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Abstract. A boundary value problem for fractional integro-differential equations
with weakly singular kernels is considered. The problem is reformulated as an inte-
gral equation of the second kind with respect to z = Dα

Capy, the Caputo fractional
derivative of y of order α, with 1 < α < 2, where y is the solution of the original
problem. Using this reformulation, the regularity properties of both y and its Caputo
derivative z are studied. Based on this information a piecewise polynomial colloca-
tion method is developed for finding an approximate solution zN of the reformulated
problem. Using zN , an approximation yN for y is constructed and a detailed conver-
gence analysis of the proposed method is given. In particular, the attainable order
of convergence of the proposed method for appropriate values of grid and collocation
parameters is established. To illustrate the performance of our approach, results of
some numerical experiments are presented.
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1 Introduction

Differential equations containing derivatives of fractional (i.e., of any real pos-
itive) order are useful in various fields of science and engineering, especially
when modelling real-life processes with memory properties [3, 23, 26]. For the
fundamental theory of fractional derivatives and equations containing them we
refer the reader to [8,11,21,22], see also [25]. Since it is rarely possible to find
the solution of a given fractional differential equation in a closed form [16,21],
the analysis and development of numerical methods for fractional differential
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equations has become a very active area of research. In particular, a number of
studies have used collocation based methods, see, for example, [9,14,15,18,27].
This approach also forms the basis of our research in the present paper. A
comprehensive survey of different numerical methods for various classes of frac-
tional differential equations including a brief summary about the convergence
behaviour of the methods is given in the monograph [3], see also [8, 21]. For
various other types of studies, we direct the reader to [1, 4, 7, 10,12].

However, considerably less research has been done on fractional integro-
differential equations, especially those with weakly singular kernels. For in-
stance, in [28] initial value problems and in [17,19,20] boundary value problems
for weakly singular integro-differential equations with Caputo fractional differ-
ential operators are investigated. In [17,19], the highest order of the fractional
differential operator belongs to (0, 1). In the present paper we will consider the
case, where the highest order of the underlying fractional differential operator
belongs to (1, 2). More precisely, by using some ideas of [17] (see also [20]), we
construct a high order method for the numerical solution of fractional weakly
singular integro-differential equations in the form

(Dα
Capy)(t) + h(t)y(t)+

∫ t

0

Lκ(t, s)y(s)ds = f(t), 0 ≤ t ≤ b, 0 < b < ∞, (1.1)

subject to the conditions

a11y(0) + a12y(b1) = γ1, a21y
′(0) + a22y(b1) = γ2. (1.2)

Here y is the unknown function, Dα
Cap is the Caputo fractional differential

operator of order α with 1 < α < 2, b1 ∈ (0, b] and a11, a12, a21, a22, γ1, γ2 ∈
R = (−∞,∞). For our approach below we assume that b1a11a22 + a11a21 +
a12a21 ̸= 0. The functions h, f belong to C[0, b] and the function Lκ is defined
by the formula

Lκ(t, s) =

{
[1 + log(t− s)]K(t, s) for κ = 0,

(t− s)−κK(t, s) for 0 < κ < 1,
(1.3)

where K ∈ C(∆) and ∆ = {(t, s) : 0 ≤ s ≤ t ≤ b}.
By Cm[0, b] and Cm(∆), with m ∈ N0 = {0} ∪ N, N = {1, 2, . . . }, we

denote the sets of m times continuously differentiable functions on [0, b] and
∆, respectively; for m = 0 we set C0[0, b] = C[0, b] and C0(∆) = C(∆). In
particular, C[0, b] will denote the Banach space of continuous functions u :
[0, b] → R with the norm ∥u∥∞ = sup{|u(t)| : 0 ≤ t ≤ b}. Note that for
a12 = a22 = 0 the problem (1.1)–(1.2) takes the form of an initial value problem
for equation (1.1) and for b1 = b a two-point boundary value problem for
equation (1.1). To simplify the presentation we have restricted ourselves to
conditions (1.2). However, the proposed approach below can also be applied
in the case where the conditions associated with equation (1.1) are given in a
more general form.

We are interested in solutions y ∈ C1[0, b] of problem (1.1)–(1.2) such that
Dα

Capy ∈ C[0, b], α ∈ (1, 2). Note that in [25] necessary and sufficient conditions
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for the existence of Dα
Capy ∈ C[0, b] (1 < α < 2) for a function y ∈ C1[0, b] have

been derived.
The Caputo fractional differential operator Dδ

Cap of order δ ∈ (1, 2) can be
defined by formula (see, e.g., [8, 25])

(Dδ
Capy)(t) = (D2J2−δ(y − T1y))(t), t ∈ [0, b], y ∈ C1[0, b],

where
(T1y)(t) = y(0) + y′(0)t

is the Taylor polynomial of degree 1 at the point 0. The classical differential
operator

(
d
dt

)m
of order m ∈ N0 is denoted by Dm (with D0 = I) and Jδ is

the Riemann-Liouville integral operator of order δ, defined by

(Jδy)(x)=
1

Γ (δ)

∫ x

0

(x−t)δ−1y(t)dt, x∈[0, b], y∈L∞(0, b), δ > 0; J0 = I, (1.4)

where I is the identity mapping and Γ the Euler gamma function:

Γ (η) =

∫ ∞

0

sη−1e−sds, η > 0.

By L∞(0, b) we denote the space of all essentially bounded measurable functions
y : (0, b) → R such that

∥y∥L∞(0,b) = inf
meas(Ω)=0

sup
t∈(0,b)\Ω

|y(t)| < ∞,

where meas(Ω) = 0 means that the Lebesgue measure of the set Ω ⊂ (0, b) is
equal to 0.

Note that, for any y ∈ L∞(0, b) we have (see [8, 11,22])

JδJηy =Jδ+ηy, δ > 0, η > 0, (1.5)

D1J1y =y,Dη
CapJ

ηy = y, 1 < η < 2, (1.6)

Dk(Jηy) ∈C[0, b], (DkJηy)(0) = 0, η > 0, k = 0, . . . , ⌈η⌉ − 1, (1.7)

where ⌈η⌉ denotes the smallest integer greater than or equal to real number η.
Due to [8] we cannot expect that a solution of a fractional differential equa-

tion with Caputo differential operators will be smooth on the closed interval
of integration and this is a challenge for constructing high order methods for
the numerical solution of such equations. Therefore, using an integral equa-
tion reformulation of problem (1.1)–(1.2), we first study the possible singular
behaviour of the exact solution y to (1.1)–(1.2). We observe that usual deriva-
tives of y may be unbounded near the left endpoint of the interval of integration
[0, b], even if Lκ = 0 and the functions h and f are infinitely differentiable on
[0, b] (see Theorem 1 below). It is our aim, in the present paper, to construct
and justify a high order method for solving (1.1)–(1.2) which takes into account
the possible singular behaviour of the exact solution y to (1.1)–(1.2).

The rest of the paper is organised in the following matter. In Section 2, we
reformulate the problem (1.1)–(1.2) and study the existence, uniqueness and
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regularity of the exact solution to (1.1)–(1.2). In Section 3, we introduce a col-
location based method for finding approximate solutions of problem (1.1)–(1.2).
In Section 4, we study the convergence and convergence order of the proposed
method. In Section 5, we test our theoretical results with three numerical
experiments. The main results of the article are formulated by Theorems 1–3.

2 Existence, uniqueness and smoothness of the solution

We start by reformulating (1.1)–(1.2) as an integral equation. Let y ∈ C1[0, b]
be an arbitrary function such that Dα

Capy ∈ C[0, b], where α ∈ (1, 2).
Denote z = Dα

Capy. Then (cf. [8])

y(t) = k1 + k2t+ (Jαz)(t), t ∈ [0, b], k1, k2 ∈ R, (2.1)

where Jα is the Riemann-Liouville integral operator of order α (see (1.4)).
With the help of (1.5)–(1.7) it is easy to check that a function of the form (2.1)
satisfies the conditions (1.2) if and only if

y(t) = (Jαz)(b1)k00 + k01 + [(Jαz)(b1)k10 + k11]t+(Jαz)(t), t ∈ [0, b], (2.2)

where

k00 =
−a21a12

b1a11a22 + a11a21 + a12a21
, k10 =

−a22a11
b1a11a22 + a11a21 + a12a21

,

k01 =
γ1(b1a22 + a21)− γ2a12b1
b1a11a22 + a11a21 + a12a21

, k11 =
−γ1a22+γ2(a11 + a12)

b1a11a22+a11a21+a12a21
, (2.3)

for b1a11a22 + a11a21 + a12a21 ̸= 0.
Let now y ∈ C1[0, b] be a solution of problem (1.1)–(1.2) such that Dα

Capy ∈
C[0, b]. By substituting (2.2) into (1.1) we obtain that z = Dα

Capy is a solution
to an integral equation of the form

z(t) = f(t)− h(t)
[
(Jαz)(b1)k00 + k01 + ((Jαz)(b1)k10 + k11)t+ (Jαz)(t)

]
−
∫ t

0

Lκ(t, s)
[
(Jαz)(b1)k00+k01+((Jαz)(b1)k10+k11)s+(Jαz)(s)

]
ds

or

z(t) = f(t)− h(t)
[
(Jαz)(b1)k00 + k01 + ((Jαz)(b1)k10 + k11)t+ (Jαz)(t)

]
−
∫ t

0

Lκ(t, s)
[
(Jαz)(b1)k00+k01+((Jαz)(b1)k10+k11)s

]
ds (2.4)

−
∫ t

0

Lκ(t, s)
1

Γ (α)

∫ s

0

(s− τ)α−1z(τ)dτds.

By changing the order of integration in the last integral on the right-hand side
of equation (2.4) we find that, for t ∈ [0, b],∫ t

0

Lκ(t, s)
1

Γ (α)

∫ s

0

(s−τ)α−1z(τ)dτds=
1

Γ (α)

∫ t

0

z(s)

∫ t

s

Lκ(t, τ)(τ−s)α−1dτds.
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Using the change of variables τ = (t− s)σ + s, we get

1

Γ (α)

∫ t

0

z(s)

∫ t

s

Lκ(t, τ)(τ − s)α−1dτds

=
1

Γ (α)

∫ t

0

z(s)(t−s)α
∫ 1

0

Lκ(t, (t−s)σ + s)σα−1dσds, t ∈ [0, b].

Thus, we can rewrite (2.4) in the form

z = Tz + g, (2.5)

where, for t ∈ [0, b],

(Tz)(t)=− h(t)

[
1

Γ (α)

∫ t

0

(t−x)α−1z(x)dx+
k00 + k10t

Γ (α)

∫ b1

0

(b1−x)α−1z(x)dx

]

− k00
Γ (α)

∫ t

0

Lκ(t, s)ds

∫ b1

0

(b1−x)α−1z(x)dx− k10
Γ (α)

∫ t

0

sLκ(t, s)ds (2.6)

×
∫ b1

0

(b1−x)α−1z(x)dx− 1

Γ (α)

∫ t

0

(t−s)α
(∫ 1

0

Lκ(t, (t−s)σ+s)σα−1dσ

)
z(s)ds,

and

g(t) = f(t)−h(t)[k01+k11t]−k01

∫ t

0

Lκ(t, s)ds−k11

∫ t

0

sLκ(t, s)ds, (2.7)

with Lκ defined by (1.3) and k00, k01, k10, k11 given by (2.3).
Conversely, it can be shown that if z ∈ C[0, b] is a solution to (2.5), then y

determined by formula (2.2) belongs to C1[0, b] and is a solution to (1.1)–(1.2).
In this sense equation (2.5) is equivalent to problem (1.1)–(1.2).

In order to study the regularity properties of the exact solution of problem
(1.1)–(1.2), we first introduce the weighted space Cq,ν(0, b] of smooth functions
on (0, b], an adaptation of a more general weighted space of functions introduced
by Vainikko in [24] (see also [5]).

For given b ∈ R, b > 0, q ∈ N and ν ∈ R, ν < 1, by Cq,ν(0, b] we denote
the set of continuous functions y : [0, b] → R which are q times continuously
differentiable in (0, b] such that for all t ∈ (0, b] and i = 1, . . . , q, the following
estimate holds:

|y(i)(t)| ≤ c


1, if i < 1− ν,

1 + | log t|, if i = 1− ν,

t1−ν−i, if i > 1− ν.

Here c = c(y) is a positive constant. The set Cq,ν(0, b] becomes a Banach space
if it is equipped with the norm

∥y∥Cq,ν(0,b] = ∥y∥∞ +

q∑
i=1

sup
0<t≤b

ωi−1+ν(t)|y(i)(t)|, y ∈ Cq,ν(0, b],
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where, for t > 0, λ ∈ R,

ωλ(t) =


1, if λ < 0,

1/(1 + | log t|), if λ = 0,

tλ, if λ > 0.

For example, the function y(t) = t
5
2 , t ∈ [0, b], belongs to Cq,− 3

2 (0, b] with
arbitrary q ∈ N. Note also that

Cn[0, b] ⊂ Cn,ν(0, b] ⊂ Cm,µ(0, b] ⊂ C[0, b], n ≥ m ≥ 1, ν ≤ µ < 1.

Next two lemmas follow from the corresponding results of [5].

Lemma 1. If y1, y2 ∈ Cq,ν(0, b], q ∈ N, ν < 1, then y1y2 ∈ Cq,ν(0, b] and

∥y1y2∥Cq,ν(0,b] ≤ c ∥y1∥Cq,ν(0,b] ∥y2∥Cq,ν(0,b] ,

with a constant c which is independent of y1 and y2.

Lemma 2. Let η ∈ (−∞, 1) and U ∈ C(∆). Then operators S1 and S2 defined
by

(S1y)(t) =

∫ t

0

(t− s)−ηU(t, s)y(s)ds, t ∈ [0, b],

(S2y)(t) =

∫ t

0

[1 + log(t− s)]U(t, s)y(s)ds, t ∈ [0, b],

are both compact as operators from L∞(0, b) into C[0, b], thus also from C[0, b]
into C[0, b] and from L∞(0, b) into L∞(0, b). If, in addition, U ∈ Cq(∆),
q ∈ N, then S1 is compact as an operator from Cq,ν(0, b] into Cq,ν(0, b], where
η ≤ ν < 1, and S2 is compact as an operator from Cq,ν(0, b] into Cq,ν(0, b] for
0 ≤ ν < 1.

For Banach spaces E and F , by L(E,F ) we denote the Banach space of
linear bounded operators A : E → F with the norm ∥A∥L(E,F ) = sup{∥Ax∥F :

x ∈ E, ∥x∥E ≤ 1}. In our discussions below we also need the following results
from the classical theory of compact operators, see, e.g., [2].

Lemma 3. Let E, F and G be normed spaces and let A : E → F and B : F →
G be bounded linear operators. Then the product BA : E → G is a compact
operator if one of the two operators A or B is compact.

Lemma 4. (Fredholm alternative) Let E be a Banach space and let A∈L(E,E)
be a compact operator. Then the equation z = Az + f , f ∈ E, has a unique
solution z ∈ E if and only if the homogeneous equation z = Az has only the
trivial solution z = 0.

The existence, uniqueness and regularity properties of the solution to (1.1)–
(1.2) can be characterized by the following result.
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Theorem 1. (i) Assume that α ∈ (1, 2), κ ∈ [0, 1), h, f ∈ C[0, b] and Lκ is
defined by (1.3), where K ∈ C(∆). Moreover, let b1a11a22+a11a21+a12a21 ̸= 0
and assume that the problem (1.1)–(1.2) with f = 0 and γ1 = γ2 = 0 has in
C[0, b] only the trivial solution y = 0. Then problem (1.1)–(1.2) possesses a
unique solution y ∈ C1[0, b] such that Dα

Capy ∈ C[0, b].
(ii) Let the assumptions of (i) hold and let K ∈ Cq(∆), h, f ∈ Cq,µ(0, b], q ∈ N,
µ ∈ (−∞, 1). Then y, the solution of problem (1.1)–(1.2), and its derivative
Dα

Capy belong to Cq,ν(0, b], where

ν =

{
max{κ, µ}, if K ̸= 0,

max{1− α, µ}, if K = 0 (K vanishes identically).
(2.8)

Proof. We begin by considering equation z−Tz = g (see (2.5)), where operator
T and right-hand side g are defined by (2.6) and (2.7), respectively. We rewrite
the function g in the form g = g1 − g2, where

g1(t) = f(t)− h(t)[k01 + k11t], g2(t) =

∫ t

0

Lκ(t, s)(k01 + k11s)ds, t ∈ [0, b].

The operator T can be written in the form

T = −H2(J
α +H1)−MH1 −B/Γ (α).

Here H1, H2, M and B are defined by the following formulas:

(H1z)(t) = (Jαz)(b1)k00 + (Jαz)(b1)k10t, (H2z)(t) = h(t)z(t),

(Mz)(t) =

∫ t

0

Lκ(t, s)z(s)ds,

(Bz)(t) =

∫ t

0

(t− s)α
(∫ 1

0

Lκ(t, (t− s)σ + s)σα−1dσ

)
z(s)ds,

with t ∈ [0, b] and z ∈ C[0, b]. We are now ready to prove (i) and (ii). Our aim
is to use Lemma 4 (Fredholm alternative).

Proof of (i). First, we show that T is compact as an operator from C[0, b]
into C[0, b]. Indeed, if 0 < κ < 1, then we can write

(Bz)(t) =

∫ t

0

(t− s)α−κF (t, s)z(s)ds, t ∈ [0, b],

where α− κ > 0 and

F (t, s) =

∫ 1

0

K(t, (t− s)σ + s)(1− σ)−κσα−1dσ, (t, s) ∈ ∆.

Due to K ∈ C(∆) also F ∈ C(∆). Hence, by Lemma 2, B : C[0, b] → C[0, b] is
compact. A similar approach shows that B : C[0, b] → C[0, b] is compact also
for κ = 0. Moreover, Lemma 2 implies that Jα is compact as an operator from
C[0, b] into C[0, b]. Clearly, H1 : C[0, b] → C[0, b] is compact. We also see that
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H2 and M are bounded as operators from C[0, b] into C[0, b]. All this together
with Lemma 3 yields that T : C[0, b] → C[0, b] is compact.

Since f, h ∈ C[0, b] and K ∈ C(∆), it is easy to see that g1, g2 ∈ C[0, b].
Thus, g = g1 − g2 is a continuous function on [0, b]. Also note that, if f = 0
and γ1 = γ2 = 0, then k01 = k11 = 0 (see (2.3)) and hence g = 0. This together
with the assumption that the problem (1.1)–(1.2) with f = 0 and γ1 = γ2 = 0
possesses in C[0, b] only the trivial solution y = 0 implies that equation z = Tz
has in C[0, b] only the trivial solution z = 0. By Lemma 4 we obtain that the
equation z = Tz+g possesses a unique solution z ∈ C[0, b]. Now, with the help
of (2.2), (1.5)–(1.7) we obtain that problem (1.1)–(1.2) has a unique solution
y ∈ C1[0, b] such that Dα

Capy = z ∈ C[0, b].
Proof of (ii). Observe first that the right-hand side of equation z − Tz =

g belongs to Cq,ν(0, b]. Indeed, g1 ∈ Cq,µ(0, b] ⊂ Cq,ν(0, b], because f, h ∈
Cq,µ(0, b] and µ ≤ ν < 1 (see (2.8)). If K vanishes identically, then it follows
from (1.3) that Lκ (κ ∈ [0, 1)) vanishes identically and g2(t) = 0 for any
t ∈ [0, b]. Therefore, g2 ∈ Cq,ν(0, b] for K = 0. If K ̸= 0, then it follows from
Lemma 2 that g2 ∈ Cq,ν(0, b]. Consequently, g = g1 − g2 belongs to Cq,ν(0, b].

Next, we show that T is a compact operator from Cq,ν(0, b] into Cq,ν(0, b].
Since 1 − α ≤ ν, it follows from Lemma 2 that Jα is a compact operator
from Cq,ν(0, b] into Cq,ν(0, b]. Also, H1 : Cq,ν(0, b] → Cq,ν(0, b] is a compact
operator. Furthermore,H2 andM are bounded as operators from Cq,ν(0, b] into
Cq,ν(0, b] (see Lemmas 1 and 2). Consequently, by using Lemma 3 we obtain
that operators H2(H1 + Jα) and MH1 are compact operators from Cq,ν(0, b]
into Cq,ν(0, b]. As κ − α < 1 − α ≤ ν, we see with the help of Lemma 2 that
operator B is compact from Cq,ν(0, b] into Cq,ν(0, b]. Thus, T is compact as
an operator from Cq,ν(0, b] into Cq,ν(0, b].

Since the homogeneous equation z = Tz has in Cq,ν(0, b] ⊂ C[0, b] only
the trivial solution, it follows from Lemma 4 that equation z = Tz + g has a
unique solution z ∈ Cq,ν(0, b]. With the help of relation (2.2) and Lemma 2 we
see that the problem (1.1)–(1.2) possesses a unique solution y ∈ Cq,ν(0, b] such
that Dα

Capy = z ∈ Cq,ν(0, b]. ⊓⊔

3 Numerical method

Let N ∈ N, we introduce a partition (a graded grid) ΠN = {t0, . . . , tN} of the
interval [0, b] with the grid points

tj = b

(
j

N

)r

, j = 0, 1, . . . , N, (3.1)

where the so-called grading exponent r belongs to [1,∞). If r = 1 , then the
grid points (3.1) are distributed uniformly; for r > 1 the points (3.1) are more
densely clustered near the left endpoint of the interval [0, b].

For a given integer k ∈ N0, by S
(−1)
k (ΠN ) we denote the space of piecewise

polynomial functions

S
(−1)
k (ΠN ) = {v : v|[tj−1,tj ] ∈ πk, j = 1, . . . , N}.
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Here, v|[tj−1,tj ] is the restriction of function v : [0, b] → R onto the subinterval
[tj−1, tj ] ⊂ [0, b] and πk denotes the set of polynomials of degree not exceeding

k. Observe that the elements of the space S
(−1)
k (ΠN ) may have jump discon-

tinuities at the interior points t1, . . . , tN−1 of ΠN .
In every interval [tj−1, tj ], j = 1, . . . , N , we define m ∈ N collocation points

tjk = tj−1 + ηk(tj − tj−1), k = 1, . . . ,m, j = 1, . . . , N, (3.2)

where η1, . . . , ηm are some fixed collocation parameters which do not depend
on j and N and satisfy inequality

0 ≤ η1 < η2 < . . . < ηm ≤ 1.

We find approximations zN ∈ S
(−1)
m−1(ΠN ) (m,N ∈ N) to the exact solution

z of equation (2.5) by collocation conditions

zN (tjk) = (TzN )(tjk) + g(tjk), k = 1, . . . ,m, j = 1, . . . , N, (3.3)

with {tjk} defined by (3.2). Having found an approximation zN we use (2.2)
to determine the approximation yN to y, the solution of problem (1.1)–(1.2),
in the following way:

yN (τ) = (JαzN )(b1)k00 + k01 + [(JαzN )(b1)k10 + k11]τ + (JαzN )(τ), (3.4)

where τ ∈ [0, b] and zN ∈ S
(−1)
m−1(ΠN ) is determined by (3.3).

For given N,m ∈ N we define the interpolation operator PN = PN,m :

C[0, b] → S
(−1)
m−1(ΠN ) by

PNv ∈ S
(−1)
m−1(ΠN ), (PNv)(tjk) = v(tjk), j=1, . . . , N, k=1, . . . ,m, (3.5)

for any continuous function v ∈ C[0, b]. If η1 = 0, then by (PNv)(tj1) we denote
the right limit limt→tj−1,t>tj−1(PNv)(t). If ηm = 1, then (PNv)(tjm) denotes
the left limit limt→tj ,t<tj (PNv)(t). By using operator PN conditions (3.3) for

finding zN ∈ S
(−1)
m−1(ΠN ) take the form

zN = PNTzN + PNg. (3.6)

The collocation conditions (3.3) lead to a system of linear equations to

uniquely determine zn ∈ S
(−1)
m−1(ΠN ). The exact form of the system of equations

is determined by the choice of a basis in the space S
(−1)
m−1(ΠN ). If η1 > 0 or

ηm < 1, then we can use the Lagrange fundamental polynomial representation

zN (τ) =

N∑
λ=1

m∑
µ=1

cλµlλµ(τ), τ ∈ [0, b], (3.7)

where lλµ(τ) = 0, if τ ̸∈ [tλ−1, tλ], and

lλµ(τ) =

m∏
i=1,i̸=µ

τ − tλi
tλµ − tλi

for τ ∈ [tλ−1, tλ], µ = 1, . . . ,m, λ = 1, . . . , N.
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Then zN ∈ S
(−1)
m−1(ΠN ) and zN (tjk) = cjk for every k = 1, . . . ,m, j = 1, . . . , N .

To determine approximation zN in the form (3.7) we have to solve a system of
linear algebraic equations with respect to {cjk}:

cjk =

N∑
λ=1

m∑
µ=1

(T lλµ)(tjk)cλµ + g(tjk), k = 1, . . . ,m, j = 1, . . . , N. (3.8)

Having found {cjk} from (3.8) we get that

yN (τ) =

N∑
λ=1

m∑
µ=1

cλµ(J
αlλµ)(b1)k00 + k01+

[
N∑

λ=1

m∑
µ=1

cλµ(J
αlλµ)(b1)k10 + k11

]
τ

+

N∑
λ=1

m∑
µ=1

cλµ(J
αlλµ)(τ), τ ∈ [0, b]. (3.9)

It follows from (1.6) and (1.7) that the function yN defined by (3.9) is contin-
uous on [0, b].

4 Convergence analysis

In this section, we study the convergence and convergence order of our method.

Throughout this section assume that PN : C[0, b] → S
(−1)
m−1(ΠN ) is defined by

(3.5). Lemmas 5 and 6 below follow from the results of [5] (see also [24]).

Lemma 5. The operators PN , N ∈ N, belong to the space L(C[0, b], L∞(0, b))
and ∥PN∥L(C[0,b],L∞(0,b)) ≤ c, with a positive constant c which is independent

of N . Moreover, for every u ∈ C[0, b] we have

∥u− PNu∥L∞(0,b) → 0 as N → ∞.

Lemma 6. Let A : L∞(0, b) → C[0, b] be a linear compact operator. Then

∥A− PNA∥L(L∞(0,b),L∞(0,b)) → 0 as N → ∞.

The following theorem gives the conditions for the convergence of the method
proposed in the previous section.

Theorem 2. Let the assumptions introduced in the part (i) of Theorem 1 be
fulfilled. Let m,N ∈ N and assume that the collocation points (3.2) with ar-
bitrary parameters η1, . . . , ηm satisfying 0 ≤ η1 < . . . < ηm ≤ 1 and grid
points (3.1) are used. Then problem (1.1)–(1.2) possesses a unique solution
y ∈ C1[0, b] such that Dα

Capy ∈ C[0, b]. There exists an integer N0 > 0 such

that, for N ≥ N0, Equation (3.6) possesses a unique solution zN ∈ S
(−1)
m−1(ΠN ),

determining by (3.9) a unique approximation yN ∈ C[0, b] to y, the solution of
(1.1)–(1.2), and

∥y − yN∥∞ → 0 as N → ∞. (4.1)
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Proof. Due to Theorem 1, we only need to prove the convergence (4.1). Let
T and g be defined by (2.6) and (2.7), respectively. We showed in the proof
of Theorem 1 that T is compact as an operator from C[0, b] into C[0, b]. In a
similar way it can be shown that T is compact from L∞(0, b) into C[0, b], thus
also from L∞(0, b) into L∞(0, b). Furthermore, g ∈ C[0, b] ⊂ L∞(0, b) and the
homogeneous equation z = Tz has in C[0, b] only the solution z = 0. Since
T belongs to L(L∞(0, b), C[0, b]), equation z = Tz possesses also in L∞(0, b)
only the trivial solution. By Lemma 4, equation z = Tz+ g possesses a unique
solution z ∈ L∞(0, b). In other words, operator I − T is invertible in L∞(0, b)
and its inverse is bounded: (I − T )−1 ∈ L(L∞(0, b), L∞(0, b)). From Lemma 6
and the boundedness of (I−T )−1 in L∞(0, b) we obtain that for all sufficiently
large N , operator I − PNT is invertible in L∞(0, b) and∥∥(I − PNT )−1

∥∥
L(L∞(0,b),L∞(0,b))

≤ c, N ≥ N0, (4.2)

where c is a constant not depending on N . Thus, for N ≥ N0, Equation (3.6)

has a unique solution zN ∈ S
(−1)
m−1(ΠN ). Now, for zN and z, the solution of

equation z = Tz + g (hence PNz = PNTz + PNg), we see that

(I − PNT )(z − zN ) = z − zN − PNTz + PNTzN = z − PNz, N ≥ N0.

Therefore, by (4.2),

∥z − zN∥L∞(0,b) ≤ c ∥z − PNz∥L∞(0,b) , N ≥ N0,

where c is a positive constant not depending on N . By (2.2) and (3.4), we have
for t ∈ [0, b] that

|y(t)− yN (t)| = |[(Jαz)(b1)k00 + k01 + [(Jαz)(b1)k10 + k11]t+ (Jαz)(t)]

− [(JαzN )(b1)k00 + k01 + [(JαzN )(b1)k10 + k11]t+ (JαzN )(t)]|
= |(Jα(z − zN ))(b1)k00 + (Jα(z − zN ))(b1)k10t+ (Jα(z − zN ))(t)|.

(4.3)

Thus,
∥y − yN∥∞ ≤ c1 ∥z − zN∥∞ ≤ c2 ∥z − PNz∥∞ ,

where c1 ja c2 are some positive constants not depending on N . Using Lemma
5, we see that the convergence (4.1) holds. ⊓⊔

The convergence behaviour of our method is described by Theorem 3 below.
Before presenting this theorem, we first introduce a result from [13].

Lemma 7. Let u ∈ Cm+1,ν(0, b], m ∈ N, ν ∈ (−∞, 1), N ∈ N, r ∈ [1,∞) and
J1 be defined by (1.4). Assume that the collocation points (3.2) with grid points
(3.1) and parameters η1, . . . , ηm satisfying 0 ≤ η1 < . . . < ηm ≤ 1 are used.
Moreover, assume that η1, . . . , ηm are such that a quadrature approximation∫ 1

0

F (x)dx ≈
m∑

k=1

wkF (ηk) (0 ≤ η1 < . . . < ηm ≤ 1) (4.4)

with appropriate weights {wk} is exact for all polynomials F of degree m.
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Then ∥∥J1(PNu− u)
∥∥
∞ ≤ cEN (m, ν, r),

where c is a positive constant not depending on N and

EN (m, ν, r) =



N−m−1 for m < 2− ν, r ≥ 1,

N−m−1(1 + logN)2 for m = 2− ν, r = 1,

N−m−1(1 + logN) for m = 2− ν, r > 1,

N−r(2−ν) for m > 2− ν, 1 ≤ r <
m+ 1

2− ν
,

N−m−1 for m > 2− ν, r ≥ (m+ 1)/(2− ν).

(4.5)

Theorem 3. Let m,N ∈ N, r ≥ 1 and let the assumptions of part (ii) of
Theorem 1 be fulfilled with K ∈ Cm+1(∆), h, f ∈ Cm+1,µ(0, b], µ ∈ (−∞, 1).
Assume that the collocation points (3.2) with grid points (3.1) and parameters
η1, . . . , ηm satisfying 0 ≤ η1 < . . . < ηm ≤ 1 are used. Moreover, assume
that η1, . . . , ηm are such that a quadrature approximation (4.4) with appropriate
weights {wk} is exact for all polynomials of degree m.

Then problem (1.1)–(1.2) has a unique solution y ∈ C1[0, b] such that y and
Dα

Capy belong to Cm+1,ν(0, b]. There exists an integer N0 > 0 such that, for

N ≥ N0, Equation (3.6) possesses a unique solution zN ∈ S
(−1)
m−1(ΠN ), deter-

mining by (3.9) a unique approximation yN to y, the solution of (1.1)–(1.2),
and the following error estimate holds:

∥y − yN∥∞ ≤ cEN (m, ν, r). (4.6)

Here EN (m, ν, r) is defined by (4.5), ν is given by the formula (2.8), r is the
grading exponent in (3.1) and c is a positive constant not depending on N .

Proof. It follows from part (ii) (with q = m+ 1) of Theorem 1 that problem
(1.1)–(1.2) has a unique solution y ∈ C1[0, b] such that y,Dα

Capy ∈ Cm+1,ν(0, b].
From the proof of Theorem 2 we know that there exists an integer N0 > 0 such

that for N ≥ N0, Equation (3.6) has a unique solution zN ∈ S
(−1)
m−1(ΠN ) and

the estimate (4.2) holds. Denote

ẑN = TzN + g, N ≥ N0, (4.7)

where T and g are defined by (2.6) and (2.7), respectively. It follows from (3.6)
and (4.7) that PN ẑN = zN . Using this and (4.7) we obtain an equation with
respect to ẑN :

ẑN = TPN ẑN + g, N ≥ N0. (4.8)

With the help of z = Tz + g and (4.8) we get for every N ≥ N0 that

(I − TPN )(ẑN − z) = T (PNz − z). (4.9)

Due to the existence of the inverse (I − PNT )−1 ∈ L(L∞(0, b), L∞(0, b))
for N ≥ N0, there exists also the inverse (I − TPN )−1 ∈ L(L∞(0, b), L∞(0, b))
and

(I − TPN )−1 = I + T (I − PNT )−1PN , N ≥ N0. (4.10)

Math. Model. Anal., 28(2):218–236, 2023.



230 H.B. Soots, K. Lätt and A. Pedas

Using (4.9), (4.10), (4.2) and Lemma 5, we get

∥ẑN−z∥∞ =
∥∥(I−TPN )−1T (PNz−z)

∥∥
∞ ≤c ∥T (PNz−z)∥∞ , N≥N0, (4.11)

where c is a positive constant independent of N . Further, on the basis of the
definition of operator T (see (2.6)), we have

∥T (PNz − z)∥∞ ≤ c ∥Jα(PNz − z)∥∞ , N ≥ N0, (4.12)

where c is a positive constant not depending on N . It follows from (4.12) and
(4.11) that

∥ẑN − z∥∞ ≤ c1 ∥Jα(PNz − z)∥∞ , N ≥ N0, (4.13)

where c1 is a positive constant not depending on N . Since zN = PN ẑN , we
have zN − z = PN ẑN − z = PN (ẑN − z) + PNz − z. This, together with (4.3)
leads to the following estimate:

|yN (t)− y(t)|= |(Jα(zN − z))(b1)k00+t(Jα(zN − z))(b1)k10+(Jα(zN − z))(t)|
≤|(JαPN (ẑN−z))(b1)k00+t(JαPN (ẑN−z))(b1)k10+(JαPN (ẑN−z))(t)|
+ |(Jα(PNz − z))(b1))k00+t(Jα(PNz − z))(b1)k10+(Jα(PNz − z))(t)|,

with t ∈ [0, b]. Thus, it follows from Lemma 5 and inequality (4.13) that

∥yN−y∥∞ ≤c1 ∥ẑN−z∥∞ +c2 ∥Jα(PNz−z)∥∞ ≤c3 ∥Jα(PNz − z)∥∞ , (4.14)

where c1, c2 and c3 are some positive constants not depending on N ≥ N0.
Since α ∈ (1, 2) we get from (4.14), (1.5) and the boundedness of operator

Jα−1 : C[0, b] → C[0, b] that

∥yN − y∥∞ ≤ c1
∥∥Jα−1J1(PNz − z)

∥∥
∞ ≤ c2

∥∥J1(PNz − z)
∥∥
∞ , N ≥ N0,

where c1, c2 are positive constants independent ofN . With the help of Lemma 7
we now see that the inequality (4.6) holds. ⊓⊔

5 Numerical experiments

In this section, we present some numerical examples to illustrate our theoretical
results. In the examples below y is the exact solution of the underlying problem
and yN (N ∈ N) is its approximation found using the method described in

Section 3. In particular, approximations zN ∈ S
(−1)
m−1(ΠN ) (N ∈ N) to the

solution z of Equation (2.5) (with the corresponding data given in Examples 1–
3 below) are found by (3.3) using grid points (3.1) and collocation points (3.2),
where

η1 =
3−

√
3

6
, η2 = 1− η1 (if m = 2), (5.1)

η1 =
5−

√
15

10
, η2 =

1

2
, η3 = 1− η1 (if m = 3) (5.2)
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are collocation parameters that satisfy the conditions of Theorem 3. Note
that (5.1) and (5.2) are actually the knots of the m-point Gaussian quadrature
approximation (4.4) for m = 2 and m = 3, respectively (see, e.g., [6]). Further,
the function (approximation) zN is defined by (3.7), where the coefficients {cλµ}
are determined by (3.8). Finally, the approximate solution yN of (1.1)–(1.2) is
found using (3.4).

We present in the tables below some results of numerical experiments for
different values of parameters m, N and r. The errors εN are calculated as
follows:

εN = max
j=1,...,N

max
k=0,...,10

|y(τjk)− yN (τjk)|,

where

τjk = tj−1 + k(tj − tj−1)/10, k = 0, . . . , 10, j = 1, . . . , N,

with the gridpoints tj defined by (3.1). The ratios ΘN = εN
2
/εN , characterising

the observed convergence rate, are also presented.
To perform the numerical experiments, we wrote the code in Python. For

calculating integrals, we used the numpy library.

Example 1. Consider the following problem:

(D
21
20

Capy)(t) + h(t)y(t)+

∫ t

0

(t−s)−
3
4K(t, s)y(s)ds = f(t), t ∈ [0, 1], (5.3)

y(0) + y

(
1

10

)
=

(
1

10

) 11
10

, y′(0) + y

(
1

10

)
=

(
1

10

) 11
10

, (5.4)

with

h(t) = t, K(t, s) = ts, f(t) =
Γ
(
21
10

)
Γ
(
21
20

) t 1
20 + t

21
10 +

Γ
(
1
4

)
Γ
(
31
10

)
Γ
(
67
20

) t
67
20 ,

where t ∈ [0, 1] and s ∈ [0, t]. We see that (5.3)–(5.4) is a problem of the form
(1.1)–(1.2) with α = 21

20 , κ = 3
4 , b1 = 1

10 , b = 1, a11 = a12 = a21 = a22 = 1,

γ1 = γ2 =
(

1
10

) 11
10 and that y(t) = t

11
10 , t ∈ [0, 1] is its exact solution. Clearly,

f, h ∈ Cq,µ(0, 1] with µ = 19
20 and arbitrary q ∈ N. Therefore, by (2.8),

ν = max{κ, µ} = 19/20.

In the case m = 3 it follows from the error estimate (4.6) with ν = 19
20 that,

for sufficiently large N ,

εN ≤ c

{
N−r( 21

20 ), if 1 ≤ r < 80/21,

N−4, if r ≥ 80/21,
(5.5)

where c is a positive constant not depending on N . Due to (5.5), the ratios

ΘN for r = 1, r = 2, r = 3 and r = 4 ought to be approximately 2
21
20 ≈ 2.07,

2
42
20 ≈ 4.29, 2

63
20 ≈ 8.88 and 24 = 16, respectively. These values are given in the

last row of Table 1. We see that the numerical results are in accordance with
the theoretical estimates given by Theorem 3.
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Table 1. Numerical results for problem (5.3)–(5.4) with m = 3.

r = 1 r = 2 r = 3 r = 4

N εN ΘN εN ΘN εN ΘN εN ΘN

4 4.85E-04 8.77E-05 4.30E-05 4.73E-05
8 2.01E-04 2.42 2.03E-05 4.31 4.61E-06 9.34 4.18E-06 11.33
16 9.55E-05 2.10 4.07E-06 5.00 4.33E-07 10.64 1.77E-07 23.65
32 4.37E-05 2.19 8.42E-07 4.83 3.66E-08 11.83 1.07E-08 16.49
64 2.00E-05 2.19 1.73E-07 4.87 3.64E-09 10.05 6.64E-10 16.12
128 9.11E-06 2.19 3.77E-08 4.58 3.58E-10 10.17 4.13E-11 16.10
256 4.15E-06 2.19 8.80E-09 4.29 3.81E-11 9.39 2.61E-12 15.84

2.07 4.29 8.88 16.00

Example 2. Consider the following problem:

(D
3
2

Capy)(t) + h(t)y(t) +

∫ t

0

[1 + log(t− s)]y(s)ds = f(t), t ∈ [0, 1], (5.6)

y(0) = 1, y′(0) = 1, (5.7)

with h(t) = 1, f(t) = t1/10, t ∈ [0, 1].
We see that (5.6)–(5.7) is a problem of the form (1.1)–(1.2) with α = 3

2 ,
κ = 0, K = 1, b = 1, a11 = a21 = γ1 = γ2 = 1, a12 = a22 = 0. It is easy to see
that h, f ∈ Cq,µ(0, 1] with µ = 9

10 and arbitrary q ∈ N. Therefore, by (2.8),

ν = max{κ, µ} = 9/10.

Here, the exact solution is not known. For the numerical tests we use approx-
imation yN obtained with m = 3, r = 4 and N = 1024, i.e., y(x) ≈ y1024(x)
(0 ≤ x ≤ 1).

In the case m = 2 it follows from the error estimate (4.6) with ν = 9
10 that,

for sufficiently large N ,

εN ≤ c

{
N−r( 11

10 ), if 1 ≤ r < 30/11,

N−3, if r ≥ 30/11,
(5.8)

where c is a positive constant not depending on N . Due to (5.8), the ratios

ΘN for r = 1, r = 2, r = 3 and r = 4 ought to be approximately 2
11
10 ≈ 2.14,

2
22
10 ≈ 4.59, 23 = 8 and 23 = 8, respectively. These values are given in the last

row of Table 2.
In the case m = 3, it follows from (4.6) with ν = 9

10 that, for sufficiently
large N ,

εN ≤ c

{
N−r( 11

10 ), if 1 ≤ r < 40/11,

N−4, if r ≥ 40/11,
(5.9)

where c is a positive constant not depending on N . Due to (5.9) the ratios

ΘN for r = 1, r = 2, r = 3 and r = 4 ought to be approximately 2
11
10 ≈ 2.14,

2
22
10 ≈ 4.59, 2

33
10 ≈ 9.85 and 24 = 16, respectively. These values are given in the

last row of Table 3. As we can see from Tables 2 and 3, the numerical results
are in accordance with our theoretical estimates.
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Table 2. Numerical results for problem (5.6) – (5.7) with m = 2.

r = 1 r = 2 r = 3 r = 4

N εN ΘN εN ΘN εN ΘN εN ΘN

4 1.69E-03 7.58E-04 1.40E-03 2.61E-03
8 6.96E-04 2.42 1.14E-04 6.65 1.61E-04 8.71 3.44E-04 7.58
16 3.03E-04 2.30 1.96E-05 5.81 1.57E-05 10.21 3.50E-05 9.81
32 1.36E-04 2.23 3.80E-06 5.16 1.45E-06 10.84 3.19E-06 10.97
64 6.21E-05 2.19 7.85E-07 4.83 1.32E-07 11.03 2.78E-07 11.48
128 2.86E-05 2.17 1.68E-07 4.69 1.19E-08 11.03 2.39E-08 11.64
256 1.33E-05 2.16 3.62E-08 4.63 1.09E-09 10.97 2.05E-09 11.65

2.14 4.59 8.00 8.00

Table 3. Numerical results for problem (5.6)– (5.7) with m = 3.

r = 1 r = 2 r = 3 r = 4

N εN ΘN εN ΘN εN ΘN εN ΘN

4 6.85E-04 1.43E-04 8.06E-05 1.42E-04
8 3.00E-04 2.28 2.95E-05 4.85 6.55E-06 12.30 8.57E-06 16.57
16 1.35E-04 2.22 6.33E-06 4.66 5.65E-07 11.61 4.65E-07 18.42
32 6.18E-05 2.19 1.37E-06 4.62 5.16E-08 10.94 2.36E-08 19.68
64 2.85E-05 2.17 2.98E-07 4.60 4.94E-09 10.44 1.14E-09 20.72
128 1.32E-05 2.16 6.48E-08 4.60 4.87E-10 10.14 5.33E-11 21.41
256 6.15E-06 2.15 1.41E-08 4.60 4.88E-11 9.98 2.44E-12 21.82

2.14 4.59 9.85 16.00

Example 3. Consider the following problem:

(D
11
10

Capy)(t) + h(t)y(t) = f(t), t ∈ [0, 1], (5.10)

y(0) +
1

2
y

(
1

2

)
=

1

128
, y′(0) +

1

4
y

(
1

2

)
=

1

256
, (5.11)

with

h(t) = t
25
10 , f(t) =

Γ (7)

Γ
(
59
10

) t 49
10 + t

85
10 , t ∈ [0, 1].

We see that (5.10)–(5.11) is a problem of the form (1.1)–(1.2) where K = 0,
α = 11

10 , b = 1, b1 = 1
2 , a11 = a21 = 1, a12 = 1

2 , a22 = 1
4 , γ1 = 1

128 , γ2 = 1
256

and that
y(t) = t6, t ∈ [0, 1],

is its exact solution. Clearly, f, h ∈ Cq,µ(0, 1] with µ = − 3
2 and arbitrary

q ∈ N. Therefore, by (2.8) we have

ν = max{1− α, µ} = −1/10.

In the case m = 2 it follows from the error estimate (4.6) with ν = − 1
10 that,

for sufficiently large N ,

εN ≤ cN−3 if r ≥ 1, (5.12)
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Table 4. Numerical results for problem (5.10)–(5.11) with m = 2.

r = 1 r = 2 r = 3
N εN ΘN εN ΘN εN ΘN

4 9.31E-03 4.08E-02 9.42E-02
8 1.26E-03 7.39 7.79E-03 5.24 2.09E-02 4.51
16 1.57E-04 8.00 1.19E-03 6.56 3.45E-03 6.05
32 1.90E-05 8.29 1.50E-04 7.90 4.97E-04 6.93
64 2.25E-06 8.43 1.90E-05 7.89 6.24E-05 7.97
128 2.65E-07 8.50 2.25E-06 8.47 7.70E-06 8.10
256 3.10E-08 8.54 2.62E-07 8.59 9.32E-07 8.25

8.00 8.00 8.00

where c is a positive constant not depending on N . Due to (5.12), the ratios
ΘN for every r ≥ 1 ought to be 23 = 8. These values are given in the last row
of Table 4. We again see that the numerical results are in accordance with our
theoretical estimates.

6 Conclusions

We have introduced and analysed a high order numerical method for solv-
ing boundary value problems for linear fractional weakly singular integro-
differential equations with a Caputo fractional derivative. By reformulating
the problem as an integral equation of the second kind, the regularity prop-
erties of the solution of the original problem and its Caputo derivative were
studied. Using the obtained knowledge about the behaviour of the solution
an algorithm was constructed for finding approximate solutions of the original
problem. We showed that despite the lack of regularity of the solution, the
proposed method is of optimal order. The performed numerical experiments
were in accordance with theoretical results.

Acknowledgements

The authors would like to thank the reviewers for their insightful comments.
This work was supported by the Estonian Research Council grant (PRG864).

References

[1] A. Atangana and S.I. Araz. Analysis of a new partial integro-differential equation
with mixed fractional operators. Chaos, Solitons & Fractals, 127:257–271, 2019.
https://doi.org/10.1016/j.chaos.2019.06.005.

[2] K. Atkinson andW. Han. Theoretical Numerical Analysis: A Functional Analysis
Framework. Springer-Verlag, New York, 2001. https://doi.org/10.1007/978-0-
387-21526-6.

[3] D. Baleanu, K. Diethelm, E. Scalas and J.J. Trujillo. Fractional Cal-
culus: Models and Numerical Methods. World Scientific, Boston, 2016.
https://doi.org/10.1142/10044.

https://doi.org/10.1016/j.chaos.2019.06.005
https://doi.org/10.1007/978-0-387-21526-6
https://doi.org/10.1007/978-0-387-21526-6
https://doi.org/10.1142/10044


Collocation Based Approximations . . . 235

[4] H. Brunner, H. Han and D. Yin. The maximum principle for time-fractional diffu-
sion equations and its application. Numerical Functional Analysis and Optimiza-
tion, 36(10):1307–1321, 2015. https://doi.org/10.1080/01630563.2015.1065887.

[5] H. Brunner, A. Pedas and G. Vainikko. Piecewise polynomial collocation
methods for linear Volterra integro-differential equations with weakly sin-
gular kernels. SIAM Journal on Numerical Analysis, 39(3):957–982, 2001.
https://doi.org/10.1137/S0036142900376560.

[6] H. Brunner and P.J. van der Houwen. The Numerical Solution of Volterra Equa-
tions. North-Holland, Amsterdam, 1986.

[7] Z. Cen, A. Le and A. Xu. A posteriori error analysis for a fractional differential
equation. International Journal of Computer Mathematics, 94(6):1185–1195,
2017. https://doi.org/10.1080/00207160.2016.1184263.

[8] K. Diethelm. The Analysis of Fractional Differential Equations: An Application-
Oriented Exposition Using Differential Operators of Caputo Type. Springer-
Verlag, Berlin, Heidelberg, 2010. https://doi.org/10.1007/978-3-642-14574-2.

[9] N.J. Ford, M.L. Morgado and M. Rebelo. A nonpolynomial collocation method
for fractional terminal value problems. Journal of Computational and Applied
Mathematics, 275:392–402, 2015. https://doi.org/10.1016/j.cam.2014.06.013.

[10] R. Garrappa. Numerical solution of fractional differential equa-
tions: A survey and a software tutorial. Mathematics, 6(2):16, 2018.
https://doi.org/10.3390/math6020016.

[11] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo. Theory and Applications of Frac-
tional Differential Equations. Elsevier, Amsterdam, 2006.

[12] N. Kinash and J. Janno. An inverse problem for a generalized fractional deriva-
tive with an application in reconstruction of time- and space-dependent sources
in fractional diffusion and wave equations. Mathematics, 7(12):1138, 2019.
https://doi.org/10.3390/math7121138.

[13] M. Kolk, A. Pedas and E. Tamme. Smoothing transformation and spline collo-
cation for linear fractional boundary value problems. Applied Mathematics and
Computation, 283:234–250, 2016. https://doi.org/10.1016/j.amc.2016.02.044.

[14] N. Kopteva and M. Stynes. An efficient collocation method for a Caputo two-
point boundary value problem. BIT Numerical Mathematics, 55(4):1105–1123,
2015. https://doi.org/10.1007/s10543-014-0539-4.

[15] H. Liang and M. Stynes. Collocation methods for general Caputo two-point
boundary value problems. Journal of Scientific Computing, 76:390–425, 2018.
https://doi.org/10.1007/s10915-017-0622-5.

[16] Z. Navickas, T. Telksnys, I. Timofejeva, R. Marcinkevičius and M. Ragulskis. An
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