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Abstract. Based on a two-step Newton-like scheme, we propose a three-step scheme
of convergence order p + 2 (p > 3) for solving systems of nonlinear equations. Fur-
thermore, on the basis of this scheme a generalized k + 2-step scheme with increasing
convergence order p + 2k is presented. Local convergence analysis, including radius
of convergence and uniqueness results of the methods, is presented. Computational
efficiency in the general form is discussed. Theoretical results are verified through
numerical experimentation. Finally, performance is demonstrated by application of
the methods on some nonlinear systems of equations.
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1 Introduction

The construction of fixed point iterative methods for solving nonlinear equa-
tions or systems of nonlinear equations is an interesting and challenging task in
numerical analysis and many applied scientific branches. The huge importance
of this subject has led to the development of many numerical methods, most
frequently of iterative nature (see [1,12]). With the advancement of computer
hardware and software, the problem of solving nonlinear equations by numer-
ical methods has gained an additional importance. In this paper, we consider
the problem of approximating a solution z* of the equation F(z) = 0, where
F: () C By — By, By and By are Banach spaces and {2 is a nonempty open
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convex subset of By, by iterative methods of a high order of convergence. The
solution z* can be obtained as a fixed point of some function @ : {2 C By — By
by means of fixed point iteration

Tnt1 = P(xn), n=0,1,2,....

There are a variety of iterative methods for solving nonlinear equations. A
basic method is the well-known quadratically convergent Newton’s method [1]

Tn4+1 = Tp — F/(xn)ilF(xn)v (11)

where F’(z)~! is the inverse of first Fréchet derivative F'(x) of the function
F(z). This method converges if the initial approximation xq is closer to solution
x* and F’(x) ! exists in the neighborhood {2 of z*. In order to attain the higher
order of convergence, a number of modified Newton’s or Newton-like methods
have been proposed in literature, see, for example [3,4,5,6,7,8,9,10,11,14] and
references therein.

The main goal and motivation in developing iterative methods is to achieve
as high as possible convergence order by consuming as small as possible function
evaluations and inverse operators. With these considerations, here we propose
multipoint iterative methods with increasing order of convergence. First, we
present a three-step scheme of convergence order p + 2 whose first two steps
belong to a class of Newton-like iterations of convergence order p (> 3) whereas
the third step is also a modification of Newton’s scheme. Furthermore, based
on this three-step scheme a generalized k + 2-step scheme with increasing con-
vergence order p + 2k (k € N) is presented.

Rest of the paper is structured as follows. In Section 2, the three-step
method is developed and its p 4+ 2-th order convergence is established. Then,
the generalized version consisting of k + 2-step scheme with convergence order
p—+ 2k is presented in Section 3. In Section 4, the detailed convergence analysis
is carried out. Analysis of computational efficiency of the methods is performed
in Section 5. In order to verify the theoretical results, some numerical examples
are presented in Section 6. Finally, the methods are applied to solve systems
of nonlinear equations in Section 7.

2 Development of method
Let us begin with the following three-step scheme

Yn = Tp — F/(xn)ilF(xn)y Zn = Qo(p)(wnayn)a
Tn+1 = Zn — (GI+ bF/(xn)_l[znvymF])Fl(xn)_lF(Zn)7 (2.1)

where (?) (zn,yn) is any iterative scheme of convergence order p > 3, I is an
identity operator, [z, yn ; F] is the first order divided difference and a, b are
free parameters to be determined in the sequel.

To obtain the convergence order of (2.1), we require the definition of divided
difference. For this, recalling the following result of Taylor’s expansion on
vector functions (see [12]):
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Lemma 1. Let F : 2 C R™ — R™ be r-times Fréchet differentiable in a
convex set 2 C R™. Then, for any x,h € R™, the following expression holds:

1 1
F(x+h)=F(z)+ F'(z)h + EFN(.T)}LQ + gF"’(:n)h3 +...
1
(r—1)!
where ||Ry|| < & supgcicy [|[FO)(x + th)|| ||k|]|" and h™ = (h,h,.7. h).

rl

+ Fr=U(@)h"~ ! + R,,

The divided difference operator of F is a mapping [-,-; F] : 2 x 2 C R™ x
R™ — L(R™) defined by (see [12])

1
[+ h,x; F] :/ F'(z +th)dt,Va,h € R™.
0
Expanding F'(z + th) in Taylor series at the point z and integrating, we have

1
[x+h,ac;F]:/0 F’(m+th)dt:F’(:c)+%F”(w)h—i—éF”’(x)hQ—&—O(h‘g), (2.2)

where h® = (h,h,.%?.,h), h € R™. Let e, = x, — z*. Developing F(z,) in a
neighborhood of z* and assuming that I' = F'(2*)~! exists, we have
F(zn) = F'(a")(en + As(en)® + As(en)” + Aa(en)* + 0((en))),  (23)

where 4; = ZI'F@(z*) € L;(R™,R™) and (e,)" = (en, en,. i €n), €, € R™,
1=2,3,.... Also,

F'(2y) = F'(2*)(I + 2Ase, + 3A3(en)? + 444(en) + O((en)")),

F'(x,) = F'(x*)(245 4+ 6 Aze, + 1244(e,)? 4+ O((en)?)),

F"(z,) = F'(x*)(6A3 + 24A4e,, + O((en)?)). (2.4)

Inversion of F'(x,) yields,

F'(mn)_l = (I - 2A2€n + (414% - 3A3>(€n)2 - (4A4 - 6A2A3 - 6A3A2
+843)(en)® + O((en)") . (2.5)

Now we can analyze the convergence behavior of scheme (2.1). Thus, the
following theorem is proved:

Theorem 1. Suppose that (i) F : 2 C R™ — R™ is a sufficiently many
times differentiable mapping, (ii) There exists a solution x* € 2 of equation
F(z) = 0 such that F'(z*) is nonsingular. Then, sequence {x,} generated by
method (2.1) for xo € 2 converges to x* with order p+ 2 for p > 3, provided
that a =2 and b= —1.

Proof. From (2.3) and (2.5), it follows that
F'(,) 7 F(2n) = en — Az(en)? + 2(A3 — A3)(en)” + O((en)?).

Math. Model. Anal., 24(1):105-126, 2019.
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For €, = y,, — x*, we have that
&n = Az(en)? — 2(A3 — A3)(en)” + O((en)")-
By hypothesis, {z,} is of order p. Set &, = z, — 2* = K((e,)?) + O((e,)P*1),
K # 0. Using Equations (2.4) in (2.2) for x + h = 2, x = y, and h = &, — &y,
it follows that
[0,y F ] = F'(2*) (I 4+ A2(en + €,) + O((€0)?, (€1)%)),
F'(2) " 20y yn; F]l=1—2A0e,+(4A% — 3A3)(en)? + Az(En + €4) + O((en)?).
Consequently, summing up we get in turn that
Al + bF' () 20, yni F = (a + )] — 2bAzer, + b(AAZ — 343)(en)?
+bAz(E, + €,) + O((en)?).
Then
(aI + 0F (2) " 20y Y F])F’(ajn)f1 = ((a +b)I —245(a + 2b)e,
+ (4(a + 3b) A3—3(a+2b)A3) (en)® + bAs(en + &,) + O((e,)®)) . (2.6)
Also, we have
F(z,) = F'(z*)(&n + O((€n)?)). (2.7)
Using (2.6) and (2.7) in the third substep of method (2.1), it follows that
ent1 =(1 —a —b)é, + 2As(a + 2b)e &, — (4(a + 3b) A3
—3(a +2b)A3)(en)?En — bA2E,E, + O((en)*en). (2.8)

Our aim is to find the values of parameters a and b in such a way that
the proposed iterative scheme may produce order of convergence as high as
possible. Thus, it will suffice to equate coefficients of first two terms to zero,
which implies that 1 —a — b = 0 and a + 2b = 0. Solving, we get a = 2 and
b = —1. Therefore, the error equation (2.8) reduces to

eny1 = SKAS(en)"t? + O((en)p+3)'

This shows that the convergence to z* is of order p+2 (p > 3). 0O

3 Generalized method

The generalization of method (2.1), consisting of k + 2 steps, is expressed as

Yn = Tp — F/(xn)ilF(xn)a Zn = Qo(p)(xnayn)v
27(11) = 2n — Y(@n, yn) F(2n), 27(12) = 27(11) - w(anyn)F(Z’Ell))V

2D = 207D — (2, v ) F (272
zﬁlk) = Tn4+1 = Zr(Lkil) - qzb(xnayn)F(znkil))? <31)

where k € N, 2\ = z, and V(@n, yn) = (21 — F'(20) 20, yn; F 1) F' (20) 7L
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Theorem 2. Under the hypotheses of Theorem 1, the sequence {x,} generated
by method (3.1) for xo € 2 converges to x* with order p + 2k for p > 3 and
keN.

Proof. From (2.6), we have that

V(@ yn) = (I — 5A%(en)* + .. )T

7(Lk—1))

Taylor’s expansion of F'(z about x* yields

FzF D)= F/(a®) ((z8Y —2%) + Ag(zF7Y —27)2 +..)).
Then, we have that

Blan, ) F(ED) = G0 — %) = 543(ea)? (200 — )

4+ Ap(2F=1) — )2 (3.2)
Using (3.2) in the last step of (3.1), we obtain
20— = 5A2(en)? (2D — %) — Ag(2FTY — )2 4 (3.3)

As we know that 2\") — z* = 5K AZ(en)P™2 + O((en)P™3), therefore, from (3.3)
for k = 2,3, we have

2B _ ¥ =542%(e,)?(z

2B — o =54%(e,)?(2

(D —2%) ... = B2K Al (en)P™ + O((en)"*?),

(2) _ x*) 4. = 53KAg(en)P+6 + O((en)P+7).

n

Proceeding by induction, we have
ent1 = 2 — 2" = 59K A% (e,)P T2 + O((e,)PT2H ).

This completes the proof of Theorem 2. 0O

4 Local convergence

In this section, we study the convergence of new methods in Banach space
setting. Let wp : Ry U {0} — R, U {0} be a continuous and nondecreasing
function with wp(0) = 0. Let also r be the smallest positive solution of equation

Consider the function w : [0,7) — R4 U{0} continuous and nondecreasing with
w(0) = 0. Define functions g; and hy on the interval [0,r) by

[ w((1 — 6)t)de

T—wol) hi(t) = g1(t) — 1.

g(t) =

We have hy1(0) = —1 < 0 and hy(t) = 400 as t — r~. The intermediate value
theorem guarantees that equation hq(t) = 0 has solutions in (0, r). Denote by
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r1 the smallest such solution. Let A > 1 and g2 : [0,71) — Ry U {0} be a
continuous and nondecreasing function. Define function hs on [0,71) by

ha(t) = ga(H)P " — 1. (4.1)

Suppose that go(t)t*~! — 1 — 400 or a positive number as t — r; . Then,
we get that h2(0) = —1 < 0 and ha(t) = +00 or a positive number as t — 77 .
Denote by 7o the smallest solution in (0,7;) of equation hy(t) = 0. If A = 1,
suppose instead of (4.1) that

92(0) <1 (42)

and ga(t) — 1 — 400 or a positive number as ¢ — r; . Denote again by r2 the
smallest solution of equation hs(t) = 0.

Let vo : [0,7) — Ry U {0} be a continuous and nondecreasing function.
Define functions p, g3 and hs on the interval (0,r1) by

o wolt) +vo((g2(t) + g1(t))1)
p(t)_1+ 0 loflzl}o(t) ! )
Mp(t) -1
99() = (14 720 )P halt) = gs(0) = 1.

We obtain that h3(0) = —1 < 0 and hs(t) — oo as t — r; . Denote by rs the
smallest solution of equation hs(t) = 0 in (0,r2). Then, we have that for each
tel0,r)
0<gi(t)<1, i=1,2,3. (4.3)

Denote by U(u,e) = {x € By : ||x — p]| < €} the ball with center p € By and
of radius ¢ > 0. Furthermore, let U(u,e) be the closure of U(u,e). We shall
show the local convergence analysis of method (2.1) in a Banach space setting
under hypotheses (A):

(al) F': 2 C By — By is a continuously Fréchet-differentiable operator and
[.,.; F]: 2 x 2 — L(By,Bz) be a divided difference operator of F.

(a2) There exists z* € {2 such that F(z*) =0 and F'(z*)~! € L(Bz, B1).

(a3) There exists function wy : Ry U {0} — R4 U {0} continuous and
nondecreasing with wo(0) = 0 such that for each = € (2

1F" (@)~ (F' (2) = F'(z") | < wo(l|l — 7).

(ad) Let 2 = 2 NU(a*,r), where r was defined previously. There ex-
ist functions w : [0,7) — Ry U {0}, vo : [0,7) — Ry U {0} continuous and
nondecreasing with w(0) = 0 such that for each z,y € 2

1F" (@) (E" () = F' ()] < w(llz = yl)),
1F" (@)~ (F" (") = [z, 93 DI < wolllz — 27| + ly — ")

(a5) There exists function go : [0,71) — R4 U {0} continuous and nonde-
creasing and A > 1 satisfying (4.1) if A > 1 and (4.2) if A = 1 such that

lo(z,2 = F'(2) 7 F'(2)) = 2*|| < ga(llz — 2" )|l — 2™

(a6) U(z*,r3) C 2 and ||F'(x*) " F'(z)|| < M.
(a7) Let r* > r3 and set 1 = 2N U (z*,r*), fol wo(6r*)do < 1.
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Theorem 3. Suppose that the hypotheses (A) are satisfied. Then, the sequence
{zn} generated for xy € U(x*,r3) — {a*} by method (2.1) is well defined in

U(z*,r3), remains in U(x*,r3) for allm = 0,1,2,... and converges to x*, so
that

lyn — || < gr(lzn — 2" [Dllon — 27| < [lon — 27| <73, (4.4)

120 = 2*|| < go(lln — 2*|)l|n — 2*|* < [Jn — 27, (4.5)

[#ns1 — 2" < gs([len — 2" zn — 2™ < llan — 27, (4.6)

where the functions g;, 1 = 1,2,3, are defined previously. Moreover, the vector
x* is the only solution of equation F(x) =0 in (2.

Proof. We shall show estimates (4.4)—(4.6) using mathematical induction. By
hypothesis (a3) and for x € U(x*,r3), we have that

1F" (@)~ (F'(2) = F'(2z")| < woll|lw — 27[]) S wo(rs) <1 (4.7)

By the Banach perturbation Lemma [2] and (4.7) we get that F'(z)~! €
L(Bs, By) and

1F" (@) 7 F (2) ] < 1/ (1 = wo(l|lw — 27[))). (4.8)

In particular, (4.8) holds for = z, since xg € U(x*,73) — {*} and yo, 20

are well defined by the first and second substep of method (2.1) for n = 0. We
can write by the first substep of method (2.1) and (a2) that

Yo — % =z — x* — F'(20) " F(x0)

:/O F'(w0) L (F' (2" + 0(z0 — %)) — F'(20)) (o — 2*)d.  (4.9)

Then, using (4.3) (for ¢ = 1), the first condition in (a4), (4.8) (for x = x¢) and
(4.9) we get in turn that

oo~ = 1P F | [ R 40t~ ot
1-6 —x*|))do -
T wo (70— 2'])
= gi(llzo — 2 Dllao — 2] < [lzo — 2*]) < s, (110)

which implies (4.4) for n = 0 and yo € U(z*,r3). Using (ab) and (4.3) (for
i =2), we get that

lz0—=* (1=l (20, yo) —2* | <g2([lzo — 2Dl wo—a*I*< [lwo—a*[|<rs, (4.11)
so (4.5) holds for n = 0 and zg € U(z*,r3). Notice that since yo, 29 € U(z*,73),

Math. Model. Anal., 24(1):105-126, 2019.
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by using (4.8), (a3), (a4) and (4.11) we have that

(121 — F'(xo)~ [Zo,ym F
L[| (o)~ " (@) || (%) 71 (F" (o) — [20,, 905 F1) |

L |[F" (o) T F () [ |1F" (a7) H(F" (o) — F(a™) + F'(2*) = 20, yo s F) |
L+ |/ (o) T " () (IIF’(w*)‘l(F’(wo) — F(z"))|

+ I @) (F (@) = [0 w03 F))
1

T arian—ae (olllzo = 71 + wolllz0 = 2+ flgo — &)

| < 1+ F (w0) ™ (F' (z0) — [20, yo; FI)

INIA

IN

IN

wo([|zo — 2*[|) +vo ((g2(llwo — =) + ga([lwo — *[))) |0 — =*|))
1 —wo([lzo — =*|)
= p(llzo — =) (4.12)

< 1+

Notice that ||z* + 0(zo — x*) — 2*|| = 0||xo — 2*|| < r3 for each 0 € [0,1]. That
is x* + 0(zo — x*) € U(z*,r3). We can write

1
Flz0) = F(zo) — F(a*) = / F'(2* + 6(z0 — 7)) (o — ) d.
0
By using (a6), we get that

IF (z%) " F(a0)|| = H/ Y LF (2 + (o — 7)) (2o — 2 deH
< Mfzo — x|
Similarly, we obtain that
[F" (%) F(yo)l| < Mllyo — ¥ (4.13)
[F' ()" F (20) || < M|z0 — 2. (4.14)

Moreover, z; is well defined by the third substep of method (2.1) for n = 0.
Using (4.3) (for i = 3), (4.8), (4.11), (4.12), and (4.14), we obtain in turn that
lwy = 2|l < llz0 — 2| + 121 = F'(w0) ™ [20, yo s FI| F" (o) =" F (20) |
< lzo = & + p(llwo — & DIF" (o) " F' (") |1F () 7 F (20)

M p([lzo — x*[llz0 — «™|| _ (1+ M p(|lzo — ™) )
1 —wo(lJzo — 2*[]) 1 —wo(|lzo — 2*])

<llzo — 2| +

X [lzo0 — 27| < gs(llzo — 2™ [llwo — 27| < [lwo — 27| < s,
which shows (4.6) for n = 0 and z; € U(x*,r3). The induction for estimates
(4.4)-(4.6) is completed by simply replacing o, Yo, 20, €1 by ;, y;, 2j, Tj+1

in the preceding estimates. Then, from estimate

lzj41 — 2" < cl|lz; —«*|| < rs, where ¢ = g3(||zo — ") € [0,1),
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we deduce that lim; ,cx; = 2* and ;41 € U(z*,r3).

The uniqueness part is shown using (a3) and (a7) as follows. Define operator
QbyQ= fol F'(z**+0(z* —x**))d0 for some x** € §2; with F(z**) = 0. Then,
we have that

1

IF (%) (Q - F'(a*)| g/o wo(Ol]z* — *||)d6 g/ wo(0r*)do < 1,

0
so Q! € L(Bg, By). Then, from the identity
0= F(z") - F(a™) = Q(z" — ™),
we conclude that z* = z**. O
Next, we present the local convergence analysis of method (3.1) along the

same lines of method (2.1). Define functions go, A, ux and hy on the interval
[Oa TZ) by

)= A0) = LM, (=N (a0 b (61,
We have that hi(0) < 0. Suppose that

pr(t) = +00 or a positive number as t — 7, . (4.15)

Denote by 7(*) the smallest zero of function hy, on the interval (0, r5). Define the
radius of convergence r* by 7* = min{ry,r*)}. Denote by (A’) the conditions
(A) but with r* replacing r3 together with condition (4.15).

Proposition 1. Suppose that the conditions (A’) hold. Then, sequence {x,}
generated for xo € U(z*,r*)—{x*} by method (5.1) is well defined in U(z*,r*),
remains in U(z*,r*) and converges to x*. Moreover, the following estimates
hold

lyn — 27| < gr([lzn — 2" [Dllwn — 27| < [lon — 2™ <o,
l2n = 2| < g2(lzn — 2*[Dlwn — 2*|1* < [lzn — 27|,
1267 = &*[| < N(llzn — 2 [D]lzn — 2| < X(Jl2n — 2*])
X go(|zn — z*|)|2n — 2*||* < ||lzn —2*]], i=1,2,....,k—1, (4.16)
|zns1 —2*| = |28 = 2| < M (llzn — 2|20 — 2|
< pur([lzn = 2"l an — 27, (4.17)
where the functions \ and p are defined previously. Furthermore, the vector x*

is the only solution of equation F(x) =0 in (2.

Proof. We shall only show new estimates (4.16) and (4.17). Using the proof
of Theorem 3, we show the first two estimates. Then, we can obtain that
9 (@, yn) ' (@) <121 = F'(0) " [2n, yns FI)F' (20) " F' ()
<21 = F'(zn) " zns yos FNIE (20) 7 F (@)
p(llzn — z7])

~ 1= wo([lzn — )

< ga([lzn — 27[))-

Math. Model. Anal., 24(1):105-126, 2019.
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Moreover, we have in turn the estimates

12 = @[ = 120 — 2" = ¥(@n, yn) F(z0) ]| < |20 — |

+ (@, yo) F' (@)I1F (@) 7 F (20) |
<llzn = 2| + g2(llzn — ") M|z — 27|
S Alzn =2 Dllzn — 2% < pallzn — 2*llzn — 27|

Similarly, we get that

1252 — || < Alllzn —2* DIz = 2| < X (lan — 2™ |)ll2n — 2],

1267 = &* || < X' (|2 — 2*[)[|2n — 271,

|1 — 2" = (125 = 2| < A (len — 2|z — 2|

< pe(llzn — 2*[Dllen — 27
That is we have x,,, z,, zg) eU(z*,r*),i=1,2,...,k and
[#n41 — || < el — 27,

where ¢ = pg(||lzo — 2*||) € [0,1), so limy,_yoo n, = z* and x4y € U(z*,r*).
O

Remark 1. It is worth noticing that the methods (2.1) and (3.1) will not change
on using the conditions of Theorem 3 instead of stronger conditions used in

Theorems 1 and 2. Moreover, we can compute the computational order of
convergence (COC) [15] defined by

coC = Nener =1\ /) ( Man =2 N
|z — 2+ |21 —2*[| )’ B

or the approximate computational order of convergence (ACOC) [6], given by

ACOC = In( Mzner = eally fy (lln Zwucall Y 2y
|7 = &n—1] [Zn-1 = 22|l }° T

This way we obtain in practice the order of convergence.

Remark 2. Numerous choices for function ¢(P) are possible. Let us choose, e.g.

w(g)(xnvyn) =Yn — F/(xn)ilF(yn)a (418)
¢ (@nsyn) = yn — B = 2F" (@) " [yn, @n; FNF'(w0) " Flyn),  (4.19)

which are third and fourth order iteration functions, respectively. Let us discuss
the cases separately.
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Corollary 1. For the choice ¢®)(z,,y,) we can have as in (4.8), (4.10) and
(4.13) that

1z = 2| < llyn = 2™ || + [ (@) " F (@) [IF @) 7 F (ya) Il < llyn — 27|
Mlyn — 2|
L —wo(fJn —2*])

+ < (1+

e [
1— wo([[wn — =)/ "

Jar(llzn = 2l — 2*|

< (1+
1 —wo([|lzn —2*[))
< g2llzn — 2% l|zn — 2" ||

So, we can choose
M
g2(t) ( + = wo®) )91 (t) and A

Corollary 2. We consider the choice @(4)(:vn, yn). Let us take linear operator
A = 31 — 2F"(2) " Yyn, zn; F), then by using (2.1), (4.8), (a3) and (ad) we
obtain that
Al < 1+ [|12F" () ™1 (F" (20) = [yn, @n; F]) |
<1+ 2||F' (2) 7 F (27| (HF’(ﬂc*)_l(F’(ﬂcn) = F'(a")||
2
1 —wo([lzn — 2*])

+1F (@) 7HF (%) — [ymme])”) <1+

2
1 — wol|lz, — z*||

% (wolllzn = 1) + v (llen = 2| + llg ")) ) < 1+
% (wolllea=a)+vo( (141 (len=a*1D) len=a"1) ) = a(llzn —a*]). (4.20)

Using the second step of method (2.1), (4.8), (4.10), (4.13) and (4.20), we
obtain that
20 = 2| < lym — 2" (| + NANE" (20) ™ F(yn) |
= llyn — ™| + AN E (z) " E@)I1F (%) 7 E (ya)
M|lyn — 2|
1 —wo(l|zn — z*[|)

Mo =2l < (1+

X gr(llzn — 2 [Dlzn — 27| < golln — 2™ [Dl|ln — 2.

< lyn = 2"+ q(fon — 27[])

Mq(||zn — 2*]|)
1 —wo(l[zn —z*))

Mq(||zn — z~]) )

< (1+
1 —wo([lzn — =*||)

So, we can choose ga(t) = (1 + Mq(t)/(1 —wo(t)))g1(t), where q(t) = 1+
2(wo(t) +vo((1+ g1(£))t))/(1 — wo(t)) and A = 1.

5 Computational efficiency

Computational efficiency of an iterative method is measured by the efficiency
index E = p!'/(4+oP) (see [5,11]), where p is the order of convergence, d is the
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number of function evaluations per iteration and op is the number of operations
(i.e. products and quotients) required per iteration. The various evaluations
and operations that contribute to the total cost of computation for a system of
m nonlinear equations in m unknowns are as follows. When computing F' in
any iterative function we evaluate m scalar functions f;, (1 < i < m) and for
the computation of divided difference we use the formula (see [10])

filzi, o, Yjrts o Um) — fi(@1, o =1, Y Ym)
Tj = Yj

[{E/y;F]Z'j = y (5].)
where 1 < 4,5 < m. It requires m(m — 1) scalar functions, where F(z) and
F(y) are computed separately. Furthermore, we have to add m? quotients from
any divided difference. In order to compute an inverse linear operator, a linear
system is solved that requires m(m — 1)(2m — 1)/6 products and m(m — 1)/2
quotients in the LU decomposition, and m(m — 1) products and m quotients in
the resolution of two triangular linear systems. Moreover, we add m? products
for the multiplication of a matrix with a vector or of a matrix by a scalar and
m products for the multiplication of a vector by a scalar.

In order to compare the computational efficiency, we choose three- and four-
step methods of the family (3.1) with the base as two-step methods (4.18) and
(4.19) of order three and four, respectively. The corresponding methods are
denoted by Ms 1, Mg 1, M7 1 and Mg 1, wherein M, ; denotes an ith iterative
method of order p. Comparison is performed with existing sixth order methods
by Behl et al. [4], Esmaecili-Ahmadi [8] and Grau et al. [10]. These methods are
expressed as follows:

Sizth order methods by Grau et al. (Mg 2 and Mg 3):

_ —1
Yn = Tn — F/(xn) 1F($n), Zn = Yn — (2[yna an,F] - F/($n)>

Tn+1 = 2n — (2[yna .%‘n,F] - F/(xn))_lF(zn)

F(yn),

and
Yn = Tn — F'(2p) " Fzn), 20 == (2yn, 20 F]7=F (20) ") F(yn),
Tni1 = 2n — (2[Yn, Tn; F]7" = F'(z,) ") F(2n).
Sizth order method by Esmaeili-Ahmadi (Mg,4):
Yn = @n — F'(2) " Fan),

n = gt 5 ()™ 2(F () = 3/ () ) F o),

Tn41 = 2n + %( — F'(xn) "t + 4(F (2n) = 3F"(yn)) ™) F(20).

Sixth order method by Behl et al. (Mg 5):
Yn = Tp — aF'(x,)  F(2y),

Zn = Yp — (bF’(scn)_1 + (cF'(xy) + ch’(yn))_l)F(acn)7

Tp41 = Zp — (gF’(xn)fl + (eF/(xn) + hF/(yn))il)F(Zn)v
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Wherea:%,b:—é, =-1,d=3,9g=35,e=— 2(29+1)2andh W

Let us denote efficiency indices of the methods M, ; by E,; and compu-
tational costs by C,; where p is order of convergence and i = 1,2,3,4,5.
Computational cost and efficiency of various methods are expressed as:

1 8
Cs1 = §m3 +8m? + gm and Ez; = 51/Cs.1
1 11
Cﬁ,l = §m3 + 12m? + Em and E6,1 — 61/06,1.

2 4
C6,2 = §m3 + 7m2 + gm and E6,2 — 61/06‘2.

2 10
CG,3 = §m3 +8m? + gm and Eg3 = 61/Co.3.

Ce4 = %mg +7m? + ?m and Eg4 = 61/Ce.a_
Cos = m>+9m*>+3m and Egs = 61/Co.5
Cr1= %m‘? +11m? + %4m and Epy =707,
Cs1 = %m?’ +15m? + gm and Eg = 8Y/Cs1,

To compare the efficiency of considered iterative methods, say M, ; against
M, ;, we consider the ratio

log E,; C,; log(p)
Rp.ivgj = Bt = : 5.2
PO Jog By ;  Cpu log(q) (52)

It is clear that when R, ;4,7 > 1, the iterative method M, ; is more efficient
than Mg ;.
Ms 1 versus Mg o case: The ratio (5.2) is given by

(2m® + Tm? + 3m) log(5)
R5,1;6,2 =71 3 2 ] .
(3m? + 8m? + Sm) log(6)

It is easy to prove that Rsi,62 > 1 for m > 8. Thus, we conclude that
E5’1 > E672 for m > 8.
M5 1 versus Mg 3 case: In this case the ratio (5.2) is given by

(2m® + 8m? + L2m) log(5)
(3m® + 8m?2 + Sm) log(6) -

Rs.1:6,3 =

It can be checked that Rs 1,63 > 1 for m > 3. Thus, we have that Es; > Eg 3
for m > 3.
Ms 1 versus Mg 4 case: In this case the ratio

(2m? 4+ Tm? + m) log(5)
(2m3 + 8m?2 + Sm) log(6)

Rs,1:64 =

)
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for m > 5, which implies that E5 ; > Eg 4 for m > 5.

Ms 1 versus Mg 5 case: Here the ratio

(m3 +9m? + 3m) log(5)

Rs .65 = >1,
5165 (2m3 + 8m?2 + 8m) log(6)
for m > 2 which implies that E5 ; > Eg 5 for m > 2.
Mse,1 versus Ms 1 case: Here the ratio
(3m® + 8m? + Sm) log(6)
Re151 = 747 . > 1,
(3m3 + 12m? + tm) log(5)

for m > 83 which implies that Eg 1 > Es; for m > 83.

Mg,1 versus Mg 2 case: The ratio (5.2) is given by

%m?’ +7Tm? + %m

%m?’ +12m?2 + %m'

Ré,1:6,2 =

It is easy to prove that Rg 1,62 > 1 for m > 16. Thus, we conclude that
E@)l > E6’2 for m > 16.

Mse,1 versus Mg 3 case: The ratio (5.2) is given by

%m?’ +8m? + 13—0m
sm3 4+ 12m? + Ym’

Re,1:6,3 =

It can be checked that Rg 16,3 > 1 for m > 13. Thus, we have that E¢ 1 > Eg 3
for m > 13.

Mse,1 versus Mg 4 case: In this case the ratio

%mg’ +7Tm? + %m

m3 +12m? 4+ &m

R6,1;6,4 = > 13

for m > 22, which implies that Eg; > Eg 4 for m > 22.

Mse,1 versus Mg s case: Here the ratio

R B m3 + 9m? + 3m o1
6,1;6,5 — %m3+12m2+%m )

for m > 5 which implies that Eg; > Eg 5 for m > 5.
M7 1 versus Ms 1 case: Here the ratio

i

% 3+ 8m? + §m) log(7)
m3 + 11m?2 + 1m) log(5)

R7151 = ( > 1,
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for m > 21 which implies that E7 ; > Es; for m > 21.

M7.1 versus Mg case: Here the ratio

(%m3 +12m? + 13—1m) og(7)

> 1,
(3m® + 11m?2 + 13—4m) 0g(6)

R7161 =
for m > 2 which implies that E7; > Eg 1 for m > 2.
My 1 versus Mg 2 case: The ratio (5.2) is given by

(%m3 +7Tm? + ém) log(7)
(3m? + 11m? + Lm) log(6)

Rr7162 =

119

It is easy to prove that Ry 162 > 1 for m > 10. Thus, we conclude that

E7’1 > E672 for m > 10.

M7 1 versus Mg 3 case: The ratio (5.2) is given by

(%m:)’ +8m? + mm) log(7)
(3m3 + 11m? + Lm) log(6)

R7163 =

It can be checked that R7 1,63 > 1 for m > 7. Thus, we have that E;; > Eg 3

form>17.

M7 1 versus Mg 4 case: In this case the ratio

(2m® + Tm? + m) log(7)

R 164 = >1,
164 (3m3 + 11m? + tm) log(6)
for m > 9, which implies that E7; > Eg 4 for m > 9.
My 1 versus Mg 5 case: Here the ratio
(m3 +9m? + 3m) log(7)
R7,1;6,5 = 71 3 2 14 > 1a
(3m? + 11m?2 + Lm) log(6)
for m > 3 which implies that E;; > Eg 5 for m > 3.
Mg 1 versus Ms 1 case: Here the ratio
(3m? + 8m? + Sm) log(8)
Rs151 = 71773 517 > 1,
(3m® + 15m?2 + tm) log(5)
for m > 49 which implies that Eg; > E5 ; for m > 49.
Mg 1 versus Mg 1 case: Here the ratio
1,3 2, 11
=m° + 12m* + +m) log(8
Rsg,1;6,1 = (5 3m) log(®) > 1,

(3m3 + 15m? + 1m) log(6)
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for m > 22 which implies that Eg ; > Eg ;1 for m > 22.

Mg 1 versus Mg o case: The ratio (5.2) is given by

(2m? + Tm? 4 3m) log(8)
2m3 4 15m?2 + 1Im) log(6)

Rs, 162 = (

It is easy to prove that Rgi,62 > 1 for m > 17. Thus, we conclude that
Eg,l > E6’2 for m > 17.

Mg 1 versus Mg 3 case: The ratio (5.2) is given by

(2m® + 8m? + L2m) log(8)

(3m3 + 15m? + m) log(6)

Rs1:6,3 =

It can be checked that Rg 1,63 > 1 for m > 14. Thus, we have that Eg ;1 > Eg 3
for m > 14.

Mg 1 versus Mg 4 case: In this case the ratio

(2m® + Tm? + 1Em) log(8)

Rs1.64 = > 1,
81564 (%m3 + 15m2 + %m) log(6)
for m > 16, which implies that Eg; > Eg 4 for m > 16.
Mg 1 versus Mg s case: The ratio
Reses — (m3 +9m? + 3m) log(8) -
o (%m3 + 15m?2 + gm) log(6) ’
for m > 6 which implies that Eg ; > Eg 5 for m > 6.
Mg 1 versus My 1 case: Here the ratio
1,3 2, 14
zm° + 11m* + =m) log(8
Rg 17,1 = (5m m 5m) 0g(8) > 1,

(3m3 + 15m2 + tm) log(7)
for m > 143 which implies that Eg; > E7; for m > 143.

The above results are summarized in the following theorem:

Theorem 4. We have that: (a) Es1 > {Es2, Es3, Esa, Fss} for m > 8,
m >3, m =5, m =2, respectively;

(b) E671 > {E571, EG’Q, E6’3, E6’4, E6’5} fOT‘ m =83, m=16, m > 13, m >
22, m = b, respectively;

(c) Erp > {E51, Ee1, Es2, Eo3, Eea, Eos} form =21, m > 2, m >
10, m =27, m>9, m > 3, respectively.

(d)Esl >{Esl7 Fs 1, E627 E63, Esa, Eg5, E7r1} form =49, m > 22, m >
17, m > 14, m > 16, m > 6, m > 143, respectively.
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6 Numerical examples

Here, we shall demonstrate the theoretical results which we have proved in
Section 3. As in the previous Section, the methods of the family (3.1) chosen,
with the choices ) (z,,,,) where p = 3,4 as given by (4.18) and (4.19), are
of order five, six, seven and eight that we denote by M5, Ms 1, M7 and
Mg 1, respectively. We consider three numerical examples, which are defined
as follows:

FEzample 1. Suppose that the motion of an object in three dimensions is gov-
erned by system of differential equations

filw) = fi(x) =1=0, f3(y) —(e-1y—1=0, f3(z) -1=0,

with z, y, z € 2 for f1(0) = f2(0) = f3(0) = 0. Then, the solution of the
system is given for u = (x,y,2)T by function F := (f1, f2, f3) : 2 — R3
defined by F'(u) = (e”” -1, %yQ +y, z)T. The Fréchet-derivative is given by

e’ 0 0
F'(u) = 0 (e—1ly+1 0
0 0 1

Then for z* = (0,0,0)7, we deduce that wq(t) = Lot, w(t) = Lt and vo(t) = M,
where Lo =e—1< L = eTlo = 1.7896 and M = 6%0 = 1.7896. The parameters
are displayed in Table 1.

Table 1. Numerical results for example 1

Ms 1 M 1 Mz 1 Ms 1

r1 = 0.382733 r1 = 0.382733 ri1 = 0.382733 r1 = 0.382733
r( = 0.041392 r(1) = 0.059457 r(2) =0.007138 r(2) = 0.024531
r* = 0.041392 r* = 0.059457 r* = 0.007138 r* = 0.024531

Ezample 2. Let By = By = C[0, 1], be the space of continuous functions defined
on the interval [0, 1] and be equipped with max norm. Let £2 = U(0, 1). Define

function F on 2 by F(p)(x) = ¢(x) — 10 fol 20p(0)3dh. We have that

F'(0(8)(z) = &(x) — 30/0 200 (0)%€(0)do, for each & € 1.

Then for 2* = 0 we have that Lo = 15, L = 30 and vo(t) = M = 2. The
parameters are displayed in Table 2.

Ezample 3. Let us consider the function F := (f1, fa, f3) : 2 — R3 defined by

F(z)=(10,21 + sin(z1 + 22)—1, 8zo— cos®(z3—x2)—1, 1225+ Sin(l'g)*].)T,
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Table 2. Numerical results for example 2

Ms 1 M 1 M7 1 Ms 1

r1 = 0.033333 r1 = 0.033333 r1 = 0.033333 r1 = 0.033333
r( = 0.002751 r() = 0.000816 r(? = 0.000438 (2 = 0.000122
r* = 0.002751 r* = 0.000816 r* = 0.000438 r* = 0.000122

where x = (21, x2, a:g,)T. The Fréchet-derivative is given by

10 + cos(z1 + x2) cos(x1 + z2) 0
F'(z) = 0 8 +sin2(xg — x3) —2sin(xy — 23)
0 0 12 + cos(x3)

Then for z* = {0.0689...,0.2464...,0.0769...}7 we have that Lo = L =
0.269812, vo(t) = 2 and M = 13.0377. In this case the calculated values of
parameters are given in Table 3.

Table 3. Numerical results for example 3

Ms 1 Me,1 M7 1 Mg 1

r1 = 2.470856 r1 = 2.470856 r1 = 2.470856 r1 = 2.470856
r() = 0.012985 r(1) =0.002781 r(2) = 0.000328 r(2) = 0.000069
r* = 0.012985 r* = 0.002781 r* = 0.000328 r* = 0.000069

7 Applications

We apply the methods Ms 1, Mg 1, M7 1 and Mg 1 of the proposed family (3.1)
to solve systems of nonlinear equations in R™. A comparison between the
performance of present methods with existing methods Mg 2, Ms 3, M4 and
Mg 5 is also shown. Computations are performed in the programming package
Mathematica [16] using multiple-precision arithmetic. For every problem con-
sidered below, we record the number of iterations (n) needed to converge to
the solution such that the stopping criterion ||z,11 — || + || F(x,)|| < 107290
is satisfied. Divided difference [z, y; F| used in the methods is computed by
the formula given in (5.1). Solutions are displayed to four decimal places and
after that the dots are shown to express non terminating nature of the figures.
Following problems are chosen for numerical tests:

Problem 1. Consider the system of nonlinear equations (selected from [14])

m

Y omj—em=0,1<i<m,
=1
with initial value z(® = {1,1, mit?mes, 1} towards the required solution
of the systems of equations for m = 10,20,50,100. The corresponding so-
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lutions are: z* = (0.1004..., -, 0.1004...)T, (0.0500..., -, 0.0500...)7,
(0.0200..., >, 0.0200.. )7 and (0.0100..., -*%, 0.0100...)T.

Table 4. Comparison of performance of methods for Problem 1

Methods Ms 4 Mg 1 My q Mg 1 Mg o Mg 3 Mg 4 Mg 5

m = 10

n 5 4 4 4 4 4 4 4
Hxn+1 — xnl 1.38(—791) 3.95(—267) 6.20(—424) 6.27(—624) 2.76(—251) 4.92(—260) 4.00(—243) 1.67(—281)

ACOC 5.000 6.000 7.000 8.000 6.000 6.000 6.000 6.000
CPU-time 2.7223 3.2304 2.8662 3.2815 3.0945 3.3622 2.8590 3.0793
m = 20

-

n 5 4 4 4 4 4 4 4
lzpt1 — znll 3.36(—964) 1.31(—306) 1.25(—518) 2.49(—732) 4.66(—281) 1.22(—284) 9.34(—273) 1.40(—279)
ACOC

5.000 6.000 7.000 8.000 6.000 6.000 6.000 6.000
CPU-time 6.2634 6.7892 6.3175 7.2813 7.1886 8.3434 6.9381 7.8244

m = 50
n 4 4 4 4 4 4 4 4
l#p11 — znll 3.35(—239) 8.36(—369) 7.97(—650) 1.68(—894) 4.54(—327) 2.33(—328) 1.19(—318) 6.82(—301)
ACOC 5.000 6.000 7.000 8.000 6.000 6.000 6.000 6.000
CPU-time 26.4392 28.0624 23.9223 25.9076 31.9847 38.5002 30.9372 38.7645

m = 100

n 4 4 4 4 4 4 4 4

lent1 — znll 8.25(—276) 1.49(—418) 4.36(—751) 1.84(—1022) 4.43(—364) 1.05(—364) 1.28(—355) 2.39(—323)
ACOC 5.000 6.000 7.000 8.000 6.000 6.000 6.000 6.000
CPU-time  132.7194  128.3295  118.1720 124.1263  200.3748  274.5328  214.1123  285.5327

Table 5. Comparison of performance of methods for Problem 2

Methods Ms 1 Mg 1 Mz q Mg 1 Mg o Mg 5 Mg 4 Mg 5

m = 10
n [ 5 5 5 5 5 5 5
l#p11 — znll 9.45(—887) 1.79(—353) 2.94(—633) 9.25(—1064) 1.70(—546) 1.45(—403) 1.79(—488) 8.67(—402)
ACOC 5.000 6.000 7.000 8.000 6.000 6.000 6.000 6.000
CPU-time 0.2572 0.2706 0.2655 0.2813 0.3754 0.4978 0.3754 0.4842

m = 20

n 6 5 5 5 5 5 5 5
lpt1 — @nll 1.34(—887) 2.53(—353) 4.15(—633) 1.31(—1063) 2.40(—546) 2.05(—403) 2.53(—488) 1.23(—401)
A

coc 5.000 6.000 7.000 8.000 6.000 6.000 6.000 6.000
CPU-time 0.3926 0.4389 0.4174 0.4536 0.6561 0.9680 0.6888 0.8286

m = 50
n 6 5 5 5 5 5 5 5
|y 41 — znll 2.13(—886) 4.05(—353) 6.63(—633) 2.09(—1063) 3.85(—546) 3.27(—403) 4.04(—488) 1.96(—401)
ACOC 5.000 6.000 7.000 8.000 6.000 6.000 6.000 6.000
CPU-time 1.1252 1.1123 1.0345 1.1096 1.6243 2.4064 1.6872 2.1878

m = 100

n 6 5 5 5 5 5 5 5
lp41 — @nll 2.99(—886) 5.67(—353) 9.28(—633) 2.93(—1063) 5.36(—546) 4.57(—403) 5.66(—488) 2.74(—401)
ACOC 5.000 6.000 7.000 8.000 6.000 6.000 6.000 6.000
CPU-time 2.4853 2.3594 2.2284 2.3445 3.4696 5.4227 3.8134 4.9695

Problem 2. Next, considering the system [13]:

xf:vlqufl, 1<i<m—1,
2

riz1 — 1, 1=m,
. e ey m—times < . .
with initial value zo = {%, %, e % T towards the required solution of the

systems of equations for m = 10, 20, 50, 100. The corresponding solutions are:

¥ = (17 13 '1‘0'7 1)T’ (1717 ’2'0'7 1)Ta (171, '5'0'7 1)T and (13 17 1007 ]-)T
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Table 6. Comparison of performance of methods for Problem 3

Methods Ms 1 Mg 1 My q Mg q Mg o Mg 5 Mg 4 Mg 5

m = 10
n 5 5 5 4 5 5 5 5
[#p11 — znll 7.08(—359) 6.02(—641) 3.84(—1298) 2.50(—246) 1.01(—835) 3.87(—688) 2.54(—534) 2.64(—984)
ACOC 5.000 6.000 7.000 8.000 6.000 6.000 6.000 6.000
CPU-time 0.2355 0.2501 0.2445 0.2872 0.3288 0.4067 0.3284 0.3749

m = 20
n 5 5 5 4 5 5 5 5
l#p41 — @nll 3.53(—360) 9.40(—644) 5.61(—1304) 1.87(—247) 6.21(—837) 3.50(—690) 9.33(—536) 2.60(—988)
ACOC 5.000 6.000 7.000 8.000 6.000 6.000 6.000 6.000
CPU-time 0.3764 0.4375 0.3607 0.3758 0.5313 0.7192 0.5637 0.7028

m = 50

n 5 5 5 4 5 5 5 5
lpt1 — znll 1.95(—360) 1.76(—644) 1.19(—1305) 1.17(—247) 3.64(—837) 1.13(—690) 4.63(—536) 1.96(—989)
ACOC

5.000 6.000 7.000 8.000 6.000 6.000 6.000 6.000
CPU-time 0.9692 1.0475 0.9893 1.0697 1.3755 1.9221 1.5315 1.9534

m = 100
n 5 5 5 4 5 5 5 5
lzp41 — @nll 2.35(—360) 1.79(—644) 8.72(—1306) 1.44(—247) 4.41(—837) 1.25(—690) 5.48(—536) 1.74(—989)
ACOC 5.000 6.000 7.000 8.000 6.000 6.000 6.000 6.000
CPU-time 2.1852 2.1340 1.9538 1.9894 3.4066 4.1125 2.9854 4.4078

Problem 3. The boundary value problem, v’ +u3 =0, w(0) =0, u(l)=1,is
studied (see [12]). Consider the following partitioning of the interval [0, 1]:

to=0<t1 <to < ---<t_1 <t =1, tj+1:tj—|-h, hzl/l

Let us define ug = u(ty) = 0, ug = u(ty),...,uy—1 = u(ti—1), wp = u(t;) = 1. If
we discretize the problem by using the numerical formula of central differences
then we obtain a system of [ — 1 nonlinear equations in [ — 1 variables

Upm—1 — 2y + U1 + h2ud, =0, (m=1,2,3,...,1-1).

In particular, we solve this problem for { = 11,21,51,101 so that m = 10,

20, 50, 100 by selecting u(®) = {1, l,m_f?mes, 1}T as the initial value. Their
corresponding solutions are given by

{0.0959...,0.1919...,0.2878...,0.3835...,0.4787...,0.5730...,0.6658.. . .,
0.7561...,0.8429...,0.9247.. }",

{0.0502...,0.1005...,0.1508...,0.2011...,0.2514...,0.3016...,0.3518....
0.4018...,0.4517...,0.5014...,0.5509...,0.5999...,0.6485...,0.6964. ..,
0.7436...,0.7898 ...,0.8349 ...,0.8787...,0.9210...,0.9615...}",

{0.0207...,0.0414...,0.0621...,0.0828...,0.1035...,0.1242...,0.1449 . ..
0.1656...,0.1863...,0.2070...,0.2277...,0.2484...,0.2691...,0.2898.. ..
0.3105...,0.3312...,0.3518...,0.3724...,0.3930...,0.4136...,0.4342.. ..
0.4547...,0.4752...,0.4957...,0.5161...,0.5364...,0.5567...,0.5769. ..,
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0.5971...,0.6172...,0.6372...,0.6570...,0.6768...,0.6965...,0.7160...,
0.7354...,0.7546 ...,0.7737...,0.7925...,0.8112...,0.8297...,0.8480. ..,
0.8660...,0.8838...,0.9013...,0.9186...,0.9355...,0.9521...,0.9684. ..,

0.9844.. .37,
{0.0104...,0.0209...,0.0313...,0.0418...,0.0522...,0.0627...,0.0732. ..,
0.0836...,0.0941...,0.1045...,0.1150...,0.1255...,0.1359...,0.1464 . . .,
0.1568...,0.1673...,0.1777...,0.1882...,0.1986...,0.2091...,0.2196 . . .,
0.2300...,0.2405...,0.2509...,0.2614...,0.2718...,0.2822...,0.2927 .. .,
0.3031...,0.3136...,0.3240...,0.3344...,0.3449...,0.3553...,0.3657 .. .,
0.3761...,0.3865...,0.3969...,0.4073...,0.4177...,0.4281...,0.4385 ...,
0.4488 ...,0.4592...,0.4695...,0.4799...,0.4902...,0.5005...,0.5108. ..,
0.5211...,0.5314...,0.5417...,0.5519...,0.5621...,0.5724...,0.5826. ..,
0.5927...,0.6029...,0.6130...,0.6231...,0.6332...,0.6433...,0.6533...,
0.6633...,0.6733...,0.6832...,0.6932...,0.7031...,0.7129...,0.7227 ...,
0.7325...,0.7422...,0.7519...,0.7616...,0.7712...,0.7808 ...,0.7903 . . .,
0.7998...,0.8092...,0.8186...,0.8279...,0.8372...,0.8464...,0.8555. ..,
0.8646...,0.8736...,0.8826...,0.8915...,0.9003...,0.9091...,0.9177...,
0.9263...,0.9348...,0.9433...,0.9516...,0.9599...,0.9681...,0.9762. ..,

0.9842...,0.9921...}".

Numerical results are displayed in Tables 4-6, which include: (i) dimension
(m) of the system of equations, (ii) required number of iterations (n), (iii) error
[|n+1—2n|| of approximation to the corresponding solution of considered prob-
lems, wherein a(—h) denotes a x 10~", (iv) approximate computational order
of convergence (ACOC) and (v) elapsed CPU time (CPU-time) in seconds.

From the numerical results shown in Tables 4-6 it is clear that the meth-
ods show stable convergence behavior. From the calculation of computational
order of convergence, it is also verified that order of convergence is preserved.
Elapsed CPU time shows the efficient nature of presented methods as com-
pare to existing ones. Moreover, the efficiency results shown in Theorem 4 are
in complete agreement with CPU-time utilized in the execution of program.
Similar numerical experimentations, carried out for a number of problems of
different type, have confirmed the above conclusions to a large extent.
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