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Abstract. To solve the ill-posed integral equations, we use the regularized collo-
cation method. This numerical method is a combination of the Legendre polyno-
mials with non-stationary iterated Tikhonov regularization with fixed parameter. A
theoretical justification of the proposed method under the required assumptions is
detailed. Finally, numerical experiments demonstrate the efficiency of this method.

Keywords: ill-posed problems, iterative regularization scheme, Legendre collocation

method, integral equations of the first kind.

AMS Subject Classification: 47A52; 65R30.

1 Introduction

Integral equations are used in various disciplines of science and engineering.
Several physical models, such as spectroscopy, image processing, cosmic radia-
tion, machine learning, and radiography can be modeled as a Fredholm integral
equation of the first kind [11,18,23].

Now, we consider the integral equation of the first kind

Tx(s) =

∫ b

a

k(s, t)x(t)dt = y(s), s ∈ [a, b] , (1.1)

where k(., .) ∈ C( [a, b]2), y ∈ H := L2([a, b],R) are known functions and x is
the unknown function to be determined in H.
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We assume that the kernel k(., .) of T is non-degenerate. Hence, T is a
compact operator of infinite rank from H to itself. In this case, T does not
closed range R(T ), that is, R(T ) ̸= R(T ), and therefore the problem of finding
the best approximate solution x+ of problem (1.1) is ill-posed, in the sense
that, even minor perturbations of y can change the solution drastically. For
more details, we refer the reader to [4, 10, 13]. As a result, it is important to
high-precision methods for numerically solving them.

Many regularization procedures have been employed to estimate the so-
lution of ill-posed equation (1.1) in recent years, including multi-scale meth-
ods [2, 17, 24], projection methods [6, 16, 20, 21], multilevel methods [5, 12],
collocation methods [14,15], and so on.

Collocation methods, as we all know, are a strong tool for solving integral
and differential equations in a variety of fields. These numerical methods are
considered one of the most famous approximate methods for solving well-posed
problems because of their ease of application.

In this paper, we consider the issue of numerically solving these integral
equations by applying regularized collocation method. The proposed method
is based on the combination of iterative regularization scheme and Legendre
collocation method and it leads to fast convergence of the solutions of the
discrete equations, and it is different from the collocation methods proposed
in [14,15]. The methods in [14,15] are mainly based on the quadrature formula
to approximate the integral equation (1.1) at collocation points s1, s2, ..., sn ∈
[a, b] and employing the Tikhonov regularization to treat the ill-posedness of
the discrete equation to obtain a stable approximate solution.

In the present work, we will rely mainly on discrete Legendre expansion
at collocation points s1, s2, ..., sn to get the ill-posed discrete equation Tnx =
yn and apply the nonstationary iterated Tikhonov regularization with fixed
parameter for obtaining a stable approximate solution.

To extract valuable and relevant information from the model presented by
ill-posed equations (1.1), the numerical solution of these equations necessitates
the application of discretization techniques. This can be accomplished in one
of two ways: regularization-discretization (RD) or discretization-regularization
(DR). The first method is well studied in the literature for general linear ill-
posed problems, we recommend the reader to [4] for further information. In this
work, we will adopt the second strategy. In general, the collocation methods
are treating linear ill-posed problems by converting these problems into finite-
dimensional systems. This discretization gives rise to very ill-conditioned linear
systems of algebraic equations. In most instances, the obtained linear systems
must be regularized to compute a meaningful approximation solution possible.
One of the most often used regularization approaches is iterative regularization
scheme [3,7, 8, 9, 22].

This paper is organized as follows. We introduce the concept of Legendre
polynomials and describe the iterative regularization scheme for linear ill-posed
equations in Section 2. In Section 3, we present a collocation method for solving
the corresponding integral equation of the first kind. We study the convergence
of approximate solutions and develop a priori choice of the regularization pa-
rameter strategy in Section 4. Finally, in Section 5, numerical examples are



A Collocation Method for Fredholm Integral Equations 239

given, which illustrate the efficiency of our method and confirm the theoretical
analysis of this paper.

2 Preliminaries

This section provides a brief description of the properties of Legendre polynomi-
als and presents some results of nonstationary iterated Tikhonov regularization
that we will apply in our study.

2.1 Legendre polynomials

In this subsection, we discuss some properties of Legendre polynomials. We
suggest the reader to [1, 19] for more information.

The Legendre polynomials Lk, are defined by the recursion relation

Lk+1(t) =
2k + 1

k + 1
tLk(t)−

k

k + 1
Lk−1(t), k = 1, 2, ...,

where L0(t) = 1 and L1(t) = t. The set {Lk}k∈N is a complete orthogonal
system in the Hilbert space L2(−1, 1).

The normalized shifted Legendre polynomials L̂k are given on the interval
[a, b] by

L̂k(t) =

√
2k + 1

b− a
Lk(

2

b− a
t− a+ b

b− a
), t ∈ [a, b].

Moreover, the set of normalized shifted Legendre polynomials is complete
orthonormal system in the Hilbert space H.

For any function f ∈ H its formal series in terms of the system
{
L̂k

}
k∈N

is

f(t) =

∞∑
k=0

fkL̂k(t), fk =

∫ b

a

f(s)L̂k(s)ds.

Thus, the orthogonal projection of order n for the function f is defined by

Pnf(t) =

n∑
k=0

fkL̂k(t). (2.1)

By completeness of the system
{
L̂k

}
k∈N

, we have the property

∥f − Pnf∥H → 0 as n → ∞. (2.2)

Further, if f ∈ Hs for some s > 0, then

∥f − Pnf∥H ≤ cn−s ∥f∥Hs , (2.3)

where c > 0 and Hs = {h ∈ H, h(l) ∈ H for l = 1, 2, ..., s} is the Sobolev space
whose norm is

∥h∥Hs =

√√√√ s∑
l=0

∥∥h(l)
∥∥2
H.

Math. Model. Anal., 28(2):237–254, 2023.
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We review the Legendre Gauss (LG) formula that can be used to calculate
the numerical value of an integral in the interval [−1, 1]. In this case, the

nodes
{
t̂k
}n
k=0

are the roots of the Legendre polynomial Ln+1 and the weights

{ŵk}nk=0 are given by

ŵk =
2

(1− t̂2k)
[
L′
n+1(t̂k)

]2 , k = 0, 1, ..., n,

where n is a positive integer. Thus, the nodes and the weights over an interval
[a, b] are given by

tk =
2

b− a
t̂k − a+ b

b− a
, wk =

b− a

2
ŵk for k = 0, 1, ..., n.

Now, we turn to the discrete Legendre approximation. For this, we can
define discrete semi-inner product and its corresponding semi-norm in C ([a, b])
as follows:

⟨f, g⟩n,w =

n∑
k=0

wkf(tk)g(tk), ∥f∥n,w =

√√√√ n∑
k=0

wkf2(tk).

We have 〈
L̂i, L̂j

〉
n,w

=

{
0, i ̸= j,
1, i = j.

(2.4)

2.2 Iterative regularization scheme

In this work, we assume y ∈ R(T ) (The range space of T ). If T is not injective,
then the integral equation (1.1) will have several solutions, and in that case, one
looks for the minimal norm solution (best-approximate solution) x+ ∈ N (T )⊥

which satisfies Tx+ = y, that is, the unique x+ ∈ H such that∥∥x+
∥∥
H = min

x∈Sy

∥x∥H ,

where N (T ) denotes the null space of T and Sy = {x ∈ H : Tx = y}.
Let T+ be the generalized inverse of T which associates each y ∈ D(T+) =

R(T )⊕ R(T )⊥ to the best-approximate solution x+ ∈ R(T+) = N (T )⊥. For
obtaining a stable approximation solution to the best-approximate solution
x+ := T+y, we replace the generalized inverse T+ by bounded operators of the
form RmT ∗, such that

lim
m→∞

RmT ∗y = T+y, y ∈ D(T+),

where T ∗ denotes the adjoint of T defined by

T ∗y(t) =

∫ b

a

k(s, t)y(s)ds, t ∈ [a, b] .
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The family {RmT ∗}m∈N of bounded operators is called a regularization
family for T , and xm := RmT ∗y is called a regularized solution of the ill-
posed problem (1.1). Now we will consider the iterated regularization method
(see, [7, 9, 22])

x0 = 0, (T ∗T + αI)xk = αxk−1 + T ∗y for k = 1, 2, ...,m, (2.5)

where the number of iteration steps m is used as a regularization parameter
and α > 0 a fixed parameter.

Remark 1. If T is a self-adjoint operator then the iterated regularization method
(2.5) may be replaced by

x0 = 0, (T + αI)xk = αxk−1 + y for k = 1, 2, ...,m. (2.6)

Since T ∗y = T ∗Tx+ we’ll start by pointing out that,

x+ − xm = rα,m(T ∗T )x+ where rα,m(λ) = (α/(λ+ α))
m
.

An easy calculation shows that

sup
λ∈[0,∞)

rα,m(λ) ≤ 1 and sup
λ∈[0,∞)

rα,m(λ)λu ≤ αuuum−u, 0 < u < m. (2.7)

If the solution x+ of (1.1) fulfills a source condition

x+ = (T ∗T )vz, ∥z∥H ≤ ρ < ∞, 0 < v < m, (2.8)

then ∥∥x+ − xm

∥∥
H ≤ ρ sup

λ∈[0,∞)

|rα,m(λ)λv| ≤ ραvvvm−v. (2.9)

We denote by (σi, ui, vi) the singular system of T , i.e., (σi) is a sequence of
positive real numbers such that σi → 0 and {ui}, {vi} are orthonormal basis
of orthogonal complements to the null space N (T ) and R(T ) respectively.

Since Tui = σivi, T
∗vi = σiui, we have

xm = RmT ∗y =

∞∑
j=1

1− rα,m(σ2
j )

σj
⟨y, vj⟩uj .

Suppose yδ is the noisy data satisfying
∥∥y − yδ

∥∥
H ≤ δ for a known error

bound δ > 0. For this case the m-th step iterative approximate solution xδ
m is

given by the following relation:

xδ
m = RmT ∗yδ =

∞∑
j=1

1− rα,m(σ2
j )

σj

〈
yδ, vj

〉
uj .

Moreover, straightforward calculations show that

xδ
m − xm =

∞∑
j=1

1− rα,m(σ2
j )

σj

〈
yδ − y, vj

〉
uj .

Math. Model. Anal., 28(2):237–254, 2023.
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Because r′α,m is monotonically non-decreasing on [0,∞), rα,m is a convex

function. Therefore
1− rα,m(λ)

λ
≤ −r′α,m(0) =

m

α
. Thus,

∥∥xδ
m − xm

∥∥2
H =

∞∑
j=1

(
1− rα,m(σ2

j )

σj

)2 ∣∣〈yδ − y, vj
〉∣∣2

≤ sup
λ∈[0,∞)

(
1− rα,m(λ)

λ

)
sup

λ∈[0,∞)

(1− rα,m(λ)) δ2

≤ m

α
δ2,

and therefore, ∥∥xδ
m − xm

∥∥
H ≤

√
m

α
δ. (2.10)

3 Collocation method

In this section, we discuss the collocation regularized method for solving ill-
posed integral equations of the first kind (1.1). To this end, for any positive
integer n, let {tk}nk=0 and {wk}nk=0 the LG nodes and LG weights respectively.

Now, we define the operators Qn : H → Rn+1 by

Qnh = (
√
w0Pnh(t0),

√
w1Pnh(t1), ...,

√
wnPnh(tn))

T
,

where h ∈ H, and Pn is the orthogonal projection defined in (2.1).

Lemma 1. Let n is a positive integer and let {tk}nk=0, {wk}nk=0 the LG nodes
and LG weights respectively. Then, the operator Qn is a bounded operator of
norm almost 1 and its adjoint operator is given by

Q∗
n : Rn+1 → H, Q∗

nu(.) =

n∑
i=0

ui
√
wi

n∑
j=0

L̂j(ti)L̂j(.),

where u ∈ Rn+1 and L̂j , j = 0, 1, ...n are normalized shifted Legendre polyno-
mials.

Proof. Let ∥.∥2 be the Euclidean norm in Rn+1. For every h ∈ H,

∥Qnh∥22 =

n∑
i=0

(
√
wiPnh(ti))

2
=

n∑
i=0

wi (Pnh(ti))
2
.

By (2.1), we have

∥Qnh∥22 =

n∑
i=0

wi

(
n∑

k=0

hkL̂k(ti)

)2

=

n∑
i=0

wi

n∑
k=0

hkL̂k(ti)

n∑
j=0

hjL̂j(ti)

=

n∑
k=0

hk

n∑
j=0

hj

n∑
i=0

wiL̂k(ti)L̂j(ti).



A Collocation Method for Fredholm Integral Equations 243

Using the formula (2.4),

∥Qnh∥22 =

n∑
k=0

hk

n∑
j=0

hj

〈
L̂k, L̂j

〉
n,w

=

n∑
k=0

h2
k.

Since ∥h∥2H =
∞∑
k=0

h2
k, we have ∥Qnh∥2 ≤ ∥h∥H, so that Qn is a bounded

operator and ∥Qn∥2 ≤ 1. Moreover,

⟨Qnh, u⟩2 =

n∑
i=0

ui
√
wiPnh(ti) =

n∑
i=0

ui
√
wi

n∑
j=0

hjL̂j(ti),

where hj =
∫ b

a
h(s)L̂j(s)ds. Therefore,

⟨Qnh, u⟩2 =

n∑
i=0

ui
√
wi

n∑
j=0

∫ b

a

h(s)L̂j(s)dsL̂j(ti) =

∫ b

a

h(s)

n∑
i=0

ui
√
wi

×
n∑

j=0

L̂j(ti)L̂j(s)ds =

〈
h,

n∑
i=0

ui
√
wi

n∑
j=0

L̂j(ti)L̂j

〉
H

= ⟨h,Q∗
nu⟩H .

This completes the proof. ⊓⊔

Remark 2. The product of operators Q∗
n and Qn is Pn. Indeed for h ∈ C([a, b]),

we have

Q∗
nQnh(.) =

n∑
i=0

(
√
wi

n∑
k=0

hkL̂k(ti)

)
√
wi

n∑
j=0

L̂j(ti)L̂j(.)

=

n∑
k=0

n∑
j=0

hkL̂j(.)
〈
L̂k, L̂j

〉
n,w

= Pnh(.).

Assume that y is a continuous function. Then, analogous to the method
in [14, 15], we replace the original ill-posed equation (1.1) with the discretized
problem

Tnx = QnTx = Qny = yn. (3.1)

Lemma 2. The operator Tn : H → Rn+1 is a bounded operator and its adjoint
operator is given by

T ∗
n : Rn+1 → H, T ∗

nu(.) =

n∑
i=0

ui
√
wi

n∑
j=0

L̂j(ti)T
∗L̂j(.).

Proof. For every h ∈ H, by Lemma 1 we have

∥Tnh∥2 = ∥TQnh∥2 ≤ ∥T∥ ∥h∥H .

Moreover,
T ∗
nu(.) = T ∗Q∗

nu(.),

Math. Model. Anal., 28(2):237–254, 2023.
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where u ∈ Rn+1. This completes the proof. ⊓⊔

Since the best-approximate solution x+ satisfies the Equation (1.1), we have
Tnx

+ = yn, equivalently,

√
wl

n∑
i=0

〈
x+, T ∗L̂i

〉
H
L̂i(tl) =

√
wl

n∑
i=0

〈
y, L̂i

〉
H
L̂i(tl), l = 0, 1, ..., n,

n∑
i=0

〈
x+, T ∗L̂i

〉
H

〈
L̂i, L̂j

〉
n,w

=

n∑
i=0

〈
y, L̂i

〉
H

〈
L̂i, L̂j

〉
n,w

,〈
x+, T ∗L̂i

〉
H

=
〈
y, L̂i

〉
H
, i = 0, 1, ..., n. (3.2)

Let x+
n the best-approximate solution of Eq. (3.1), thus x+

n∈N (Tn)
⊥=R(T ∗

n).
Then, there exists d = (d0, d1, ..., dn)

T ∈ Rn+1, such that

x+
n (.) =

n∑
i=0

diT
∗L̂i(.).

Also, by (3.2), we obtain〈
n∑

i=0

diT
∗L̂i, T

∗L̂j

〉
H

=
〈
y, L̂j

〉
H
, j = 0, 1, ..., n,

n∑
i=0

di

〈
T ∗L̂i, T

∗L̂j

〉
H

=
〈
y, L̂j

〉
H
, j = 0, 1, ..., n,

and therefore, the coefficients di, i = 0, 1, ..., n can be found from the linear
algebraic system

Ad = g, (3.3)

where

A = [Ai,j ]
n
i,j=0 =

[〈
T ∗L̂i, T

∗L̂j

〉
H

]n
i,j=0

,

is a symmetric matrix in R(n+1)×(n+1) and g ∈R(n+1), gj =
〈
y, L̂j

〉
H
.

Since the original problem (1.1) is ill-posed, the problem of finding the best
approximate solution x+

n of the finite-dimensional system (3.3) is unstable. For
this, we regularize this system by iterated regularization as in (2.6), resulting
in

d(0) = 0, (A+ αI) d(k) = αd(k−1) + g for k = 1, 2, ...,m. (3.4)

For i = 0, 1, ..., n, the iterative formula (3.4) can be written as

d
(0)
i = 0, (

n∑
j=0

Ai,j + α)d
(k)
i = αd

(k−1)
i + gi for k = 1, 2, ...,m.
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Thus, for k = 1, 2, ...m, we have

n∑
i=0

(

n∑
j=0

Ai,j + α)d
(k)
i T ∗L̂i(.) = α

n∑
i=0

d
(k−1)
i T ∗L̂i(.) +

n∑
i=0

giT
∗L̂i(.),

n∑
i=0

d
(0)
i T ∗L̂i(.) = 0.

Define x
(k)
n by

x(k)
n =

n∑
i=0

d
(k)
i T ∗L̂i(.), k = 0, 1, ...,m.

Then, it follows that

x(0)
n = 0, (T ∗

nTn + αI)x(k)
n = αx(k−1)

n + T ∗
nyn.

Now, let us consider iterated regularization by replacing exact data y by
inexact data yδ which is satisfying

∥∥y − yδ
∥∥
H ≤ δ for a known error bound

δ > 0. In this situation, we have

d(0),δ = 0, (A+ αI)d(k),δ = αd(k−1),δ + gδ for k = 1, 2, ...,m,

so that

x(0),δ
n = 0, (T ∗

nTn + αI)x(k),δ
n = αx(k−1),δ

n + T ∗
ny

δ
n for k = 1, 2, ...,m,

where gδ
i =

〈
yδ, L̂i

〉
H
, i = 0, 1, ..., n and

x(k),δ
n (.) =

n∑
i=0

d
(k),δ
i T ∗L̂i(.) for k = 0, 1, ...,m.

4 Convergence and error estimates

The goal of this section is to discuss the convergence rate for our numerical
method. Now, let y ∈ R(T ) and assume the exact solution x+ fulfils the
smoothness source condition (2.8).

Since yn = Tnx
+ and y = Tx+, we will start by pointing out that,

x+ − x(m)
n = rα,m(Fn)x

+ and x+ − xm = rα,m(F )x+,

where Fn = T ∗
nTn and F = T ∗T . Our first goal is to estimate the quantity

∥xm − x
(m)
n ∥2H. We use the following expression to accomplish this

x(m)
n − xm = αm(Fn + αI)−m((Fn + αI)m − (F + αI)m)(F + αI)−mx+,

we get

x(m)
n −xm=αm(Fn+αI)−m

[ m∑
i=1

(Fn+αI)m−iF̃n(F + αI)i−1
]
(F+αI)−mx+,

(4.1)

where F̃n = Fn − F .

Math. Model. Anal., 28(2):237–254, 2023.
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Lemma 3. Assume that the exact solution x+ fulfils the smoothness source
condition (2.8). If 0 < v < 1, then

∥∥∥x(m)
n − xm

∥∥∥
H

≤ ραv−1 vv

1− v

∥∥∥F̃n

∥∥∥m1−v. (4.2)

Moreover, if 1 ≤ v < m, then we have

∥∥∥x(m)
n − xm

∥∥∥
H

≤ ρ
∥∥∥F̃n

∥∥∥ ∥F∥v−
v
m v

v
m

(m
α

)1− v
m

. (4.3)

Proof. Let 0 < v < 1, by using (4.1), we have

x(m)
n −xm = αm

(
m∑
i=1

(Fn + αI)−iF̃n(F + αI)i−m−1

)
F vz

= αm

(
m∑
i=1

(Fn + αI)−iF̃n [rα,m+1−i(F )F v]α−m−1+i

)
z.

By using (2.7), we also have

∥∥∥x(m)
n −xm

∥∥∥
H

≤ ραm
m∑
i=1

∥∥∥(Fn + αI)
−1
∥∥∥i

×
∥∥∥F̃n

∥∥∥ (αvvv(m+ 1− i)−v
)
α−m−1+i ≤ ραv−1vv

∥∥∥F̃n

∥∥∥ m∑
i=1

1

iv
.

Because 1/iv ≤
∫ i

i−1
t−vdt, then

∥∥∥x(m)
n − xm

∥∥∥
H

≤ ραv−1vv
∥∥∥F̃n

∥∥∥∫ m

0

dt

tv
= ραv−1 vv

1− v
m1−v

∥∥∥F̃n

∥∥∥ .
Now, let 1 ≤ v < m, we have

x(m)
n − xm = αm

(
m∑
i=1

(Fn + αI)−iF̃n(F + αI)i−m−1

)
F vz

= αm

(
m∑
i=1

(Fn + αI)−iF̃n

[
rα,m+1−i(F )F

m+1−i
m v

]
α−m−1+iF

i−1
m v

)
z.

By using (2.7), we also have∥∥∥rα,m+1−i(F )F
m+1−i

m

∥∥∥ ≤ sup
λ∈[0,∞)

rα,m+1−i(λ)λ
m+1−i

m v

≤ αuiuui
i (m+ 1− i)−ui , i = 1, 2, ...,m ,
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where ui =
m+1−i

m v and therefore,

∥∥∥x(m)
n − xm

∥∥∥
H

≤ αm

(
m∑
i=1

α−i
∥∥∥F̃n

∥∥∥(αuivui(
mui

v
)−ui

)
α−m−1+i ∥F∥

i−1
m v

)
ρ

≤ α−1ρ
∥∥∥F̃n

∥∥∥ m∑
i=1

αuiuui
i (

mui

v
)−ui ∥F∥

i−1
m v

≤ α−1ρ
∥∥∥F̃n

∥∥∥ ∥F∥
−v
m

(αv
m

) (m+1)v
m

m∑
i=1

(
m ∥F∥
αv

) iv
m

≤ α−1ρ
∥∥∥F̃n

∥∥∥ ∥F∥
−v
m

(αv
m

) (m+1)v
m

m

(
αv

m ∥F∥

)−v

.

Finally, we have (4.3). This completes the proof of Lemma 3. ⊓⊔

The estimations in Lemma 3 indicate that selecting the number of dis-

cretizations n to get
∥∥∥F̃n

∥∥∥ → 0 as n → 0 is acceptable. To this end, we

consider the following theorem.

Theorem 1. Then ∥∥∥F̃n

∥∥∥→ 0 as n → ∞.

Moreover, if k(., .) ∈ Cs( [a, b]2), then we have the following estimates∥∥∥F̃n

∥∥∥ ≤ c1ε (n) , (4.4)

where ε (n) = n−s and c1 is a positive constant independent of n.

Proof. Let h ∈ H, by Remark 2 we have∥∥∥F̃nh
∥∥∥
H

≤ ∥T ∗∥ ∥(I − Pn)Th∥H . (4.5)

Using (2.2) and the compactness of T , we obtain ∥(I − Pn)T∥ → 0 as n → ∞,

and hence, from (4.5), we have
∥∥∥F̃n

∥∥∥→ 0 as n → ∞.

Now, let k(., .) ∈ Cs( [a, b]2), then for all (i, j) such that i+ j ≤ s, ∂i+jk(s,t)
∂is∂jt

is a continuous function on [a, b]2. Under this regularity of the kernel k(., .) we
have R(T ) ⊂ Hs([a, b]2), where Hs([a, b]2) is the Sobolev space

Hs([a, b]2) = {f ∈ L2([a, b]2),
∂i+jf(s, t)

∂is∂jt
∈ L2([a, b]2) for i+ j ≤ s},

equipped with the norm

∥f∥Hs([a,b]2) =

√√√√ s∑
i+j=0

∥∥∥∥ ∂i+j

∂is∂jt
f

∥∥∥∥2
L2

.
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Denoting

∥∥∥∥ ∂i+j

∂is∂jt
k

∥∥∥∥
L2

= γi,j and ∥k∥Hs([a,b]2) =

√√√√ s∑
i+j=0

γ2
i,j = γs < ∞.

For j = 0 and h ∈ H, we have

di

dsi
Th(s) =

∫ b

a

∂i

∂si
k(s, t)h(t)dt, s ∈ [a, b] ,

and by Cauchy–Schwarz inequality, we have∣∣∣∣ didsi
Th(s)

∣∣∣∣ ≤ ∫ b

a

∣∣∣∣ ∂i

∂si
k(s, t)

∣∣∣∣ |h(t)| dt ≤
√∫ b

a

∣∣∣∣ ∂i

∂si
k(s, t)

∣∣∣∣2 dt ∥h∥H .

Therefore,∥∥∥∥ di

dsi
Th

∥∥∥∥
H

≤

√∫ b

a

∫ b

a

∣∣∣∣ ∂i

∂si
k(s, t)

∣∣∣∣2 dtds ∥h∥H ≤ γi,0 ∥h∥H .

Thus, we obtain
∥Tx∥Hs ≤ γs ∥h∥H .

Using the estimations (2.3) and (4.5), we have∥∥∥F̃nh
∥∥∥
H

≤ ∥T ∗∥ cn−s ∥Th∥Hs ≤ ∥T ∗∥ cn−sγs ∥h∥H .

Therefore, we have the estimation (4.4) with c1 = ∥T ∗∥ cγs and the proof of
Theorem 1 is complete. ⊓⊔

In the following theorem we obtain estimates for the error
∥∥x+ − x

(m)
n

∥∥
H

under certain assumptions.

Theorem 2. Let y ∈ R(T ), k(., .) ∈ Cs( [a, b]2) and assume that the exact
solution x+ fulfils the smoothness source condition (2.8). If 0 < v < 1, then∥∥∥x+ − x(m),δ

n

∥∥∥
H

≤ c2
(
m−v +

√
mδ +m1−vε (n)

)
. (4.6)

Moreover, if 1 ≤ v < m, then we have the following estimates∥∥∥x+ − x(m),δ
n

∥∥∥
H

≤ c3
(
m−v +

√
mδ +mε (n)

)
, (4.7)

where c2 and c3 be positive constants.

Proof. Since∥∥∥x+ − x(m),δ
n

∥∥∥
H

≤
∥∥x+ − xm

∥∥
H +

∥∥∥x(m)
n − xm

∥∥∥
H
+
∥∥∥x(m)

n − x(m),δ
n

∥∥∥
H
,
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from the relations (2.9) and (2.10), we have∥∥∥x+ − x(m),δ
n

∥∥∥
H

≤ ραvvvm−v +

√
m

α
δ +

∥∥∥x(m)
n − xm

∥∥∥
H
.

Let 0 < v < 1, from (4.2) and by using the estimate in Theorem 1, we obtain∥∥∥x+ − x(m),δ
n

∥∥∥
H

≤ ραvvvm−v +

√
m

α
δ + ρc1ε (n)

(αv)
v

α (1− v)
m1−v

≤ max(ραvvv,
1√
α
,
ρc1 (αv)

v

α (1− v)
)
(
m−v +

√
mδ +m1−vε (n)

)
.

Let 1 ≤ v < m, from (4.3) and by using the estimate in Theorem 1, we obtain

∥∥∥x+ − x(m),δ
n

∥∥∥
H

≤ ραvvvm−v +

√
m

α
δ + ρc1ε (n) ∥F∥v v

(m
α

)1− v
m

.

≤ max(ραvvv,
1√
α
,
ρc1 ∥F∥v v

α
)
(
m−v +

√
mδ +mε (n)

)
,

which completes the proof. ⊓⊔

4.1 A priori choice of the regularization parameter

We can have an a priori parameter choice that leads to the best convergence rate
based on the estimates in Theorem 2. This theorem allows us to estimate the
best possible order of convergence that our numerical approach can achieve.
In particular, if m = m(δ) is chosen such that

√
m (δ)δ → 0 as δ → 0 and

m (δ) ε (n) → 0 as δ → 0 (if 0 < v < 1) or (m (δ))
1−v

ε (n) → 0 as δ → 0 (if
1 ≤ v < m (δ)).

Theorem 3. Suppose that conditions of Theorem 2 hold and we assume that

m (δ) = ⌈δ−
2

2v+1 ⌉. If 0 < v < 1 and let n be the least positive integer such that

ε (n) ≤ δ
2

2v+1 , then ∥∥∥x+ − x(m(δ)),δ
n

∥∥∥
H

= O(δ
2v

2v+1 ).

Moreover, if 1 ≤ v < m and let n be the least positive integer such that ε (n) ≤
δ

2v+2
2v+1 , then ∥∥∥x+ − x(m(δ)),δ

n

∥∥∥
H

= O(δ
2v

2v+1 ),

where ⌈a⌉ is the integer part of a.

Proof. Let 0 < v < 1 and n be the least positive integer such that ε (n) ≤
δ

2
2v+1 . By using the estimate (4.6) in Theorem 2, we have∥∥∥x+ − x(m),δ

n

∥∥∥
H

≤ c2

(
δ

2v
2v+1 + δ

−1
2v+1 δ + δ−

2−2v
2v+1 δ

2
2v+1

)
≤ 3c2δ

2v
2v+1 .
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Now, 1 ≤ v < m and n be the least positive integer such that ε (n) ≤ δ
2v+2
2v+1 .

By using the estimate (4.7) in Theorem 2, we have∥∥∥x+ − x(m),δ
n

∥∥∥
H

≤ c3

(
δ

2v
2v+1 + δ

−1
2v+1 δ + δ

−2
2v+1 δ

2v+2
2v+1

)
≤ 3c3δ

2v
2v+1 .

The proof of the theorem finished. ⊓⊔

From the Theorem 3 it follows that this is the case when m is large enough,
we have the order of convergence O(δl) where l ≈ 1.

5 Numerical examples

In this section, several numerical examples are given to approximate the solu-
tion of Fredholm integral equations of the first kind using the numerical method
described in this paper. The numerical experiments are implemented in Matlab
R2013a software. In all experiments, we choose the parameter of regularization
m = m (δ) by a priori parameter choice strategy described in Theorem 3. We
introduce the relative error by the notation En(α) as follows:

En(α) =

∥∥∥x+ − x
(m(δ)),δ
n

∥∥∥
H

∥x+∥H
.

Example 1. Consider the following integral equation of the first kind:

Tx+(s) =

∫ π
2

0

sin(s)t2x+(t)dt =
π5

160
sin(s), 0 ≤ s ≤ π

2
,

with the exact solution x+(t) = t2. Moreover, x+ = T ∗z, z = 1, which means
v = 1

2 .

The numerical results of Example 1 are presented in Figure 1 and Tables 1–3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

1

2

3

 

 
Excact solution
Approximate solution

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.02

0.04

0.06
Error function = |Excact solution − Approximate solution|

 

 

δ=0.35 N =25

Figure 1. Example 1: exact and computed approximate
solutions, absolute errors with n = 25 and noise level 35%.
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Table 1. Numerical results for Examples 1–3 with noise level 10%.

Example 1 Example 2 Example 3
n m En(0.5) En(0.1) m En(0.5) En(0.1) m En(0.5) En(0.1)

3 11 4.6E − 2 2.0E − 2 3 9.2E − 3 9.1E − 3 5 4.4E − 1 1.5E − 1
6 11 1.3E − 2 1.1E − 2 3 2.3E − 6 1.4E − 7 5 4.2E − 1 1.2E − 1
9 11 9.2E − 3 3.4E − 3 3 1.1E − 7 2.4E − 9 5 4.1E − 1 1.0E − 1

Table 2. Numerical results for Examples 1–3 with noise level 1%.

Example 1 Example 2 Example 3
n m En(0.1) En(0.05) m En(0.1) En(0.05) m En(0.1) En(0.05)

3 101 1.1E − 3 7.3E − 4 7 9.1E − 3 9.1E − 3 22 6.3E − 2 5.9E − 2
6 101 6.1E − 4 4.0E − 4 7 1.4E − 7 1.4E − 7 22 5.7E − 2 5.7E − 2
9 101 3.2E − 4 3.2E − 4 7 3E − 10 5E − 11 22 4.6E − 2 4.5E − 2

Example 2. As the second example, the following integral equation is considered

Tx+(s) =

∫ 1

0

e2s+3tx+(t)dt =
1

1728
e2s(e3 − 1)(e4 − 1)2(e6 − 1)2, 0 ≤ s ≤ 1,

with the exact solution x+(t) = 1
288e

3t(e3 − 1)(e4 − 1)2(e6 − 1). Moreover,

x+ = (T ∗T )
2
z, z = 1, which means v = 2.

The numerical results of Example 2 are presented in Tables 1–3 and Figure 2.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2
x 10

6

 

 

Excact solution
Approximate solution

0 0.2 0.4 0.6 0.8 1
0

2

4

6
x 10

−3 Error function = |Excact solution − Approximate solution|

 

 

δ=0.15 N =30

Figure 2. Example 2: exact and computed approximate solutions,
absolute errors with n = 30 and noise level 15%.

Example 3. Consider the following Fredholm integral equation

Tx+(s) =

∫ 1

0

(2s4+st3+4t−1)x+(t)dt =
1931

360
s4+

60 563

50 400
s+

3593

720
, 0 ≤ s ≤ 1,
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Table 3. Numerical results for Examples 1–3 with noise level 0.1%.

Example 1 Example 2 Example 3
n m En(0.8) En(0.1) m En(0.8) En(0.1) m En(0.8) En(0.1)

3 1001 2.5E − 4 1.1E − 4 16 9.1E − 3 9.1E − 3 100 6.2E − 2 5.8E − 2
6 1001 9.9E − 5 6.4E − 5 16 1.4E − 7 1.4E − 7 100 6.1E − 2 5.1E − 2
9 1001 5.8E − 5 3.2E − 5 16 3E − 11 1E − 11 100 5.8E − 2 2.6E − 2

0 0.2 0.4 0.6 0.8 1
−5

0

5

10

 

 

Excact solution
Approximate solution

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8
Error function = |Excact solution − Approximate solution|

 

 
δ=0.025 N =20

Figure 3. Example 3: exact and computed approximate solutions,
absolute errors with n = 20 and noise level 2.5%.

with the exact solution x+(t) = 11
12 t

3 + 61
10 t−

43
72 . Moreover, x+ = T ∗Tz, z = 1,

which means v = 1.

The numerical results of Example 3 are presented in Tables 1–3 and Figure 3.
The comparisons between the approximate solutions of Examples 1–3 (see

Tables 1–3) both with their exact solutions where α in (0, 1) confirmed the
validity and accuracy of the new regularized-collocation method. These results
show that when the parameter α is small, the relative error is lower. However,
the difference between the values of the parameters does not significantly affect
the relative errors.

6 Conclusions
In this work, we have employed an efficient method to solve integral equa-
tions of the first kind. This method is a combination of Legendre collocation
method and the iterative regularization method. The numerical experiments
have demonstrated the validity and the applicability of the suggested method.
However, our method shows good results with large noise levels.
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