all x ∈ H,
the following problem

min{‖y − x‖ : y ∈ C}

has a unique solution, denoted by PC(x). The mapping x 7→ PC(x) is called
the projection onto C.

Definition 4. A family {T (s) : s ∈ R+} of mappings from C into itself is
called a nonexpansive semigroup on C iff:

(i) The mapping T (s) is nonexpansive on C for all s ∈ R+;

(ii) T (0)x = x, ∀x ∈ C;

(iii) T (s1 + s2) = T (s1) ◦ T (s2), ∀s1, s2 ∈ R+;

(iv) for each x ∈ C, the function t 7→ T (t)x is continuous.

The following lemmas are needed for further investigation.

Lemma 1. [21] Let f : C → R be convex and subdifferentiable on C. Then,
x∗ is a solution of the problem min{f(x) : x ∈ C} if and only if 0 ∈ ∂f(x∗) +
NC(x∗).

Lemma 2. [22] Let C be a nonempty bounded closed convex subset of H and
let {T (s) : s ∈ R+} be a nonexpansive semigroup on C. Then, for any h ≥ 0

lim
s→∞

sup
y∈C

∥∥∥T (h)
(1

s

∫ s

0

T (t)y dt
)
− 1

s

∫ s

0

T (t)y dt
∥∥∥ = 0

Lemma 3. [18] Let {αk}, {βk}, {λk} be sequences of nonnegative numbers
satisfying

αk+1 ≤ (1− λk)αk + λktk + βk, ∀k ≥ 1.

If λk ∈ (0, 1), ∀k ≥ 1,
∑∞
k=1 λk = ∞, lim tk = 0 and

∑∞
k=1 βk < ∞, then

limk→∞ αk = 0.

3 Contraction of the proximal mapping

In this section, we give a sufficient condition for the contraction of the proximal
mapping Uλ defined by (2.4). Note that if f(x, y) := 〈F (x), y − x〉 then Uλ =
PC(x − λF (x)) for all x ∈ C. We first recall the contraction of the mapping
x 7→ PC(x− λF (x)).
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Proposition 2. Suppose that the mapping F : C → C is γ-strongly monotone
and L-Lipschitz continuous. Then for λ ∈ (0, 2γ

L2 ), the mapping x 7→ PC(x −
λF (x)) is contractive.

This result can be generalized as follows.

Theorem 1. Let the bifunction f : C × C → R be γ-strongly monotone and
L-Lipschitz-type continuous on C. Suppose that λ ∈ (0, γL2 ). Then for all
x, y ∈ C, we have

‖Uλ(x)− Uλ(y)‖ ≤ (1− λγ/8)‖x− y‖.

Proof. Since Uλ(x) is the unique solution of the problem

min{λf(x, y) + 0.5‖y − x‖2 : y ∈ C},

from Lemma 1, it follows that there exist w ∈ ∂f(x, .)(Uλ(x)), q ∈ NC(Uλ(x))
such that

0 = λw + Uλ(x)− x+ q.

From the definition of NC(Uλ(x)), for all y ∈ C we have

〈x− Uλ(x)− λw, y − Uλ(x)〉 ≤ 0.

Since f(x, .) is convex, applying the definition of ∂f(x, .)(Uλ(x)), we obtain

〈x− Uλ(x), y − Uλ(x)〉 ≤ 〈λw, y − Uλ(x)〉 ≤ λ [f(x, y)− f(x, Uλ(x))] . (3.1)

In (3.1), taking y = Uλ(y) ∈ C, we deduce

〈x− Uλ(x), Uλ(y)− Uλ(x)〉 ≤ λ [f(x, Uλ(y))− f(x, Uλ(x))] .

Analogously,

〈y − Uλ(y), Uλ(x)− Uλ(y)〉 ≤ λ [f(y, Uλ(x))− f(y, Uλ(y))] .

Adding the last two inequalities, we get

‖Uλ(x)− Uλ(y)‖2 ≤ λ [f(y, Uλ(x))− f(y, Uλ(y)) + f(x, Uλ(y))− f(x, Uλ(x))]

+ 〈Uλ(x)− Uλ(y), x− y〉.

We consider two cases:

Case 1: f(x, y) + f(y, z)− f(x, z) ≥
p∑
i=1

〈ui(x, y), vi(y − z)〉 , ∀x, y, z ∈ C.

It follows that

f(y, Uλ(x))− f(x, Uλ(x)) ≤ f(y, x) +

p∑
i=1

〈ui(x, y), vi(x− Uλ(x))〉 ,

f(x, Uλ(y))− f(y, Uλ(y)) ≤ f(x, y) +

p∑
i=1

〈ui(y, x), vi(y − Uλ(y))〉 .

Math. Model. Anal., 24(1):43–61, 2019.
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Adding these inequalities and using the γ-strong monotonicity of the bifunction
f , we arrive at

‖Uλ(x)− Uλ(y)‖2 ≤ λ[f(x, y) + f(y, x) +

p∑
i=1

〈ui(y, x), vi(y − Uλ(y))

−vi(x− Uλ(x))〉] + 〈Uλ(x)− Uλ(y), x− y〉

≤ λ[−γ‖x− y‖2 +

p∑
i=1

αiβi‖x− y‖‖x− y − Uλ(x) + Uλ(y)‖]

+
1

2
[‖x− y‖2 + ‖Uλ(x)− Uλ(y)‖2 − ‖x− y − Uλ(x) + Uλ(y)‖2].

Hence, using the fact that 0 < λ < γ
L2 , we have

‖Uλ(x)− Uλ(y)‖2 ≤ (1− λγ)‖x− y‖2 − ‖x− y − Uλ(x) + Uλ(y)‖2

+ Lλ‖x− y‖‖x− y − Uλ(x) + Uλ(y)‖

= (1− 3

4
λγ)‖x− y‖2 − [‖x− y − Uλ(x) + Uλ(y)‖ − 1

2
Lλ‖x− y‖]2

+
1

4
λ(L2λ− γ)‖x− y‖2 ≤ (1− 3

4
λγ)‖x− y‖2. (3.2)

Case 2: f(x, y) + f(y, z)− f(x, z) ≥
p∑
i=1

〈ui(y, z), vi(x− y)〉 , ∀x, y, z ∈ C.

It follows that

f(y, Uλ(x))− f(y, Uλ(y)) ≤ f(Uλ(y), Uλ(x))

+

p∑
i=1

〈ui(Uλ(x), Uλ(y)), vi(y − Uλ(y))〉 ,

f(x, Uλ(y))− f(x, Uλ(x)) ≤ f(Uλ(x), Uλ(y))

+

p∑
i=1

〈ui(Uλ(y), Uλ(x)), vi(x− Uλ(x))〉 .

Adding these inequalities and applying analogous arguments to Case 1, we
obtain

‖Uλ(x)−Uλ(y)‖2 ≤ ‖x−y‖2−λγ‖Uλ(x)−Uλ(y)‖2 − ‖x− y − Uλ(x) + Uλ(y)‖2

+ Lλ‖Uλ(x)− Uλ(y)‖‖x− y − Uλ(x) + Uλ(y)‖

≤ ‖x− y‖2 − 3

4
λγ‖Uλ(x)− Uλ(y)‖2.

Hence,

‖Uλ(x)− Uλ(y)‖2 ≤
(
1− 3λγ/(4 + 3λγ)

)
‖x− y‖2. (3.3)

Combining (3.2) and (3.3), we deduce that the function Uλ is contractive with

the constant τ =
√

1− 3λγ
4+3λγ . On the other hand, from Proposition 1, we have



Equilibrium Problem over the Fixed Point... 51

0 < λ < γ
L2 <

4
3γ . Hence,√

1− 3λγ

4 + 3λγ
< 1− λγ

4 + 3λγ
< 1− λγ

8
.

We obtain the desired result. ut

4 Contraction algorithm for the equilibrium over fixed
point sets

Let f : H × H → R be an equilibrium bifunction and {T (s)}s∈R+ be a non-
expansive semigroup of H. In this section, we introduce a new algorithm for
solving the problem

find x∗ ∈
⋂
s∈R+

Fix(T (s)) such that f(x∗, y) ≥ 0 for all y ∈
⋂
s∈R+

Fix(T (s)).

(4.1)

Assumption 4.1 We consider problem (4.1) under the following assumptions.
(A1) The bifunction f is γ- strongly monotone and L-Lipschitz-type con-

tinuous on H.
(A2) For all x ∈ H, the function f(x, .) is lower semicontinuous, convex

and the function f(., x) is weakly upper semicontinuous on H.
(A3) For any bounded sequences {xn} and {yn}, we have

sup

{
f(xn, yn)

‖xn − yn‖
: n ∈ N, ‖xn − yn‖ 6= 0

}
<∞.

(A4) The set
⋂
s∈R+ Fix(T (s)) is nonempty.

Under Assumption 4.1, problem (4.1) has a unique solution x∗. To find this
solution, we propose the following algorithm:

Algorithm 1. (Contraction algorithm for the equilibrium problem)
Step 0 (initialization) Set n = 0.
Choose x0 ∈ H arbitrarily and the sequences {λn}, {sn} ⊂ (0, 1) satisfying:∑∞
n=1 λn = ∞, limn→∞ λn = 0, limn→∞ sn = ∞, limn→∞

λn−1−λn

λ2
n

= 0,

limn→∞
sn−sn−1

snλ2
n

= 0, λn < λn−1, sn−1 < sn, ∀n ≥ 1.

Step 1 (iterative step) Given xn, compute xn+1 as follows:{
yn = 1

sn

∫ sn
0
T (t)xn dt;

xn+1 = Uλn
yn.

Step 2 Set n := n+ 1 and go back to Step 1.

Recall that Uλ is the proximal mapping of f , defined by

Uλ : H → H, Uλ(x) := argmin
{
λf(x, y) + 0.5‖y − x‖2 : y ∈ H

}
.

Before proving the convergence theorem, we need the following lemma:

Math. Model. Anal., 24(1):43–61, 2019.
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Lemma 4. [8] Suppose that the bifunction f satisfies assumption (A2) and
limn→∞ λn = 0, then for all x ∈ H, we have

lim
n→∞

Uλnx = x.

Now we are in a position to prove our convergence theorem.

Theorem 2. Suppose that Assumption 4.1 is satisfied. Then the sequence {xn}
generated by Algorithm 1 weakly converges to the unique solution of problem
(4.1).

Proof. Let

Tn : H → H, Tnx :=
1

sn

∫ sn

0

T (t)xdt, ∀x ∈ H, n ≥ 1.

Since λn → 0, without loss of generality, we can assume that λn ∈ (0, 2γ
L2 ), and

hence, from Theorem 1, it follows that the mapping UλnTn is contractive with
the constant rn = 1 − λn γ8 for all n ≥ 1. Let zn be the unique fixed point of
the mapping Uλn

Tn. First, we investigate the behavior of the sequence {zn}.
Claim 1. The sequences {zn} and {Tnzn} are bounded.
Let p ∈

⋂
s∈R+ Fix(T (s)). It is easy seen that p ∈ Fix(Tn) for all n ≥ 1. We

have

‖zn − p‖ ≤ ‖UλnTnz
n − UλnTnp‖+ ‖Uλnp− p‖

≤ (1− λnγ/8)‖zn − p‖+ ‖Uλnp− p‖. (4.2)

Applying a analogous argument to (3.1), we have

〈p− Uλn
p, y − Uλn

p〉 ≤ λn[f(p, y)− f(p, Uλn
p)], ∀y ∈ H,n ≥ 1.

Let y = p, the last inequality becomes

‖p− Uλnp‖2 ≤ λn|f(p, Uλnp)|. (4.3)

Since the sequence {Uλn
p)} is bounded (see Lemma 4), from Assumption (A3),

it follows that there exists a constant M > 0 such that |f(p, Uλn
p)| ≤ M‖p −

Uλn
p‖ for all n ≥ 1. Combining this and (4.3), we arrive at

‖p− Uλnp‖ ≤Mλn. (4.4)

From (4.2) and (4.4), we get

‖zn − p‖ ≤ (1− λnγ/8)‖zn − p‖+ λnM,

or equivalently,

‖zn − p‖ ≤ 8M/γ.

And so, the sequence {zn} is bounded. Moreover, for all n ≥ 1, we have

‖Tnzn−p‖ =
∥∥∥ 1

sn

∫ sn

0

T (t)zn dt−p
∥∥∥ ≤ 1

sn

∫ sn

0

‖T (t)zn−T (t)p‖ dt ≤ ‖zn − p‖,
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which implies the boundedness of {Tnzn}. Since the sequence {zn} is bounded,
there exists a subsequence {zni} ⊂ {zn} such that zni ⇀ z∗.
Claim 2: z∗ ∈

⋂
s∈R+ Fix(T (s)).

For all s > 0, we have

‖T (s)zni − zni‖ ≤ ‖T (s)zni − T (s)Tni
zni‖+ ‖T (s)Tni

zni − Tni
zni‖

+ ‖Tni
zni − zni‖ ≤ 2‖zni − Tni

zni‖+ ‖T (s)Tni
zni − Tni

zni‖. (4.5)

By a similar argument as in (4.3), we get

‖zni − Tniz
ni‖2 = ‖Uλni

Tniz
ni − Tniz

ni‖2

≤ λni
|f(Tni

zni , Uλni
Tni

zni)| = λni
|f(Tni

zni , zni)|.

From the boundedness of the sequences {Tniz
ni}, {zni} and Assumption (A3),

it implies that there exists a constant R > 0 such that

|f(Tni
zni , zni)| ≤ R‖Tni

zni − zni‖. (4.6)

Hence, ‖zni − Tni
zni‖ ≤ λni

R, which implies that

lim
i→∞

‖zni − Tniz
ni‖ = 0. (4.7)

On the other hand, using the boundedness of the sequences {zn} and {Tnzn},
from Lemma 2, we deduce

lim
i→∞

‖T (s)Tni
zni − Tni

zni‖ = 0. (4.8)

Combining (4.5), (4.7) and (4.8), we have

lim
i→∞

‖T (s)zni − zni‖ = 0.

Since zni ⇀ z∗, using the demi-closeness of T (s) at 0, we get z∗ ∈ Fix(T (s))
for all s > 0.

Claim 3: {zn} weakly converges to the unique solution of (4.1).
Let x∗ be the unique solution of (4.1). We will prove that x∗ = z∗. Indeed,

for all i ≥ 1, we have

‖zni − x∗‖2 = 〈zni − Tni
zni , zni − x∗〉+ 〈Tni

zni − Tni
x∗, zni − x∗〉

≤ 〈zni − Tniz
ni , zni − x∗〉+ ‖zni − x∗‖2.

Hence, applying a similar argument as in (3.1), we have

0 ≤ 〈zni − Tniz
ni , zni − x∗〉 = 〈Uλni

Tniz
ni − Tniz

ni , Uλni
Tniz

ni − x∗〉
≤ λni

[
f(Tniz

ni , x∗)− f(Tniz
ni , Uλni

Tniz
ni)
]
.

Since λni
> 0, we get

f(Tni
zni , x∗) ≥ f(Tni

zni , Uλni
Tni

zni) = f(Tni
zni , zni). (4.9)
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From (4.6) and (4.7), we have

f(Tniz
ni , zni)→ 0.

Combining (4.7) and the fact that zni ⇀ z∗, we get Tni
zni ⇀ z∗. In (4.9),

letting i→∞, using the weak upper semicontinuity of f(., x∗), we obtain

f(z∗, x∗) ≥ lim sup
i→∞

f(Tni
zni , x∗) ≥ lim sup

i→∞
f(Tni

zni , zni)

= lim
i→∞

f(Tniz
ni , zni) = 0.

Since x∗ ∈ Sol(f,
⋂
s∈R+ Fix(T (s))), z∗ ∈

⋂
s∈R+ Fix(T (s)) and f is strongly

monotone, we get f(z∗, x∗) ≤ 0. Thus, f(z∗, x∗) = 0, and hence, x∗ = z∗. Let
{znj} be an arbitrary subsequence of {zn} such that znj ⇀ ẑ. Repeating the
above argument, we obtain ẑ = x∗. Thus zn ⇀ x∗.

Claim 4: ‖xn+1 − zn‖ → 0.
We have

‖xn+1 − zn‖ = ‖UλnTnx
n − UλnTnz

n‖ ≤ (1− λnγ/8)‖xn − zn‖
≤ (1− λnγ/8)‖xn − zn−1‖+ λn‖zn−1 − zn‖/λn.

By Lemma 3, to prove ‖xn+1 − zn‖ → 0, it is sufficient to show that
‖zn−1 − zn‖/λn → 0. We have

‖zn−1 − zn‖ = ‖Uλn−1Tn−1z
n−1 − UλnTnz

n‖
≤ ‖Uλn

Tnz
n − Uλn

Tnz
n−1‖+ ‖Uλn

Tnz
n−1 − Uλn−1

Tn−1z
n−1‖

≤ (1− λn
γ

8
)‖zn − zn−1‖+ ‖Uλn

Tnz
n−1 − Uλn−1

Tn−1z
n−1‖,

or equivalently,

‖zn−1 − zn‖ ≤ 8

λnγ
‖UλnTnz

n−1 − Uλn−1Tn−1z
n−1‖. (4.10)

By a similar argument as in (3.1), we get

〈Uλn
Tnz

n−1 − Tnzn−1, Uλn
Tnz

n−1 − Uλn−1
Tnz

n−1〉
≤ λn

(
f(Tnz

n−1, Uλn−1Tnz
n−1)− f(Tnz

n−1, UλnTnz
n−1)

)
,

〈Uλn−1
Tnz

n−1 − Tnzn−1, Uλn−1
Tnz

n−1 − Uλn
Tnz

n−1〉
≤ λn−1

(
f(Tnz

n−1, UλnTnz
n−1)− f(Tnz

n−1, Uλn−1Tnz
n−1)

)
.

Adding the last two inequalities, we obtain

‖Uλn
Tnz

n−1 − Uλn−1
Tnz

n−1‖2 ≤ (λn−1 − λn)

×
{
f(Tnz

n−1, UλnTnz
n−1)− f(Tnz

n−1, Uλn−1Tnz
n−1)

}
. (4.11)

From the L-Lipschitz-type continuity of f , it is easy seen that

f(Tnz
n−1, Uλn

Tnz
n−1)− f(Tnz

n−1, Uλn−1
Tnz

n−1)

≤ f(Uλn−1Tnz
n−1, UλnTnz

n−1)

+ L‖Uλn−1
Tnz

n−1 − Uλn
Tnz

n−1‖‖Tnzn−1 − Uλn−1
Tnz

n−1‖. (4.12)
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Let p ∈
⋂
s∈R+ Fix(T (s)). Then p ∈ Fix(Tn) for all n ≥ 1. We have

‖Uλn−1Tnz
n−1 − p‖ ≤ ‖Uλn−1Tnz

n−1 − Uλn−1Tnp‖+ ‖Uλn−1p− p‖
≤ ‖zn−1 − p‖+ ‖Uλn−1

p− p‖.

Since {zn} is bounded and ‖Uλn−1p − p‖ → 0, the sequence {Uλn−1Tnz
n−1}

is bounded. The boundedness of {Uλn
Tnz

n−1} is obtained analogously. From
Assumption (A3), it follows that there exists a constant N > 0 such that

f(Uλn−1
Tnz

n−1, Uλn
Tnz

n−1) ≤ N‖Uλn−1
Tnz

n−1 − Uλn
Tnz

n−1‖. (4.13)

Combining (4.11), (4.12) and (4.13), we arrive at

‖UλnTnz
n−1 − Uλn−1Tnz

n−1‖ ≤ ξ(λn−1 − λn), (4.14)

where ξ := supn≥1{N + L‖Tnzn−1 − Uλn−1
Tnz

n−1‖} <∞.
On the other hand, we have

‖Uλn−1
Tnz

n−1 − Uλn−1
Tn−1z

n−1‖ ≤ ‖Tnzn−1 − Tn−1zn−1‖

≤
(

1

sn−1
− 1

sn

)∥∥∥∫ sn−1

0

T (t)zn−1 dt
∥∥∥+

1

sn

∥∥∥ ∫ sn

sn−1

T (t)zn−1 dt
∥∥∥.

Using the nonexpansivity of T (t), we get∥∥∥∫ sn−1

0

T (t)zn−1 dt
∥∥∥ ≤ ∫ sn−1

0

(
‖T (t)zn−1 − T (t)p‖+ ‖T (t)p‖

)
dt

≤
∫ sn−1

0

‖zn−1 − p‖+ ‖p‖dt = sn−1
(
‖zn−1 − p‖+ ‖p‖

)
and∥∥∥∫ sn

sn−1

T (t)zn−1 dt
∥∥∥ ≤ ∫ sn

sn−1

(∥∥T (t)zn−1 − T (t)p
∥∥+ ‖p‖

)
dt

≤
∫ sn

sn−1

(∥∥zn−1 − p∥∥+ ‖p‖
)

dt = (sn − sn−1)
(∥∥zn−1 − p∥∥+ ‖p‖

)
.

Hence,

‖Uλn−1Tnz
n−1 − Uλn−1Tn−1z

n−1‖ ≤ sn − sn−1
sn

η, (4.15)

where η := supn≥1{2 (‖zn − p‖+ ‖p‖)} < ∞. Combining (4.10), (4.14) and
(4.15), we have

‖UλnTnz
n−1 − Uλn−1Tn−1z

n−1‖ ≤ ‖UλnTnz
n−1 − Uλn−1Tnz

n−1‖

+ ‖Uλn−1Tnz
n−1−Uλn−1Tn−1z

n−1‖ ≤ ξ(λn−1 − λn) +
sn − sn−1

sn
η. (4.16)

Combining (4.10) and (4.16), we obtain

‖zn−1 − zn‖
λn

≤ 8

γ

(
λn−1 − λn

λ2n
ξ +

sn − sn−1
snλ2n

η

)
.

Using the conditions λn−1−λn

λ2
n

→ 0 and sn−sn−1

snλ2
n
→ 0, we get ‖z

n−1−zn‖
λn

→ 0,

which completes the proof. ut
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Remark 1. (a) One example of {λn} and {sn} satisfying the conditions in Al-
gorithm 1 is λn = 1/nρ and sn = nδ with ρ ∈ (0, 12 ) and δ > 0.
(b) To implement Algorithm 1, we do not have to calculate the constants of
the strong monotonicity and the Lipschitz-type continuity of f .

We can see that (A1), (A2) and (A4) are usual conditions, which are used in
many other works (see for example [8,19]). Let us give an examples to illustrate
condition (A3).

Example 1. Let f : Rm × Rm → R be a bifunction defined by

f(x, y) := 〈Φ(x, y), y − x〉+ ϕ(y)− ϕ(x), ∀x, y ∈ Rm,

where the mapping Φ : Rm ×Rm → Rm is bounded on a bounded set and ϕ is
a L-Lipschitz continuous mapping on Rm. The bifunction f in this example is
a generalized form of the cost bifunctions in Nash-Cournot models considered
in [1, 3, 8, 19,20]. For any bounded sequences {xn} and {yn}, we have

|f(xn, yn)| = |〈Φ(xn, yn), yn − xn〉+ ϕ(yn)− ϕ(xn)| ≤ σ‖xn − yn‖,

where σ := sup {‖Φ(xn, yn)‖+ L : n ≥ 1} <∞. Hence, f satisfies (A3).

Next, we consider the case when f is Lipschitz-type continuous on bounded
sets. More precisely, instead of using condition (A1), we assume that:
(A1’) The bifunction f is γ-strongly monotone on H and Lipschitz-type con-
tinuous on each bounded set of H.
Let p ∈

⋂
s∈R+ Fix(T (s)) and {λn} be a nonnegative sequence satisfying

limn→∞ λn = 0. From Assumption (A3), it follows that there exists a constant
θ > 0 such that |Uλn

p− p| ≤ θλn for all n ≥ 1. Denote

D := {z ∈ H : ‖z − p‖ ≤ 8θ/γ} .

Let L be the Lipschitz constant of f on S. Since λn → 0, there exists a number
n0 ≥ 1 such that for all n ≥ n0, we have λn ∈ (0, γ/L2). For all z ∈ D and
n ≥ n0, we have

‖UλnTnz − p‖ ≤ ‖UλnTnz − UλnTnp‖+ ‖Uλnp− p‖

≤ (1− λn
γ

8
)‖z − p‖+ λnθ ≤ (1− λn

γ

8
)θ

8

γ
+ λnθ = θ

8

γ
,

which implies Uλn
Tn(D) ⊂ D for all n ≥ n0. Now, consider the sequence

{xn}n≥n0
generated by

xn0 ∈ D, xn+1 = Uλn
Tnx

n. (4.17)

Corollary 1. Suppose that assumptions (A1’),(A2)–(A4) hold. Let {λn} and
{sn} be the sequences satisfying the conditions in Algorithm 1. Then the
sequence {xn}n≥n0

generated by (4.17) weakly converges to the unique solution
of problem (4.1).

Proof. The proof directly follows from Theorem 1 with the notion that zn and
xn belongs to D for all n ≥ n0. ut
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5 Numerical experiments

In this section, we give some examples to test the effectiveness of the proposed
algorithm. Some comparisons of our method with the existing ones are also
reported. All codes are written in Matlab 2010 and run on a personal computer
with Intel Core2 TM Quad Processor Q9400 2.66Ghz 4GB Ram.

Example 2. Let H = R3, f : H ×H → R is defined by

f(x, y) := 〈Ax+ By, y − x〉, ∀x, y ∈ H,

where

A =

10 7 5
6 8 5
5 7 7

 , B =

8 6 4
5 6 4
4 6 5

 .

The nonexpansive semigroup {T (t)}t∈R+ is defined by

T (t)x =

cos t − sin t 0
sin t cos t 0

0 0 1

x1x2
x3

 , ∀x ∈ R3, t > 0.

Choose sn := n for all n ≥ 1. We have

Tn : H → H, Tnx :=
1

sn

∫ sn

0

T (t)xdt =
1

n

x1 sinn+ x2(cosn− 1)
x1(1− cosn) + x2 sinn

nx3

 .

We will show that all the conditions of Algorithm 1 are satisfied. It is obvious
that {T (t)}t∈R+ is a nonexpansive semigroup with nonempty fixed point set Ω.
Since A−B is positive definite, there exists a constant γ > 0 such that for all
x, y ∈ H, we have

f(x, y) + f(y, x) = 〈Ax+ By, y − x〉+ 〈Ay + Bx, x− y〉
= −〈(A−B)(x− y), x− y〉 ≤ −γ‖x− y‖2,

i.e., the bifunction f is strongly monotone. Next, for all x, y, z ∈ H, it holds
that

f(x, y) + f(y, z)− f(x, z) = 〈Ax+ By, y − x〉+ 〈Ay + Bz, z − y〉
− 〈Ax+ Bz, z − x〉 = 〈B(y − z), y − x〉+ 〈A(y − x), z − y〉.

Hence, f is L-Lipschitz type continuous on H where L = ‖A‖+‖B‖. We apply
Algorithm 1 to solve the problem EP (f,Ω). Note that in this example, the
subproblems of Algorithm 1 can be rewritten as

yn = Tnx
n, xn+1 = (I + 2λnB)

−1
(I + λnB− λnA)yn,

where I is the identity. Choose λn = 1
(n+10)1/4

, x0 = (30, 30, 30)T and the

stopping criteria ‖xn−x∗‖ < 10−4, where x∗ = (0, 0, 0)T is the unique solution
of EP (f,Ω). The result is presented in Table 1. To investigate the effect of
starting points, we test Algorithm 1, using the different x0. The results are
presented in Table 2. As we can see, the number of iterations is not affected
much by the starting points.
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Table 1. Iterations of Algorithm 1 with starting point x0 = (30, 30, 30)T .

Iter(k) x1
k x2

k x3
k ‖xk − x∗‖

0 30.0000 30.0000 30.0000 51.9615
1 -2.8049 0.3908 -3.2234 4.2907
2 0.1085 0.3396 -0.0957 0.3691
3 -0.0221 0.0538 -0.0275 0.0644
4 0.0008 0.0028 -0.0001 0.0030
5 0.0000 0.0000 0.0001 7.8171.10−5

Table 2. Iterations of Algorithm 1 with the different starting points x0.

x0 Iterations

(100, 100, 100)T 6
(−100,−100,−100)T 6
(50,−50, 50)T 7
(10, 50,−100)T 6

Example 3. In this example, we compare the performance of our algorithm with
the gradient projection method (shortly GPM):

x0 ∈ C, xn+1 = argmin{λf(x, y) +
1

2
‖y − x‖2 : y ∈ C}. (5.1)

It is well known that under the assumptions that f is L-Lipschitz type contin-
uous, γ-strongly monotone and λ ∈ (0; 2γ

L2 ), Algorithm (5.1) linearly converges
to the unique solution of EP (f, C) (see [1]).

Consider the problem EP (f, C), where

C := {x ∈ Rp, x1 = x2 = 0;xi ∈ R, ∀i = 3, . . . , p}, f : C × C → R,
f(x, y) := 〈Ax+ By, y − x〉, B := M + pI, A = B + pI,

with M = (mij)p×p, mij = 1 for all i, j = 1, . . . , p, I is the identity. It is easy
seen that f is (‖A‖+‖B‖)-Lipschitz-type continuous and p-strongly monotone.
Using λ = 1.9p/(‖A‖+ ‖B‖)2, we can see that all the conditions of Algorithm
(5.1) are satisfied.

Next, using the idea in [26], we choose

T (s) : Rp → Rp, T (s)x :=


e−s 0 0 · · · 0
0 e−s 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1




x1
x2
x3
· · ·
xp


for all s ≥ 0 and x = (x1, . . . , xp)

T ∈ Rp.
The problem EP (f,

⋂
s∈R+ Fix(T (s))) becomes EP (f, C) and the proposed
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algorithm can be rewritten as x0 ∈ H; yn =
(

1−e−n

n x1; 1−e−n

n x2;x3; . . . ;xp

)T
;

xn+1 = (I + 2λnB)
−1

(I + λnB− λnA)yn.

We choose the step size of Algorithm 1: λn = 1
(n+10)0.25 . In the both algorithms,

we use the same starting points x0, which are randomly generated and use the
same stopping criteria ‖xn − x∗‖ ≤ ε, where x∗ = (0, . . . , 0)T is the unique
solution of EP (f, C), ε = 10−4. The results are presented in Table 3.

Table 3. Comparison of algorithms in Example 3.

GPM Algorithm 1

CPU times (s) Iterations CPU times (s) Iterations

p = 5 0.1681 40 0.0024 7
p = 10 0.1796 40 0.0028 9
p = 50 0.2021 46 0.0073 14
p = 100 0.2777 47 0.0239 15
p = 200 0.5428 48 0.1542 15
p = 500 3.1449 51 1.1849 16
p = 1000 9.6368 52 5.9918 17

From Table 3, we can see that: the computational time of the gradient
projection method is greater than that of Algorithm 1. This happens because
the constrained optimization problem at each iteration of Algorithm (5.1) is
replaced by the unconstrained one in Algorithm 1.

6 Conclusions

In this paper, we give a sufficient condition for the contraction of the proximal
mapping of a bifunction. Using this mapping, we propose a contraction algo-
rithm for the equilibrium problem over the fixed point set of a nonexpansive
semigroup. To the best of our knowledge, this problem has not been considered
before. The main points of the proposed algorithms are the followings:

1. At each step of the algorithm, we avoid using the metric projection,
which, in general, is computationally expensive. Instead, we only have to
compute the value of a nonexpansive mapping at each step.

2. In our algorithm, the constrained subproblems are replaced by the un-
constrained ones, which are easier to solve.

3. The bifunction involved need not to be Lipschitz-type continuous on the
whole constraint set. We only require the local Lipschitz-type continuity
of this bifunction.

On the other hand, the Lipschitz-type condition used in this paper seems rather
complicated. Proving the contraction of the proximal mapping under a simpler
condition is more delicate and further investigations are necessary.
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