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Abstract. An iterative algorithm for identifying unknown parameters of a mathe-
matical model based on the Bayesian approach is proposed, which makes it possible
to determine the most probable maximum informative estimates of these parameters.
The example of the mathematical model of mass transfer dynamics shows the algo-
rithm for finding the most probable and most informative estimate of the vector of
unknown parameters, and also an analysis of the sequence of the corresponding steps
is given. The results of computational experiments showed a significant dependence
of the results of the calculations on the choice of the initial approximation point and
slowing down the rate of convergence of the iterative process (and even its divergence)
with an unsuccessful choice of the initial approximation. The validity of the obtained
results is provided by analytical conclusions, the results of computational experiments,
and statistical modeling. The results of computational experiments make it possible
to assert that the proposed algorithm has a sufficiently high convergence for a given
degree of accuracy and makes it possible to derive not only estimates of point values
of mathematical model parameters based on a posteriori analysis, but also confidence
intervals of these estimates. At the same time, it should be noted that the results of
calculations depend significantly on the choice of the initial approximation point and
the slowing of the convergence rate of the iterative process with an unsuccessful choice
of the initial approximation. Analytical studies and results of calculations confirm
the effectiveness of the proposed identification algorithm, which makes it possible,
with the help of active, purposeful experiments, to build more accurate mathematical
models. In accordance with the algorithm, a program was developed in the MatLab
mathematics package and computational experiments were performed.
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1 Introduction

Cause-effect models based on conservation laws are widely used for the math-
ematical description of various processes and objects of food technology. They
reflect the relationship between input (independent) and output (dependent)
variables. Along with such variables of a model of this kind include parameters
to be determined from experimental data.

Depending on the information available, these parameters can be estimated
by the method of least squares, maximum verisimilitude, Bayesian estimation
method, etc. [1, 2, 6]. At the same time, the parameters to be evaluated are
adopted either by deterministic unknown quantities that, when solving a prob-
lem, require the establishment of a confidence probability interval or random
variables with an a priori assumed law of distribution. The latter option is
related to the Bayesian approach, which represents a more precise and flexible
formal apparatus for accounting for a priori information [6] and also gives the
possibility of obtaining on the basis of a posteriori analysis, not only point
values of estimates of the parameters of a mathematical model, but also the
confidence intervals of these estimates.

The novelty of the work is a combined approach to estimating the un-
known parameters of mathematical models based on two methods: the Bayesian
method of maximizing a posterior probability distribution density and the
method of optimal experiment planning based on information theory. An iter-
ative procedure has been developed that makes it possible to obtain the most
informative MAP estimates. The results of some computational experiments
are presented, based on which conclusions are drawn regarding the effectiveness
of this approach.

2 Methodology

In this paper, based on the Bayesian estimation method, an iterative algorithm
for identifying unknown parameters of the model is proposed, which makes it
possible to determine the most probable maximum informative estimates of
these parameters. The method of maximum a posteriori probability density
(MAP) or the mode of Bayesian estimation is supplemented by the method of
searching for the most informative estimate. Therefore, we can talk about the
most informative MAP-estimation.

The optimization problem is difficult since it belongs to the class of con-
ditional multidimensional optimization problems. Even for simple but real
models, the objective function of this problem cannot be represented in an an-
alytical form. Therefore, its analytical study for smoothness, multi-extremality,
etc. is difficult. Computational experiments in the general case show its
multi-extremality (if it starts from different points of the initial approxima-
tion, different results may be obtained). Therefore, taking into account its
multi-extremality, we solve this problem many times with different initial ap-
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proximations and choose the maximum value from local optima. For numerical
experiments, the library of optimization methods of the mathematical package
MatLab was used.

3 Results

Consider the process of mass transfer of matter [5], the dynamics of which is
described by the mathematical model:{

ds(t)
dt = kL (s∗ − s(t)) ,

s (t0) = s0,
(3.1)

where s (t) is the actual concentration of the substance in the flow at the time
t, s0 is a given initial concentration of the substance at the initial time t0, kL
defines the mass transfer coefficient, s∗ is the equilibrium concentration of this
substance (concentration of the substance saturation), the parameters k and
s∗ are unknown and they to be determined.

Suppose that the concentrations s (t) are measured at time moments tj .
These measurements are described by a model:

y (tj) = s (tj) + ξ (tj) , j = 1, 2, ...,m, (3.2)

where y (tj) is the result of the j-th measurement, ξ (tj) are random mea-
surement errors at time tj , these errors are distributed according the normal
(Gaussian) distribution law with zero mathematical expectation and variance
σ2, i.e.,

M {ξ (tj)} = 0, D {ξ (tj)} = M
{
ξ2 (tj)

}
= σ2, j = 1, 2, ...,m.

We will also assume that measurement errors ξ (tj) at different time moments
are uncorrelated, i.e.,

Cov (ξ (ti) , ξ (tj)) = 0.

Further, we consider various random variables ξ (scalar or vector) defined
by normally distributed random variables with mathematical expectation a and
variance σ2 (or covariance matrix V ). They will be denotes as ξ ∼ N

(
a, σ2

)
(or ξ ∼ N (a, V )).

Based on measurements of (3.2) it is necessary to find the most reliable
(probable) estimates of unknown parameters kL and s∗ of the mathematical
model (3.1), such that they would have the greatest informativeness. These
estimates will be found using the Bayesian estimation method, which assumes
maximizing a posteriori probability density of parameter distribution and meth-
ods of active experiment planning given in the theory of information [3, 4].

By assuming the constancy of parameters kL and s∗, the solution of the
Equation (3.1) at t0 = 0 can be represented as:

s (t; kL, s
∗) = e−kLt (s0 − s∗) + s∗, (3.3)

where notations s (t) = s (t; kL, s
∗) are introduced. They emphasize the depen-

dence of the concentration of the substance s (t) on parameters kL, s
∗.
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For convenience, we also introduce the following notation φ2 = s∗, φ =
= (φ1, φ2)

T . Then relation (3.3) can be written as:

s (t;φ) = e−φ1t (s0 − φ2) + φ2, (3.4)

and measurement equation (3.2) in the form

y (tj) = s (tj ;φ) + ξ (tj) , j = 1, 2, ...,m. (3.5)

To find the estimate of vector of unknown parameters φ we use procedure
of linearization of function s (tj ;φ). Let φ̂k be some the estimate of parameter
vector φ computed at k-th iteration. Then s (tj ;φ) in the neighborhood of
point φ̂k can be represented in a linearized form:

s (tj ;φ) ≈ s (tj ; φ̂k) +H (tj ; φ̂k) (φ− φ̂k) , (3.6)

where H(tj ; φ̂k) is the gradient of s (tj ;φ) at point φ̂k:

H (tj ; φ̂k) =

(
∂s (tj ;φ)

∂φ1
,
∂s (tj ;φ)

∂φ2

)∣∣∣∣
φ=φ̂k

(3.7)

where
∂s (tj ;φ)

∂φ1
= tje

−φ1tj (φ2 − s0) ,
∂s (tj ;φ)

∂φ2
= 1− e−φ1tj . (3.8)

Substituting correlation (3.6) into the measurement model (3.5), we obtain
the linearized equation of obsevations

ykj = Hk
j ∆φk + ξj , j = 1, 2, ...,m; ξj ∼ N

(
0, σ2

)
, (3.9)

where the following notation is introduced

ykj = y(tj)− s(tj ; φ̂k), Hk
j = H (tj ; φ̂k) , ∆φk = φ− φ̂k, ξj = ξ (tj) . (3.10)

Using the results of work [6] and correlations (3.9), (3.10), it can be shown that
the most informative Bayesian estimate of vector of unknown parameters φ,
which maximizes the posterior probability density can be represented by {φ̂k}.
The elements of it are calculated by the following iterative procedure

φ̂k+1 = φ̂k +∆φ̂k, k = 0, 1, 2, ..., (3.11)

where

∆φ̂k =

 m∑
j=1

(
Hk
(
tkj
))T

Hk
(
tkj
)
+ σ2V̂ −1

k

−1

×

 m∑
j=1

(
Hk
(
tkj
))T (

y
(
tkj
)
− s

(
tkj ; φ̂k

)) . (3.12)
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Here, Hk
(
tkj
)
= H

(
tkj ; φ̂k

)
is the gradient, defined by formulas (3.7), (3.8),(

tk1 , t
k
2 , ..., t

k
m

)
= arg max

t1,t2,...,tm
Qk (t1, t2, ..., tm), i.e.,

(
tk1 , t

k
2 , ..., t

k
m

)
are moments

that maximize objective function Qk (t1, t2, ..., tm) of form:

Qk (t1, t2, ..., tm) = det

 m∑
j=1

(
Hk
(
tkj
))T

Hk
(
tkj
)
+ σ2V̂ −1

k

 .

Remark 1. If variance of measurement errors σ2 is unknown, then can find its
estimate σ̂2

k as solution of next nonlinear equation [4] relative to σ2:

σ2 =
1

m

m∑
j=1

(
ykj −Hk

j ∆φ̂k

)2
,

where ∆φ̂k defined by formula (3.12).

A posteriori covariance evaluation matrix φ̂k+1 herewith is determined by
recurrence formula: V̂k+1 = σ2

(
m∑
j=1

(
Hk
(
tkj
))T

Hk
(
tkj
)
+ σ2V̂ −1

k

)−1

, k = 0, 1, 2, ...,

V̂0 = Va,

where Va – a priori estimation of covariance matrix of selective vector φ̂0.
The Bayesian approach uses a priori information about the normal distri-

bution law of the estimated parameters. We note that a priori knowledge of
the parameter estimates and the covariance matrix is necessary only at the
initial step of the iterative procedure, later they are recalculated according to
the above formulas.

Remark 2. If a priori information about estimated parameters φ = (φ1, φ2) =
= (kL, s

∗) is absent or insufficient, then we can assume Va = ρE, where ρ > 0
is a sufficiently large value (constant), E is a unit matrix.

To avoid the need to calculate at each iteration inverse matrices V̂ −1
k , we

introduce the change of variables Wk = σ2V̂ −1
k . Then (3.12) is transformed

into

∆φ̂k =

 m∑
j=1

(
Hk
(
tkj
))T

Hk
(
tkj
)
+Wk

−1

×

 m∑
j=1

(
Hk
(
tkj
))T (

y
(
tkj
)
− s

(
tkj ; φ̂k

)) , (3.13)

where matrices Wk satisfy the recurrence matrix equation Wk+1 = Wk +
m∑
j=1

(
Hk
(
tkj
))T

Hk
(
tkj
)
, k = 0, 1, 2, ...,

W0 = σ2V −1
a ,

(3.14)
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and moments of time
(
tk1 , t

k
2 , . . . , t

k
m

)
are solutions of the optimization problem

Qk (t1, t2, . . . , tm) = det

 m∑
j=1

(
Hk (tj)

)T
Hk (tj) +Wk

→ max
t1,t2,...,tm

. (3.15)

Thus, the search algorithm of the optimal (in the sense of the most probable)
and most informative estimate of the vector for unknown parameters of the
model (3.1) is defined by the following sequence of steps:

1. Assume that k = 0 and set the following quantities: σ2 is the dispersion
of measurement errors (if variance σ2 is unknown, it should be guided by
Remark 2); φ̂0 is the initial approximation vector; Va is a priori estimation
of covariance matrix of selective vector φ̂0, in particular, we can put
Va = ρE, where ρ > 1; ε is the accuracy of calculation.

2. The optimization problem (3.15) is solved, the obtained solution is de-
noted by

(
tk1 , t

k
2 , . . . , t

k
m

)
.

3. At points
(
tk1 , t

k
2 , . . . , t

k
m

)
measurements y

(
tkj
)
are done of the substance

s (t).

4. Vector ∆φ̂k is calculated by the formula (3.13).

5. The following approximation is found φ̂k+1 = φ̂k +∆φ̂k.

6. Matrix Wk+1 is calculated by the recurrence equation (3.14).

7. Take k = k + 1 and go to the next iteration, i.e., to step 2.

The condition for stopping this iterative algorithm can be taken in form

||φ̂k+1 − φ̂k||
1 + ||φ̂k+1||

< ε, (3.16)

where ∥φ∥ is the Euclidean norm of vector, ε is the predetermined accuracy
of calculations. The degree of reliability of obtained parameter estimates is
obtained by using the results of the works [3,5], the following confidence inter-
vals for the component ∆φik vector of parameters ∆φk = (∆φ1,k, ∆φ2,k) are
defined

∆φ̂i,k − δki ≤ ∆φi,k ≤ ∆φ̂i,k + δki , δki =sk ·
√
ckii · tα;m−2, i = 1, 2, (3.17)

where tα;m−2 is Student’s t-distribution with m−2 degrees of freedom and the
significance level α (coefficient of trust γ = 1 − α), s2k is the residual variance
estimate:

s2k =
1

m− 2

m∑
j=1

(
ykj −Hk

j ∆φ̂k

)2
, (3.18)

ckii – i-th diagonal matrix element Ck of form:

Ck =
( m∑
j=1

(
Hk
(
tkj
))T

Hk
(
tkj
)
+Wk

)−1

. (3.19)



Identification of Unknown Parameters of the Dynamic Model 465

Joint confidence regions play an important role in the analysis of model pa-
rameters, which in this case are confidence ellipsoids of the form:

(∆φk −∆φ̂k)
T
C−1

k (∆φk −∆φ̂k) ≤ 2 · s2k · Fα;2;m−2. (3.20)

Here the value of s2k is determined by the ratio (3.18), Fα;2;m−2 is the Fisher
criterion with degrees of freedom 2 and m− 2 and level of significance α, Ck is
matrix of the form (3.19).

Given the ratio (3.11), (3.17), (3.20), we can obtain interval estimates for
unknown parameters φi,k+1 = φ̂i,k +∆φi,k at each iteration

φ̂i,k+1 − δki ≤ φi,k+1 ≤ φ̂i,k+1 + δki , i = 1, 2,

and their joint confidence ellipsoid

(φk+1 − φ̂k+1)
T
C−1

k (φk+1 − φ̂k+1) ≤ 2 · s2k · Fα;2;m−2.

We now consider special case of estimating one parameter kL(φ1 = kL) of
model (3.1) under the assumption that equilibrium concentration s∗(φ1 = s∗)
is known. Then H (tj ; φ̂k) becomes a scalar function of the form

H (tj ; φ̂k) =
∂s (tj ;φ)

∂φ1

∣∣∣∣
φ=φ̂k

= tje
−φ̂1,ktj (φ2 − s0) = tje

−φ̂1,ktj (s∗ − s0)

and the optimal moments of measurement
(
tk1 , t

k
2 , . . . , t

k
m

)
are solutions to the

problem of maximizing the objective function

qk (t1, t2, . . . , tm) =

m∑
j=1

(H (tj ; φ̂k))
2
=

m∑
j=1

(
tje

−φ̂1,ktj (s∗ − s0)
)2

= (s∗ − s0)
2

m∑
j=1

(
t2je

−2φ̂1,ktj
)
. (3.21)

Analysis of this function shows that its maximum is reached at points tkj ≡
≡ tk = 1/φ̂1,k , j = 1, 2, . . . ,m, i.e., to obtain the most informative estimate of
the mass transfer coefficient φ1 = kL it is necessary to perform m parallel mea-
surements of the concentration of the substance s (t) at moment tk = 1/φ̂1,k .

If parallel measurements are impossible and all measurements should be
carried out in dynamics, then all m measurements must be concentrated in the
vicinity of time moment tk = 1/φ̂1,k .

Note that if measurements can be performed only on a given time interval
[0, T ], then

tk =

{
1/φ̂1,k, 1/φ̂1,k < T,
T, 1/φ̂1,k ≥ T .

Moreover, from the ratio (3.21) it follows that if in active experiment we can
change initial concentration of the substance s0 and/or the equilibrium con-
centration s∗, then to obtain the most informative estimate of the coefficient
kL it is necessary that a difference in these concentrations s∗ − s0 be as big as
possible.

Math. Model. Anal., 28(3):459–468, 2023.
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Based on the above algorithm, a Matlab solver was developed and compu-
tational experiments were performed, the results of which are shown below.

Calculations were performed with the following model initial data: t0 = 0,
T = 5, s0 = 1, σ = 0.5, ρ = 104, α = 0.05, ε = 10−6, m = 5. The array of initial

time points of measurements was chosen in the form
(
t
(0)
1 , t

(0)
2 , t

(0)
3 , t

(0)
4 , t

(0)
5

)
=

= (0.1; 0.2; 0.3; 0.4; 0.5), and initial approximations of the unknown parameters
kL(kL = φ1) and s∗(s∗ = φ2) were taken as φ̂1,0 = 3, φ̂2,0 = 4. The value of the
Student’s test for m− 2 = 3 degrees of freedom and significance level α = 0.05
(confidence coefficient γ = 1−α = 0.95) is equal to tα;m−2 = t0.05;3 = 2.53 [5].

Because measurement errors ξ(tj) and a priori distribution function of vec-
tor of unknown parameters φ obey the normal distribution law, then, as can
be easily shown, maximization of the posterior distribution function of these
parameters is equivalent to minimizing a function of form

J (kL, s
∗) = J (φ) = σ−2

m∑
j=1

(y (tj)− s (tj ;φ))
2
+ ρ−1(φ− φ0)

T
(φ− φ0) ,

where the functions s (tj ;φ) and y (tj) are determined by ratio (3.4) and (3.5),
φ0 is the given initial a priori value of vector of estimated parameters φ. The
function J (kL, s

∗), whose minimum determines the estimate of the unknown
parameters is called a generalized discrepancy function.

a) b)

Figure 1. Graph of generalized discrepancy function J (kL, s
∗).

In Figure 1 the graph of the function J (kL, s
∗) is presented, from which it

can be concluded that the search for a minimum point of this function with a
high degree of accuracy is quite a complex computational problem, since in the
neighborhood of the minimum point the surface of the function is fairly shallow,
and, consequently, the numerical solution of this optimization problem depends
essentially on a good choice of an initial approximation.

In computational experiments to simulate some measurement results as test
values of the required parameters kL (mass transfer coefficient) and s∗ (equi-
librium concentration of the substance) we selected kL = 2, s∗ = 5. Below are
the results of some numerical experiments. Table 1 shows dynamics of changes
in estimates of the parameters (φ̂1,k, φ̂2,k) and the most informative moments
of measurement time (tki ) for different numbers of iterations (k). It can be seen
that the most significant change in estimates occurs at the beginning of the
given iterative procedure, after that the covergence to the point of optimum
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is slowed. The most informative is the final time moment T = 5, at which it
is necessary to perform all five measurements of the substance concentration
s(t), performing so-called repeated measurements.

Table 1. The dynamics of change of parameter estimates.

k φ̂1,k φ̂2,k tk1 tk2 tk3 tk4 tk5

0 3.0 4.0 0.1 0.2 0.3 0.4 0.5
1 3.2131 4.3133 0.33328 0.33335 0.33335 0.33338 5.0
2 2.1786 4.7323 0.30588 0.30588 0.30588 0.30588 5.0
10 1.9133 5.1130 0.49715 0.49715 0.49715 0.49715 5.0
15 1.9594 5.0634 0.51179 0.51179 0.51179 0.51179 5.0
35 2.0301 4.9953 5.0 5.0 5.0 5.0 5.0
154 2.0009 4.9992 5.0 5.0 5.0 5.0 5.0

Herewith are the values δk1 and δk2 , which determine the confidence intervals
for the mass transfer coefficient kL = φ1 and equilibrium concentration of the
substance s∗ = φ2, equally δk1 = 0.68239, δk2 = 0.05826.

The left-hand side of inequality (3.16), which is condition for end of the iter-

ative process, is ||φ̂k+1 − φ̂k||/(1 + ||φ̂k+1||)−1
= 1.3543 ·10−7, which indicates

achievement of a specified degree of acuracy ε = 10−6.

Thus, the required (estimated) parameters are equal kL = φ1 = φ̂1,k±δk1 =
= 2.0009± 0.68239, s∗ = φ2 = φ̂2,k ± δk2 = 4.9992± 0.05826, which agrees well
with the test values kL = 2, s∗ = 5.

Figure 2 shows the course of computational process when searching for the
most informative optimal estimates of unknown parameters in accordance with
the algorithm proposed above.

Figure 2. Dynamics of changes in the estimation of parameters at test values kL = 2 and
s∗ = 5.

Computational experiments show a significant dependence of results of cal-
culations on choice of point of initial approximation and slowing of speed of
convergence of the iterative process (and even its divergence) with an unsuc-
cessful choice of the initial approximation.

Figure 3 shows the result of another computational experiment. Here the
initial starting point did not change. However, in connection with the presence
of random errors in the measurement of the concentration of the substance,
trajectory of motion of estimates to true values of parameters is somewhat

Math. Model. Anal., 28(3):459–468, 2023.
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Figure 3. Trajectory of motion of parameter estimates with confidence limits.

different. The same graph shows the dynamics of confidence intervals for the
estimated parameters.

4 Conclusions

In the paper, the algorithm for the identification of unknown parameters of
the mathematical model, which makes it possible to determine the most prob-
able maximum informative estimates of these parameters, is proposed. The
algorithm is based on an information identification criterion and Bayesian esti-
mation method, which represents a more precise and flexible formal apparatus
for accounting for a priori information. The results of computational experi-
ments make it possible to assert that the proposed algorithm has a sufficiently
high convergence for a given degree of accuracy and makes it possible to derive
based on a posteriori analysis not only point values of estimates of the pa-
rameters of the mathematical model but also the confidence intervals of these
estimates.
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