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Abstract. In this study, two multi-step iterative techniques of fifth order conver-
gence are explored to solve nonlinear equations. The techniques are designed with the
prime objective of keeping the computational cost as low as possible. To claim this
objective, the efficiency indices are determined and compared with the efficiencies of
the existing techniques of same order. The outcome of comparison analysis is remark-
able from the view of high computational efficiency of new methods. Performance
and stability are illustrated by executing the numerical tests on some nonlinear prob-
lems of diverse nature. The entire analysis significantly favors the new techniques
compared to their existing counterparts, especially for the case of large dimensional
systems.
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1 Introduction

The mathematical models representing the vital aspects of the physical phe-
nomena in the field of science, engineering, etc. are inherently nonlinear in
nature. A particular model, so constructed, usually describes a phenomenon
by a set of equations involving relationship among a set of variables. Mathe-
matically, a nonlinear model is generally expressed as,

F (x) = O, (1.1)
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where, O ∈ Rm represents the zero vector, F : Ω ⊆ Rm → Rm is a nonlin-
ear mapping, commonly represented as (f1(x), f2(x), . . . , fm(x))T , fi : Rm →
R (i = 1, . . . ,m) are nonlinear scalar functions, and x = (x1, . . . , xm)T ∈ Ω.

To analyze the behavior of a physical phenomenon in diverse conditions, the
fundamental requirement is to obtain the solution of corresponding nonlinear
model. In general, obtaining the analytical or closed form solution of nonlinear
models is not feasible, but in such cases, the iterative techniques can provide
the solution [6, 11] in numerical form up to the desired accuracy. The working
mechanism of iterative techniques is based on the theory of fixed point itera-
tions. Under some assumptions, the solution, x∗ ∈ Ω, of the Equation (1.1)
can be obtained as a fixed point of some suitable function ψ : Rm → Rm, such
that

x(n+1) = ψ(x(n)), n = 0, 1, 2, . . . . ,

where x(0) is the initial approximation to the solution.
The Newton’s technique is the most widely used iterative procedure to find

solution of nonlinear models, and it approximates solution of (1.1) iteratively
as,

x(n+1) = ψ(x(n)) = x(n) − F ′(x(n))−1F (x(n)), n = 0, 1, 2, . . . , (1.2)

where, F ′(x) ∈ L(Rm,Rm) is a linear operator, and is generally represented as

a Jacobian matrix
[
∂fi
∂xj

]
m×m

. Under the hypotheses that F (x) is continuous

and differentiable in some neighborhood of its simple solution and that initial
approximation is chosen sufficiently close to the solution, Newton’s technique
shows quadratic convergence. That simply means the number of significant
digits double with the progress of each iteration.

Numerous iterative techniques have been developed (see, for example [3, 4,
7,8,10,13,14,15,16,17], and references therein) to improve the convergence rate
of the Newton’s technique by introducing the additional functional or Jacobian
evaluations. Evidently, Newton’s technique utilizes a function evaluation (F ),
a Jacobian matrix (F ′), and a matrix inversion (F ′−1) per iteration. At the
cost of an additional function evaluation, the third order Potra and Pták [7]
technique is the most simple improvement over the Newton’s technique, which
is presented below,

x(n+1) = y(n) − F ′(x(n))−1F (y(n)), (1.3)

where y(n) is the Newton’s iteration given by (1.2). In addition, the modified
techniques developed in [8,13] require two evaluations each of F , F ′, and F ′−1,
the techniques in [3,10] require two evaluations each of F , F ′, and three F ′−1,
the techniques in [4,15] involve evaluations of two F , four F ′, and three F ′−1,
the technique in [14] requires evaluations of three F , and two each of F ′ and
F ′−1, whereas the technique in [16] requires evaluations of three F , two F ′, and
one F ′−1. Apart from these, some hybrid algorithms have also been developed
that merge the iterative techniques together with the optimization algorithms
to generate new algorithms with the improved convergence rate (see, for exam-
ple [9], and references therein).
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Undoubtedly, these additional evaluations significantly affect the cost of
computation in terms of mathematical operations. Therefore, the develop-
ment and utilization of computationally efficient techniques have gained much
importance in recent times. The concept of computational efficiency index
is established (see [6, 11]) to analyze and compare the efficiencies of iterative
techniques. Moreover, the necessary parameters have been introduced for the
rigorous investigation of this concept in [8]. Keeping into mind the challenge
of optimizing the computational cost with the increasing order of convergence,
here we shall present two simple yet highly efficient iterative techniques with
fifth order of convergence.

We summarize here the contents of the rest of paper. Section 2 includes the
development and convergence analysis of the new iterative techniques. Com-
putational efficiency for the new techniques is determined in Section 3, and
the same is analyzed and compared with the existing fifth order techniques.
Numerical testing is executed in Section 4 to certify the theoretical deductions.
Concluding remarks are given in Section 5.

2 Development of methods

In what follows, we shall propose a three step iterative scheme involving some
undetermined parameters. The parameters’ values to be chosen optimally so
as to maximize the rate or order of convergence. We shall show that the
proposed scheme converges with the order five. The intention here is to develop
a technique which accelerates the convergence rate of Potra-Pták method (1.3)
without requiring any additional inverse operators so that the computational
cost may be as small as possible. In view of this, it will be judicious to consider
an iterative technique of the type,

y(n) = x(n) − a F ′(x(n))−1F (x(n)),

z(n) = y(n) − b F ′(x(n))−1F (y(n)),

x(n+1) = z(n) − (c I + d F ′(x(n))−1F ′(y(n)))F ′(x(n))−1F (z(n)), (2.1)

where a, b, c, and d are the parameters to be determined in the sequel.
In order to analyze the convergence rate, we first state a preliminary result

(see [5]) as a lemma which is followed by the main theorem to prove the fifth
order of convergence of the aforementioned technique.

Lemma 1. Assume that F : Ω ⊆ Rm → Rm is a p-times Fréchet differentiable
function in an open convex set Ω ∈ Rm, then for any x, t ∈ Ω, the following
result holds:

F (x+ t) = F (x) + F ′(x)t+
1

2!
F ′′(x)t2 + . . .+

1

(p− 1)!
F (p−1)(x)t(p−1) +Rp,

where ti = (t, i−times. . . . . . , t), F (i)(x) ∈ L(Rm× i−times. . . . . . ×Rm,Rm) for each i =
1, 2, . . ., and

∥Rp∥ ≤ 1

p!
sup

0<h<1
∥F (p)(x+ ht)∥ ∥t∥p.

Math. Model. Anal., 28(1):1–22, 2023.
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As a consequence of above lemma, the Taylor expansion of F (x), in the
neighborhood of its zero x∗, can be written as

F (x∗ + h) = F ′(x∗)

[
h+

p∑
k=2

1

k!
F ′(x∗)−1F (k)(x∗)hk

]
+O(hp+1),

where h ∈ Rm, F ′(x∗)−1 ∈ L(Rm,Rm), and the k-th differentiation of F (x)
is a k-linear function such that F (k)(x∗)hk = F (k)(x∗)(h, . . . , h) ∈ Rm. Also,
O(hp+1) represents the terms containing hk, where k ≥ p+ 1. The operations
in above equation are well-defined as it can be easily verified that each of the
term in the equation belongs to Rm. Moreover, we have

F ′(x∗ + h) = F ′(x∗)

[
I +

p∑
k=2

1

(k − 1)!
F ′(x∗)−1F (k)(x∗)h(k−1)

]
+O(hp),

where, F (k)(x∗)hk−1 ∈ L(Rm,Rm).

Theorem 1. Suppose that a nonlinear mapping, F : Ω ⊆ Rm → Rm, is dif-
ferentiable sufficient number of times in some neighborhood of its simple zero,
x∗, contained in an open convex set Ω. Further, assume that F ′(x) is non-
singular and continuous in that neighborhood, and the initial estimate, x(0), is
sufficiently close to x∗. Then, the sequence of iterates generated by the itera-
tive scheme (2.1) converges to x∗ with the fifth order of convergence, provided
a = 1, c = 2, d = −1, and either b = 1 or b = −5.

Proof. Let e(n) = x(n) − x∗ be the local error generated at nth iteration of
(2.1). Using the fact that F (x∗) = O, then as a consequence of Lemma 1, the
Taylor expansions of F (x(n)) and F ′(x(n)), about x∗, can be established as

F (x(n))=F ′(x∗)[e(n)+A2e
(n)2+A3e

(n)3+A4e
(n)4+A5e

(n)5 ]+O(e(n)
6

), (2.2)

F ′(x(n)) = F ′(x∗)[I + 2A2e
(n) + 3A3e

(n)2 + 4A4e
(n)3 + 5A5e

(n)4 ] +O(e(n)
5

),

where e(n)
i

= (e(n), . . . , e(n)), Ai =
1
i!F

′(x∗)−1F (i)(x∗), i = 2, 3, . . . , and there-
fore,

F ′(x(n))−1=[I +B1e
(n)+B2e

(n)2+B3e
(n)3+B4e

(n)4 ]F ′(x∗)−1+O(e(n)
5

), (2.3)

where B1 = −2A2, B2 = −3A3 + 4A2
2, B3 = −4A4 + 6A2A3 + 6A3A2 − 8A3

2,
B4 = −5A5 +8A2A4 +9A2

3 +8A4A2 − 12A2
2A3 − 12A2A3A2 − 12A3A

2
2 +16A4

2.

Let e
(n)
y = y(n)−x∗ be the local error at the first step of (2.1). Then, using

the expressions of (2.2)–(2.3) in the first step of (2.1), and after simplifying,
we have that

e(n)y = C1e
(n) + C2e

(n)2 + C3e
(n)3 + C4e

(n)4 + C5e
(n)5 +O(e(n)

6

), (2.4)

where C1 = 1−a, C2 = aA2, C3 = 2a(A3−A2
2), C4 = a(3A4−4A2A3−3A3A2+

4A3
2), C5 = a(4A5−6A2A4−6A2

3−4A4A2+8A2
2A3+6A2A3A2+6A3A

2
2−8A4

2).
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Using the Equation (2.4), the Taylor developments of F (y(n)), F ′(y(n))
about x∗ are given as

F (y(n))=F ′(x∗)[K1e
(n)+K2e

(n)2+K3e
(n)3+K4e

(n)4+K5e
(n)5 ]+O(e(n)

6

),
(2.5)

F ′(y(n)) = F ′(x∗)[I + L1e
(n) + L2e

(n)2 + L3e
(n)3 + L4e

(n)4 ] +O(e(n)
5

), (2.6)

where K1 = 1− a, K2 = (1− a+ a2)A2, K3 = (1− a+ 3a2 − a3)A3 − 2a2A2
2,

K4 = (1−a+6a2−4a3+a4)A4−4a2A2A3 − 3a2(2− a)A3A2 +5a2A3
2, K5 = (1−

a + 10a2 − 10a3 + 5a4 − a5)A5 − 6a2A2A4 − 6a2(2 − a)A2
3 − 4a2(3 − 3a +

a2)A4A2+10a2A2
2A3+8a2A2A3A2+3a2(5−3a)A3A

2
2−12a2A4

2, L1 = 2(1−a)A2,
L2 = 3(1− 2a+a2)A3+2aA2

2, L3 = 4(1− 3a+3a2−a3)A4+4aA2A3+6a(1−
a)A3A2− 4aA3

2, L4 = 5(1− 4a+6a2− 4a3+a4)A5+6aA2A4+12a(1−a)A2
3+

12a(1− 2a+ a2)A4A2 − 8aA2
2A3 − 6aA2A3A2 − 3a(4− 5a)A3A

2
2 + 8aA4

2.

Denoting e
(n)
z = z(n) − x∗ as the local error at the second step of method

(2.1), and using the Equations (2.3) and (2.5), the second step of (2.1) yields,

e(n)z =M1e
(n) +M2e

(n)2 +M3e
(n)3 +M4e

(n)4 +M5e
(n)5 +O(e(n)

6

), (2.7)

where M1 = (1−a)(1− b), M2 = (a+ b−ab−a2b)A2, M3 = (2a+2b−2ab−
3a2b + a3b)A3 + 2(ab − a − b + 2a2b)A2

2, and M4 = (3a − 3ab + 3b − 6a2b +
4a3b − a4b)A4 − 2(2a − 2ab + 2b − 5a2b + a3b)A2A3 − 3(a + b − ab − 3a2b +
a3b)A3A2 + (4a− 4ab+ 4b− 13a2b)A3

2.
Here, the expression of M5, being lengthy, is not shown explicitly. Taylor

expansion of F (z(n)), using the Equation (2.7), is developed as

F (z(n)) = F ′(x∗)[P1e
(n)+P2e

(n)2+P3e
(n)3+P4e

(n)4+P5e
(n)5 ]+O(e(n)

6

), (2.8)

where P1 = (1 − a)(1 − b), P2 = (1 − b + b2 − a + 3ab − 2ab2 + a2 − 3ba2 +
a2b2)A2, P3 = (1− b+3b2− b3−a+7ab−9ab2+3ab3+3a2−12a2b+9a2b2−
3a2b3−a3+4a3b−3a3b2+a3b3)A3−2(a2−3a2b+2ab−2ab2−a3b+a3b2+b2)A2

2,
and the explicit forms of P4 and P5 are being avoided here for their lengthy
expressions.

Consequently, the error equation at the (n + 1)th iteration is obtained by
substituting the expressions of (2.3), (2.6), and (2.8) in the final step of (2.1),
which is given by,

e(n+1)=x(n+1)−x∗=Q1e
(n)+Q2e

(n)2+Q3e
(n)3+Q4e

(n)4+Q5e
(n)5+O(e(n)

6

), (2.9)

where Q1 = (1− a)(1− b)(1− c− d), Q2 = (c+ d+ b(1− c− d)− b2(c+ d) +
a(1− b)(1− c−2bc+d−2bd)−a2(c+ b(1−3c−5d)+3d+ b2(c+d)))A2, Q3 =
(2b+(2− 2b− 3b2+ b3)(c+d)+a(1− b)(2+ c(3b2− 6b− 2)+d(3b2− 6b+4))+
a2(a−3)(c+ b(1−4c−7d)+4d+ b2(3− b)(c+d)))A3+2(−b+(2b2+ b−1)(c+
d)+a2(b(2−6c−8d)−b(c+4d))+a(−1+c−3d−b2(4c+3d)+b(1+3c+7d)))A2

2,
and the expressions of Q4 and Q5 are not shown explicitly here.

Finally, the values of parameters should be selected in the sense that the
scheme (2.1) attains maximum possible order of convergence. Accordingly, the
coefficients Q1, Q2, Q3, and Q4 in the Equation (2.9) vanish for two sets of

Math. Model. Anal., 28(1):1–22, 2023.
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parametric values. For a = b = 1, c = 2, and d = −1, the error equation is
reduced to,

e(n+1) = 12A4
2e

(n)5 +O(e(n)
6

),

whereas, for the values a = 1, b = −5, c = 2, and d = −1, the error equation
becomes,

e(n+1) = 12(3A3A
2
2 −A2A3A2 − 3A4

2)e
(n)5 +O(e(n)

6

).

Hence, the fifth order of convergence is proved for the two sets of parametric
values. ⊓⊔

The proposed fifth order iterative techniques are finally presented below.

Technique-1 : For a = b = 1, c = 2 and d = −1, the scheme (2.1) is expressed
as

y(n) = x(n) − F ′(x(n))−1F (x(n)), z(n) = y(n) − F ′(x(n))−1F (y(n)),

x(n+1) = z(n) − (2I − F ′(x(n))−1F ′(y(n)))F ′(x(n))−1F (z(n)). (2.10)

Technique-2 : For a = 1, b = −5, c = 2 and d = −1, we have the scheme (2.1)
as

y(n) = x(n) − F ′(x(n))−1F (x(n)), z(n) = y(n) + 5F ′(x(n))−1F (y(n)),

x(n+1) = z(n) − (2I − F ′(x(n))−1F ′(y(n)))F ′(x(n))−1F (z(n)). (2.11)

Clearly, both of the techniques utilize three functional evaluations, two Jaco-
bian matrices, and one matrix inversion per iteration. The techniques (2.10)
and (2.11) are denoted as T1 and T2, respectively, for the further reference.

Remark 1. It can be observed that the general parametric family of three-step
iterative scheme developed by Zhanlav et al. in [16] includes (2.10) as a par-
ticular case.

3 Computational complexity

The term computational complexity refers to the analysis of an algorithm’s
characteristics that how much computational resources it utilizes during its
course of action. Thus, for the development of an algorithm, achieving higher
rate of convergence should not be the only target, but the element of efficiency
must be accounted as a crucial factor. In practice, solving the systems of
nonlinear equations involve large number of mathematical or numerical oper-
ations, and therefore, an efficient algorithm should be the ideal choice for the
implementation of this process.

The objective here is to thoroughly investigate the developed iterative algo-
rithms on the subject of computational efficiency. For that purpose, number of
definitions are available in the literature. Defined in any way, it always shows
positive relation with the convergence order (r) and negative relation with the
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number of mathematical operations per iteration i.e. cost of computation (C).
Ostrowski [6] proposed the measure of efficiency as,

EO1
= log r/C, and EO2

= r1/C ,

whereas Traub [11] considered it straightforwardly as, ET = r/C.
In order to utilize the concept of efficiency in a rigorous way, and further,

to compare the efficiencies of iterative techniques, we shall describe here the
convenient approach for the estimation of computational efficiency. To locate
the solution, x∗, of a system of nonlinear equations, the initial approximation,
x(0), is selected in some neighborhood of the solution. The stopping criterion
for iterations is generally prescribed as,

∥x(n) − x∗∥ ≤ δ = 10−d,

where n is the iteration index, δ is the desired precision for approximate solution
x(n), and d is the number of significant decimal digits of that approximation.
Conveniently, we assume that ∥x(0)−x∗∥ ≈ 10−1. Then, the number of steps for
an iterative procedure, which are required to reach the prescribed accuracy, can
be estimated in the analytical way from the approximation, 10−d ≈ 10−rn or
n ≈ log d/ log r, where r is the convergence order. As already discussed that the
computational efficiency is reciprocally proportional to the total computational
cost, nC, of the completed iterative process comprising of n iterative steps,
the computational efficiency or more conventionally the efficiency index of an
iterative scheme can be estimated as,

E =
1

nC
=

1

log d

log r

C
. (3.1)

Consider a function F (x) = (f1(x), f2(x), . . . , fm(x))T , where
x = (x1, x2, . . . , xm)T, then the estimation of computational cost (see [8]) per
iteration for an iterative technique can be obtained by,

C(m, ν0, ν1, l) = N0(m)ν0 +N1(m)ν1 +N(m, l), (3.2)

whereN0(m) andN1(m) represent the number of evaluations of scalar functions
in the computation of F and F ′, respectively, and N(m, l) corresponds to the
number of product or quotient operations per iteration. In order to estimate
C(m, ν0, ν1, l) in units of products, it is essential to evaluate the ratios ν0 > 0
and ν1 > 0, which express relation between the products and evaluations, and
a ratio l > 1, relating products and quotients.

For the suitable application of definition (3.1) along with (3.2), it is nec-
essary to assess all the relevant elements which constitute the total numerical
operational cost in the entire process. In particular, the computation of a
function F involves evaluation of m scalar functions in any iteration, while m2

scalar functions are required to compute a derivative F ′. Additionally, the tech-
nique of LU decomposition is employed, to compute a inverse linear operator,
followed by the resolution of two triangular linear systems to finally work out
F ′−1F . Note that, LU decomposition involves m(m − 1)(2m − 1)/6 products

Math. Model. Anal., 28(1):1–22, 2023.
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and m(m − 1)/2 quotients, whereas m(m − 1) products and m quotients are
required for the resolution of two triangular systems. Moreover, m products for
scalar-vector multiplication, and m2 products for matrix-vector multiplication
must be taken into the account.

The above discussion is fairly adequate to enable us to understand the
concept of computational efficiency, and therefore, we now present the com-
parison analysis in this context. For this purpose, we include the existing
fifth order techniques developed by Cordero-Hueso-Mart́ınez-Torregrosa [3],
Liu-Zheng-Huang [4], Sharma-Gupta [8], Solaiman-Hashim [10], Xiao-Yin [13],
Xiao-Yin [14], Xu-Jieqing [15], and Zhanlav-Chun-Otgondorj-Ulziibayar [16].
For the ready reference, these techniques are expressed below, which are de-
noted by Ti, where i = 3, 4, . . ..
Technique by Cordero et al. (T3):

y(n)=x(n)−F ′(x(n))−1F (x(n)), z(n)=x(n)−2[F ′(x(n))+F ′(y(n))]−1F (x(n)),

x(n+1) = z(n) − F ′(y(n))−1F (z(n)).

Technique by Liu et al. (T4):

y(n) = x(n) − F ′(x(n))−1F (x(n)),

z(n) = x(n) − 2
[
F ′(t

(n)
1 + t

(n)
2 ) + F ′(t

(n)
1 − t

(n)
2 )

]−1

F (x(n)),

x(n+1) = z(n) − F ′(y(n))−1F (z(n)),

where t
(n)
1 = 1

2 (y
(n) + x(n)) and t

(n)
2 = 1

2
√
3
(y(n) − x(n)).

Technique by Sharma-Gupta (T5):

y(n) = x(n) − 1

2
F ′(x(n))−1F (x(n)), z(n) = x(n) − F ′(y(n))−1F (x(n)),

x(n+1) = z(n) −
[
2F ′(y(n))−1 − F ′(x(n))−1

]
F (z(n)).

Technique by Solaiman-Hashim (T6):

y(n) = x(n) − 1

2
F ′(x(n))−1F (x(n)), z(n) = x(n) − F ′(y(n))−1F (x(n)),

x(n+1) = z(n) −
[
2F ′(y(n))− F ′(x(n))

]−1
F (z(n)).

Technique by Xiao-Yin (T7):

y(n) = x(n) − 2

3
F ′(x(n))−1F (x(n)),

z(n) = x(n) − 4
[
F ′(x(n)) + 3F ′(y(n))

]−1
F (x(n)),

x(n+1) = z(n) −
[
8(F ′(x(n)) + 3F ′(y(n)))−1 − F ′(x(n))−1

]
F (z(n)).

Technique by Xiao-Yin (T8):

y(n) = x(n) + F ′(x(n))−1F (x(n)), z(n) = y(n) − F ′(x(n))−1F (y(n)),

x(n+1) = z(n) +
[
F ′(y(n))−1 − 2F ′(x(n))−1

]
F (z(n)).
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Technique by Xu-Jieqing (T9):

y(n) = x(n) − F ′(x(n))−1F (x(n)),

z(n) = x(n) −
[
1

8
F ′(x(n)) +

3

8
F ′(t

(n)
1 ) +

3

8
F ′(t

(n)
2 ) +

1

8
F ′(y(n))

]−1

F (x(n)),

x(n+1) = z(n) − F ′(y(n))−1F (z(n)),

where t
(n)
1 = 1

3 (2x
(n) + y(n)) and t

(n)
2 = 1

3 (x
(n) + 2y(n)).

Technique by Zhanlav et al. (T10):

y(n) = x(n) − F ′(x(n))−1F (x(n)),

z(n) = y(n) − (2I − F ′(x(n))−1F ′(y(n)))F ′(x(n))−1F (y(n)),

x(n+1) = z(n) − F ′(x(n))−1F (z(n)).

Denoting the computational costs and efficiency indices, respectively by Ci

and Ei, i = 1, 2, . . . , 10, and then taking into consideration the computations
described above, the computational costs, and the corresponding efficiency in-
dices are listed as follows (here D = log d.):

C1 = 3mν0 + 2m2ν1 +
m

6
(2m2 + 27m− 17 + 3l(7 +m)), E1 =

1

D

log 5

C1
,

C2 = 3mν0 + 2m2ν1 +
m

6
(2m2 + 27m− 11 + 3l(7 +m)), E2 =

1

D

log 5

C2
,

C3 = 2mν0 + 2m2ν1 +
m

2
(2m2 + 3m− 3 + 3l(1 +m)), E3 =

1

D

log 5

C3
,

C4 = 2mν0 + 4m2ν1 +
m

2
(2m2 + 3m+ 1 + 3l(1 +m)), E4 =

1

D

log 5

C4
,

C5 = 2mν0 + 2m2ν1 +
m

3
(2m2 + 9m− 5 + 3l(3 +m)), E5 =

1

D

log 5

C5
,

C6 = 2mν0 + 2m2ν1 +
m

2
(2m2 + 5m− 3 + 3l(1 +m)), E6 =

1

D

log 5

C6
,

C7 = 2mν0 + 2m2ν1 +
m

3
(2m2 + 12m− 2 + 3l(3 +m)), E7 =

1

D

log 5

C7
,

C8 = 3mν0 + 2m2ν1 +
m

3
(2m2 + 9m− 8 + 3l(3 +m)), E8 =

1

D

log 5

C8
,

C9 = 2mν0 + 4m2ν1 +
m

2
(2m2 + 5m+ 5 + 3l(1 +m)), E9 =

1

D

log 5

C9
,

C10 = 3mν0 + 2m2ν1 +
m

6
(2m2 + 27m− 17 + 3l(7 +m)), E10 =

1

D

log 5

C10
.

3.1 Comparison of efficiencies

Consider a ratio Ri,j , which is defined below, to compare the efficiencies of
iterative techniques, say Ti versus Tj ,

Ri,j =
Ei

Ej
=
Cj log(ri)

Ci log(rj)
,

Math. Model. Anal., 28(1):1–22, 2023.
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where ri and rj , respectively, are the convergence orders of the techniques Ti
and Tj . Apparently, technique Ti is computationally more efficient than Tj ,
only if Ri,j > 1, and we symbolize mathematically it as Ti ⋗ Tj .

The proposed techniques T1 and T2, shall be analyzed and compared by
analytical as well as visual approach with the existing techniques, Ti, i =
3, 4, . . ., which are already expressed in this section. The efficiency indices
are compared analytically by resolving the inequality Ri,j > 1, but we omit
the details of verifying the results, as they are fairly straightforward. The
results so obtained in analytic way are projected geometrically by presenting
the boundary lines Ri,j = 1 in (ν0, ν1)-plane, corresponding to the particular
cases of m = 5, 10, 25, and 50, and taking l = 3 in each case. Observe that
each boundary line will divide the region into two parts, where Ti ⋗ Tj on one
side and Tj ⋗ Ti on the other.

In view of the above discussion, we now prove the comparison results
through the following theorem:

Theorem 2. For all ν0 > 0, ν1 > 0, and l > 1, we have that:

(i) E1 > E2, for all m ∈ N;

(ii) E1 > E3, for ν0 <
1
3 (2m

2 − 9m+ 4 + 3l(m− 2));

(iii) E1 > E4, for ν0 < 2mν1 +
1
3 (2m

2 − 9m+ 10 + 3l(m− 2));

(iv) E1 > E5, for ν0 <
1
6 (2m

2 − 9m+ 7 + 3l(m− 1));

(v) E1 > E6, for ν0 <
1
3 (2m

2 − 6m+ 4 + 3l(m− 2));

(vi) E1 > E7, for ν0 <
1
6 (2m

2 − 3m+ 13 + 3l(m− 1));

(vii) E1 > E8, for m ≥ 4, but otherwise comparison depends on the value of l;

(viii) E1 > E9, for ν0 < 2mν1 +
1
3 (2m

2 − 6m+ 16 + 3l(m− 2));

(ix) E1 = E10, for all m ∈ N;

(x) E2 > E3, for ν0 <
1
3 (2m

2 − 9m+ 1 + 3l(m− 2));

(xi) E2 > E4, for ν0 < 2mν1 +
1
3 (2m

2 − 9m+ 7 + 3l(m− 2));

(xii) E2 > E5, for ν0 <
1
6 (2m

2 − 9m+ 1 + 3l(m− 1));

(xiii) E2 > E6, for ν0 <
1
3 (2m

2 − 6m+ 1 + 3l(m− 2));

(xiv) E2 > E7, for ν0 <
1
6 (2m

2 − 3m+ 7 + 3l(m− 1));

(xv) E2 > E8, for m ≥ 4, but otherwise comparison depends on the value of l;

(xvi) E2 > E9, for ν0 < 2mν1 +
1
3 (2m

2 − 6m+ 13 + 3l(m− 2));

(xvii) E2 < E10, for all m ∈ N.
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Proof. T1 versus T2 case: In this case, the ratio is

R1,2 =
3mν0 + 2m2ν1 +

m
6 (2m

2 + 27m− 11 + 3l(7 +m))

3mν0 + 2m2ν1 +
m
6 (2m

2 + 27m− 17 + 3l(7 +m))
.

It can be easily verified that the inequality R1,2 > 1 holds for all m ∈ N, and
consequently T1 ⋗ T2 for all m ∈ N.
T1 versus T3 case: In this case, the ratio is

R1,3 =
2mν0 + 2m2ν1 +

m
2 (2m

2 + 3m− 3 + 3l(1 +m))

3mν0 + 2m2ν1 +
m
6 (2m

2 + 27m− 17 + 3l(7 +m))
.

The inequality R1,3 > 1 resolves into ν0 < 1
3 (2m

2 − 9m + 4 + 3l(m − 2)),
which eventually proves (ii). The boundary lines R1,3 = 1, in (ν0, ν1)-plane,
are presented in Figure 1, where T1 ⋗ T3 in the region which is below the
horizontal line for each particular case of m.

T1 versus T4 case: In this case, the ratio is

R1,4 =
2mν0 + 4m2ν1 +

m
2 (2m

2 + 3m+ 1 + 3l(1 +m))

3mν0 + 2m2ν1 +
m
6 (2m

2 + 27m− 17 + 3l(7 +m))
.

The inequality R1,4 > 1 simply results into ν0 < 2mν1 +
1
3 (2m

2 − 9m + 10 +
3l(m− 2)), and this concludes (iii). The boundary lines in (ν0, ν1)-plane, with
positive slopes, are shown in Figure 2, where T1 ⋗ T4 to the right (below) side
of line for each value of m.

Figure 1. Boundary lines for
comparison of T1 and T3.

Figure 2. Boundary lines for
comparison of T1 and T4.

T1 versus T5 case: In this case, the ratio is

R1,5 =
2mν0 + 2m2ν1 +

m
3 (2m

2 + 9m− 5 + 3l(3 +m))

3mν0 + 2m2ν1 +
m
6 (2m

2 + 27m− 17 + 3l(7 +m))
.

By resolving the inequality R1,5 > 1, it is deduced that ν0 <
1
6 (2m

2−9m+7+
3l(m − 1)), which ultimately proves (iv). In this case, the boundary lines are
presented in Figure 3 with T1 ⋗ T5 on the lower side of line for each case of m.

T1 versus T6 case: In this case, the ratio is

R1,6 =
2mν0 + 2m2ν1 +

m
2 (2m

2 + 5m− 3 + 3l(1 +m))

3mν0 + 2m2ν1 +
m
6 (2m

2 + 27m− 17 + 3l(7 +m))
.

Math. Model. Anal., 28(1):1–22, 2023.
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The resolution of inequality R1,6 > 1 results into ν0 <
1
3 (2m

2−6m+4+3l(m−
2)), and this proves (v). The boundary lines, for comparison, are depicted in
Figure 4, where T1 ⋗ T6 holds in the lower region of line for each particular
case.

Figure 3. Boundary lines for
comparison of T1 and T5.

Figure 4. Boundary lines for
comparison of T1 and T6.

T1 versus T7 case: In this case, the ratio is

R1,7 =
2mν0 + 2m2ν1 +

m
3 (2m

2 + 12m− 2 + 3l(3 +m))

3mν0 + 2m2ν1 +
m
6 (2m

2 + 27m− 17 + 3l(7 +m))
.

The inequality R1,7 > 1 resolves into ν0 <
1
6 (2m

2−3m+13+3l(m−1)), which
concludes (vi). The boundary lines in this case are shown in Figure 5, with
T1 ⋗ T7 on the lower side of each line.

T1 versus T8 case: In this case, the ratio is

R1,8 =
3mν0 + 2m2ν1 +

m
3 (2m

2 + 9m− 8 + 3l(3 +m))

3mν0 + 2m2ν1 +
m
6 (2m

2 + 27m− 17 + 3l(7 +m))
.

It is straightforward to verify that, for ν0, ν1 > 0, and l > 1, the inequality
R1,8 > 1 holds for all m ≥ 4, but otherwise for 2 ≤ m < 4, the inequality holds,

provided l > 2m2−9m+1
3−3m . This proves (vii), and hence T1 ⋗ T8 for all m ≥ 4,

but otherwise comparison depends on the parameter l.

T1 versus T9 case: In this case, the ratio is

R1,9 =
2mν0 + 4m2ν1 +

m
2 (2m

2 + 5m+ 5 + 3l(1 +m))

3mν0 + 2m2ν1 +
m
6 (2m

2 + 27m− 17 + 3l(7 +m))
.

Resolution of the inequality R1,9 > 1 results into ν0 < 2mν1 +
1
3 (2m

2 − 6m+
16 + 3l(m− 2)), and this proves (viii). The boundary lines for the comparison
are shown in Figure 6 with T1 ⋗ T9 on the lower (right) side of line for each
case.

T1 versus T10 case: It is clear that for this case, the ratio is

R1,10 = 1,

which immediately concludes that E1 = E10 for all m ∈ N.
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Figure 5. Boundary lines for
comparison of T1 and T7.

Figure 6. Boundary lines for
comparison of T1 and T9.

T2 versus T3 case: In this case, the ratio is

R2,3 =
2mν0 + 2m2ν1 +

m
2 (2m

2 + 3m− 3 + 3l(1 +m))

3mν0 + 2m2ν1 +
m
6 (2m

2 + 27m− 11 + 3l(7 +m))
.

The inequality R2,3 > 1 simply resolves into the relation ν0 <
1
3 (2m

2−9m+1+
3l(m − 2)), which ultimately proves (x). The boundary lines in (ν0, ν1)-plane
are depicted in Figure 7 with T2 ⋗ T3 on the lower side of line for each value
of m.

T2 versus T4 case: In this case, the ratio is

R2,4 =
2mν0 + 4m2ν1 +

m
2 (2m

2 + 3m+ 1 + 3l(1 +m))

3mν0 + 2m2ν1 +
m
6 (2m

2 + 27m− 11 + 3l(7 +m))
.

By resolving the inequality R2,4 > 1, it is deduced that ν0 < 2mν1 +
1
3 (2m

2 −
9m + 7 + 3l(m − 2)), which concludes (xi). The boundary lines with positive
slopes are shown in Figure 8, where T2 ⋗ T4 on the right (below) side of line
for each particular case of m.

Figure 7. Boundary lines for
comparison of T2 and T3.

Figure 8. Boundary lines for
comparison of T2 and T4.

T2 versus T5 case: In this case, the ratio is

R2,5 =
2mν0 + 2m2ν1 +

m
3 (2m

2 + 9m− 5 + 3l(3 +m))

3mν0 + 2m2ν1 +
m
6 (2m

2 + 27m− 11 + 3l(7 +m))
.

The inequality R2,5 > 1 simply results into ν0 <
1
6 (2m

2 − 9m+1+3l(m− 1)),
and this proves (xii). The boundary lines for comparison are presented in
Figure 9 with T2 ⋗ T5 on the lower side of line for each case.

Math. Model. Anal., 28(1):1–22, 2023.



14 H. Singh and J. R. Sharma

T2 versus T6 case: In this case, the ratio is

R2,6 =
2mν0 + 2m2ν1 +

m
2 (2m

2 + 5m− 3 + 3l(1 +m))

3mν0 + 2m2ν1 +
m
6 (2m

2 + 27m− 11 + 3l(7 +m))
.

The resolution of inequality R2,6 > 1 results into ν0 <
1
3 (2m

2−6m+1+3l(m−
2)), which ultimately proves (xiii). The boundary lines are shown in Figure 10,
where T2 ⋗ T6 on the lower side of each line.

Figure 9. Boundary lines for
comparison of T2 and T5.

Figure 10. Boundary lines for
comparison of T2 and T6.

T2 versus T7 case: In this case, the ratio is

R2,7 =
2mν0 + 2m2ν1 +

m
3 (2m

2 + 12m− 2 + 3l(3 +m))

3mν0 + 2m2ν1 +
m
6 (2m

2 + 27m− 11 + 3l(7 +m))
.

By resolving the inequality R2,7 > 1, it is simple to deduce that ν0 <
1
6 (2m

2 −
3m+ 7 + 3l(m− 1)), which proves (xiv). The boundary lines in (ν0, ν1)-plane
are depicted in Figure 11 with T2 ⋗ T7 on the lower side of line for each case
of m.

T2 versus T8 case: In this case, the ratio is

R2,8 =
3mν0 + 2m2ν1 +

m
3 (2m

2 + 9m− 8 + 3l(3 +m))

3mν0 + 2m2ν1 +
m
6 (2m

2 + 27m− 11 + 3l(7 +m))
.

Given ν0, ν1 > 0 and l > 1, it is simple to verify that, for all m ≥ 4, the
inequality R2,8 > 1 holds, but for 2 ≤ m < 4, the inequality holds only when

l > 2m2−9m−5
3−3m . This proves (xv), and hence T2⋗T8 for allm ≥ 4, but otherwise

comparison depends on the value of l.

T2 versus T9 case: In this case, the ratio is

R2,9 =
2mν0 + 4m2ν1 +

m
2 (2m

2 + 5m+ 5 + 3l(1 +m))

3mν0 + 2m2ν1 +
m
6 (2m

2 + 27m− 11 + 3l(7 +m))
.

The inequality R2,9 > 1 simply resolves into ν0 < 2mν1 +
1
3 (2m

2 − 6m+ 13 +
3l(m − 2)), and this concludes (xvi). The boundary lines for comparison are
shown in Figure 12 with T2 ⋗ T9 on the right (below) side of each line.

T2 versus T10 case: In this case, the ratio is

R2,10 =
3mν0 + 2m2ν1 +

m
6 (2m

2 + 27m− 17 + 3l(7 +m))

3mν0 + 2m2ν1 +
m
6 (2m

2 + 27m− 11 + 3l(7 +m))
.
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Figure 11. Boundary lines for
comparison of T2 and T7.

Figure 12. Boundary lines for
comparison of T2 and T9.

It can be clearly observed that the inequality R2,10 < 1 holds for all m ∈ N,
and consequently T10 ⋗ T2 for all m ∈ N.

⊓⊔

It can be deduced from the above analysis that both of the proposed tech-
niques display better efficiency in comparison to the existing techniques with
increasing values of m. We conclude this section with a remark that, as large
as the system is, the proposed techniques are, in general, superior than the
existing ones in reference to the subject of computational complexity.

4 Numerical experimentation

The numerical experimentation shall be carried out to assess the performance
and stability of the proposed techniques by executing their algorithms on a
digital platform. The outcome of testing needs to be compared with the cor-
responding outcome of existing techniques to arrive at some valid and logical
conclusion. Some of the nonlinear problems, emerging from different practical
situations, have been selected for this purpose. The performance of an itera-
tive technique is generally evaluated on the basis of two factors: (i) Number
of iterations required to converge, and (ii) CPU time elapsed during the en-
tire course of action. Both of these factors tend to vary with the convergence
behavior of technique as well as with the proximity of initial approximation.
Let us note that the elapsed CPU time also varies with the characteristics of
digital platform. In our case, numerical experimentation is being done using
the multi-precision arithmetic software Mathematica [12], which is installed on
the machine with specifications: Intel(R) Core (TM) i5-9300H processor and
Windows 10 operating system.

Numerical performance of an iterative technique is considerably governed
by the number of evaluations or mathematical operations involved per itera-
tion. This indicates the existence of correlation between the performance and
efficiency. To build this relation, the evaluation cost of each mathematical
operation and function needs to be expressed in terms of product units. As
discussed in Section 3, the numerical estimates of parameters ν0, ν1, and l are
required for that purpose. In this regard, Table 1 displays the CPU time (in
milliseconds) elapsed during the execution of elementary operations and func-

Math. Model. Anal., 28(1):1–22, 2023.
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tions, and their estimation of cost in units of product. Notice that the cost of
division is approximately thrice the cost of product.

Table 1. CPU time and estimation of computational cost of elementary functions, where
x =

√
3− 1 and y =

√
5 (with 4096 digits of accuracy).

Functions x ∗ y x/y
√
x ex log(x) sin(x) cos(x) arctan(x)

CPU Time 0.0172 0.0484 0.0234 1.5562 1.3469 1.6938 1.6896 2.9797
Cost 1 2.81 1.36 90.48 78.31 98.48 98.23 173.24

To demonstrate the performance of proposed techniques, and to further
compare these with the existing ones, their algorithms are executed using the
software Mathematica under the similar framework. The following stopping
criterion is used to terminate the iterations:

∥x(n) − x(n−1)∥+ ∥F (x(n))∥ < 10−100.

Further, the approximated computational order of convergence (ACOC) is com-
puted to authenticate the theoretically established convergence order, which is
given by the expression (see [2]),

ACOC =
ln
(
∥x(n) − x(n−1)∥

/
∥x(n−1) − x(n−2)∥

)
ln
(
∥x(n−1) − x(n−2)∥

/
∥x(n−2) − x(n−3)∥

) .
Now, considering the following nonlinear problems for the performance anal-

ysis, we display the outcomes in respect of: (i) Number of iterations (n),
(ii) ACOC, (iii) Computational cost (Ci), (iv) Efficiency index (Ei), and (v)
Elapsed CPU time (in seconds). Note that, to illustrate the efficiency index of
techniques, we conveniently choose D = 10−5 for each problem.

Problem 1. Starting with the three dimensional nonlinear problem, which is
given by

x2 + y2 + z2 = 1,

2x2 + y2 + 4z = 0,

3x2 − 4y2 + z2 = 0,

the initial approximation is taken as
(
− 3

2 ,−
3
2 ,−

3
2

)T
to obtain the particular

solution x∗ = (−0.6982...,−0.6285...,−0.3425...)T .

To evaluate the computational cost and efficiency index for this problem, the
parameters used in equation (3.2) are estimated as, (m, ν0, ν1, l) = (3, 2.33, 0.67,
2.81). Numerical results for the performance of methods are displayed in the
Table 2.

Problem 2. Consider the boundary value problem (see [2]), investigated in the
study of finite deflections of an elastic string under the transverse load, as
follows:

y′′(t) + a2(y′(t))2 + 1 = 0, y(0) = 0, y(1) = 0. (4.1)



Simple and Efficient Fifth Order Solvers 17

Table 2. Comparison of performance of techniques for Problem 1.

Technique n ACOC Ci Ei CPU Time

T1 4 4.984 116.15 1385.65 0.0323

T2 4 4.999 119.15 1350.77 0.0342

T3 4 4.993 112.58 1429.59 0.0624

T4 4 4.993 130.58 1232.53 0.0626

T5 4 4.989 116.58 1380.54 0.0478

T6 4 4.993 121.58 1323.77 0.0632

T7 4 4.989 128.58 1251.70 0.0637

T8 4 4.982 120.58 1334.75 0.0493

T9 4 4.993 145.58 1105.54 0.0784

T10 4 4.984 116.15 1385.65 0.0331

The exact solution of above equation is y(t) = 1
a2 ln

(
cos(a(t−1/2))

cos(a/2)

)
. We intend

to transform the given problem into a finite dimensional problem by considering
the uniform partition of [0, 1], with sub-intervals of length h = 1/k, as

0 = t0 < t1 < t2 < · · · < tk−1 < tk = 1, where ti=t0 + ih, (i=1, 2, . . . , k − 1).

Denoting y(ti) = yi for each i = 1, 2, . . . , k − 1, and approximating the deriva-
tives in (4.1) by the second order divided differences,

y′i =
yi+1 − yi−1

2h
, y′′i =

yi+1 − 2yi + yi−1

h2
,

we obtain the system of nonlinear equations in k − 1 variables:

yi−1 − 2yi + yi+1 +
a2

4
(yi+1 − yi−1)

2 + h2 = 0, (i = 1, 2, . . . , k − 1).

In particular for a = 2, and setting k = 16, the given system reduces to 15
nonlinear equations satisfying the solution,

x∗ = (0.0426.., 0.0755.., 0.1012.., 0.1209.., 0.1355.., 0.1455.., 0.1515.., 0.1534..,

0.1515.., 0.1455.., 0.1355.., 0.1209.., 0.1012.., 0.0755.., 0.0426..)T .

The initial estimate to the given solution is chosen as (− 3
2 ,

15· · · · · ·,− 3
2 )

T . The
approximate numerical solution, so obtained, is compared with the exact solu-
tion of the given problem in the Figure 13.

In this problem, the estimated values of parameters, used in the equation
(3.2), are given by (m, ν0, ν1, l) = (15, 2, 0.067, 2.81). Table 3 exhibits the com-
parison of performance of techniques.

Problem 3. Consider the nonlinear integral equation (see [1]),

u(s) =
7

8
s+

1

2

∫ 1

0

s t u(t)2dt, (4.2)

Math. Model. Anal., 28(1):1–22, 2023.
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Figure 13. Graphical comparison of exact and numerical solution of Problem 2.

Table 3. Comparison of performance of techniques for Problem 2.

Technique n ACOC Ci Ei CPU Time

T1 5 5.000 2678.65 60.08 0.2664

T2 4 5.000 2693.65 59.75 0.2963

T3 5 5.000 4791.60 33.59 0.5472

T4 5 5.000 4851.60 33.17 0.5945

T5 5 5.000 3748.70 42.93 0.4373

T6 5 5.000 5016.60 32.08 0.6102

T7 5 5.000 3988.70 40.35 0.4532

T8 5 5.000 3763.70 42.76 0.4477

T9 5 5.000 5106.60 31.52 0.5934

T10 5 5.000 2678.65 60.08 0.2682

where s, t ∈ [0, 1], and u ∈ C[0, 1], with C[0, 1] being a space of continuous
functions on the unit interval.

To transform the Equation (4.2) into a finite-dimensional problem, the given
interval [0, 1] is partitioned into sub-intervals of equal length, h = 1/k, as
follows:

0 = t0 < t1 < t2 < · · · < tk−1 < tk = 1, where ti = t0+ih, (i = 1, 2, . . . , k−1).

Denoting u(ti) = ui for each i = 1, 2, . . . , k, and approximating the integral in
Equation (4.2) using the trapezoidal rule of integration, we obtain the system
of k nonlinear equations as

7

8
si − ui +

hsi
2

1

2
u2k +

k−1∑
j=1

tju
2
j

 = 0, (i = 1, 2, . . . , k), (4.3)

where si = ti = i/k for each i.

Setting k = 25 in particular, the solution of system of equations (4.3) is
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given as

x∗ = (0.04001.., 0.08002.., 0.12003.., 0.16004.., 0.20005.., 0.24006.., 0.28007..,

0.32008.., 0.36009.., 0.40010.., 0.44011.., 0.48012.., 0.52013.., 0.56014..,

0.60016.., 0.64017.., 0.68018.., 0.72019.., 0.76020.., 0.80021.., 0.84022..,

0.88023.., 0.92024.., 0.96025.., 1.00026..)T .

We set the initial approximation as (−1,
25· · · · · ·,−1)T . Numerical results so

obtained are displayed in Table 4.

Table 4. Comparison of performance of techniques for Problem 3.

Technique n ACOC Ci Ei CPU Time

T1 4 5.000 10549.00 15.26 1.1062

T2 4 5.000 10574.00 15.22 1.1095

T3 4 5.000 20664.75 07.79 2.0311

T4 4 5.000 21964.75 07.33 2.1405

T5 4 5.000 15617.00 10.31 1.6112

T6 4 5.000 21289.75 07.56 2.1254

T7 4 5.000 16267.00 09.89 1.6256

T8 4 5.000 15667.00 10.27 1.6245

T9 4 5.000 22639.75 07.11 2.1091

T10 4 5.000 10549.00 15.26 1.1078

The exact solution of the given integral equation along with numerical so-
lution obtained is compared in the Figure 14. Moreover, the estimated values
of the parameters are, (m, ν0, ν1, l) = (25, 3, 1, 2.81).

Figure 14. Graphical comparison of exact and numerical solution of Problem 3.

Problem 4. Now let us take a large system of equations as,

e−xi −
m∑

j=1,j ̸=i

xj = 0, (i = 1, 2, . . . ,m),

Math. Model. Anal., 28(1):1–22, 2023.
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where m = 200. We set the initial estimate as
(
3
2 , · · · ,

3
2

)T
to obtain the

solution,
x∗ = (0.0050 . . . , · · ·, 0.0050 . . .)T .

In this problem, the values of parameters are estimated as (m, ν0, ν1, l) =
(200, 90.48, 0.45, 2.81). Table 5 depicts the numerical results of performance
for the considered problem.

Table 5. Comparison of performance of techniques for Problem 4.

Technique n ACOC Ci Ei CPU Time

T1 3 5.000 2.99E+06 5.37E-02 60.750

T2 3 5.000 2.99E+06 5.37E-02 60.469

T3 3 5.000 8.30E+06 1.94E-02 175.813

T4 3 5.000 8.34E+06 1.93E-02 183.766

T5 3 5.000 5.64E+06 2.85E-02 154.375

T6 3 5.000 8.34E+06 1.93E-02 182.187

T7 3 5.000 5.68E+06 2.83E-02 142.969

T8 3 5.000 5.66E+06 2.84E-02 128.641

T9 3 5.000 8.38E+06 1.92E-02 175.407

T10 3 5.000 2.99E+06 5.37E-02 60.653

Problem 5. At last, we again consider a large system of equations as,

xi + log(2 + xi + xi+1) = 0, (i = 1, 2, . . . ,m− 1),

xm + log(2 + xm + x1) = 0.

By setting m = 500, the initial estimate is selected as
(
− 1

4 , · · ·,−
1
4

)T
for the

solution,
x∗ = (−0.3149 . . . , · · ·,−0.3149 . . .)T .

The estimated values of parameters for this problem are, (m, ν0, ν1, l) =
(500, 78.31, 0.0056, 2.81). The numerical performance is displayed in the Ta-
ble 6.

It can be inferred from the findings of performance outcomes, displayed in
Tables 2–6, that the proposed fifth order techniques are computationally more
efficient as compared to their existing counterparts, as both of these exhibit
superiority in terms of elapsed CPU time as well as efficiency index. Com-
putation of ACOC further authenticates the theoretically proven fifth order
of convergence. Similar numerical tests, conducted for a variety of problems,
largely confirm the above conclusions.
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Table 6. Comparison of performance of techniques for Problem 5.

Technique n ACOC Ci Ei CPU Time

T1 3 5.000 4.33E+07 3.72E-03 17.593

T2 3 5.000 4.33E+07 3.72E-03 17.675

T3 3 5.000 1.27E+08 1.27E-03 24.515

T4 3 5.000 1.27E+08 1.27E-03 24.343

T5 3 5.000 8.49E+07 1.90E-03 19.109

T6 3 5.000 1.27E+08 1.27E-03 24.157

T7 3 5.000 8.51E+07 1.89E-03 19.375

T8 3 5.000 8.49E+07 1.90E-03 21.875

T9 3 5.000 1.27E+08 1.27E-03 24.969

T10 3 5.000 4.33E+07 3.72E-03 17.611

5 Conclusions

Two multi-step iterative techniques, for solving the systems of nonlinear equa-
tions, have been proposed in the present study. The techniques are found
to possess the fifth order of convergence under some prescribed assumptions.
With the fact that only single evaluation of matrix inversion is required per
iteration, both of the developed techniques are highly economical from the
view of computational complexity, typically for the large scale systems. Iter-
ative techniques with these characteristics are hardly found in the literature.
Performance and stability of the proposed techniques have been assessed by
executing the numerical experimentation on the selected nonlinear problems
arising in different practical situations. Outcomes of the testing conclude that
the proposed techniques dominate the majority of existing ones when examined
in the context of computational cost, efficiency index, convergence behavior,
and the elapsed CPU time in the execution of algorithm.

References

[1] Z. Avazzadeh, M. Heydari and G.B. Loghmani. Numerical solution of
Fredholm integral equations of the second kind by using integral mean
value theorem. Applied Mathematical Modelling, 35(5):2374–2383, 2011.
https://doi.org/10.1016/j.apm.2010.11.056.

[2] A. Cordero, J.L. Hueso, E. Mart́ınez and J.R. Torregrosa. Ef-
ficient high-order methods based on golden ratio for nonlinear sys-
tems. Applied Mathematics and Computation, 217(9):4548–4556, 2011.
https://doi.org/10.1016/j.amc.2010.11.006.

[3] A. Cordero, J.L. Hueso, E. Mart́ınez and J.R. Torregrosa. Increasing the conver-
gence order of an iterative method for nonlinear systems. Applied Mathematics
Letters, 25(12):2369–2374, 2012. https://doi.org/10.1016/j.aml.2012.07.005.

[4] Z. Liu, Q. Zheng and C.E. Huang. Third-and fifth-order Newton–Gauss meth-
ods for solving nonlinear equations with n variables. Applied Mathematics and
Computation, 290:250–257, 2016. https://doi.org/10.1016/j.amc.2016.06.010.

Math. Model. Anal., 28(1):1–22, 2023.

https://doi.org/10.1016/j.apm.2010.11.056
https://doi.org/10.1016/j.amc.2010.11.006
https://doi.org/10.1016/j.aml.2012.07.005
https://doi.org/10.1016/j.amc.2016.06.010


22 H. Singh and J. R. Sharma

[5] J.M. Ortega and W.C. Rheinboldt. Iterative Solution of Nonlinear Equations in
Several Variables. Academic Press, New York, 1970.

[6] A.M. Ostrowski. Solution of Equation and Systems of Equations. Academic
Press, New York, 1960.

[7] F.A. Potra and V. Pták. On a class of modified Newton pro-
cesses. Numerical Functional Analysis and Optimization, 2(1):107–120, 1980.
https://doi.org/10.1080/01630568008816049.

[8] J.R. Sharma and P. Gupta. An efficient fifth order method for solving systems of
nonlinear equations. Computers & Mathematics with Applications, 67(3):591–
601, 2014. https://doi.org/10.1016/j.camwa.2013.12.004.

[9] R. Sihwail, O.S. Solaiman, K. Omar, K.A.Z. Ariffin, M. Alswaitti and I. Hashim.
A hybrid approach for solving systems of nonlinear equations using Harris
Hawks optimization and Newton’s method. IEEE Access, 9:95791–95807, 2021.
https://doi.org/10.1109/ACCESS.2021.3094471.

[10] O.S. Solaiman and I. Hashim. An iterative scheme of arbitrary odd order and its
basins of attraction for nonlinear systems. Computers, Materials & Continua,
66(2):1427–1444, 2021. https://doi.org/10.32604/cmc.2020.012610.

[11] J.F. Traub. Iterative Methods for the Solution of Equations. Chelsea Publishing
Company, New York, 1982.

[12] S. Wolfram. The Mathematica Book (5th edition). Wolfram Media, USA, 2003.

[13] X.Y. Xiao and H.W. Yin. A new class of methods with higher order of con-
vergence for solving systems of nonlinear equations. Applied Mathematics and
Computation, 264:300–309, 2015. https://doi.org/10.1016/j.amc.2015.04.094.

[14] X.Y. Xiao and H.W. Yin. Increasing the order of convergence for iter-
ative methods to solve nonlinear systems. Calcolo, 53(3):285–300, 2016.
https://doi.org/10.1007/s10092-015-0149-9.

[15] Z. Xu and T. Jieqing. The fifth order of three-step iterative methods for solving
systems of nonlinear equations. Mathematica Numerica Sinica, 35(3):297–304,
2013.

[16] T. Zhanlav, C. Chun, K. Otgondorj and V. Ulziibayar. High-order iterations for
systems of nonlinear equations. International Journal of Computer Mathematics,
97(8):1704–1724, 2020. https://doi.org/10.1080/00207160.2019.1652739.

[17] T. Zhanlav and K. Otgondorj. Higher order Jarratt-like iterations for solv-
ing systems of nonlinear equations. Applied Mathematics and Computation,
395:125849, 2021. https://doi.org/10.1016/j.amc.2020.125849.

https://doi.org/10.1080/01630568008816049
https://doi.org/10.1016/j.camwa.2013.12.004
https://doi.org/10.1109/ACCESS.2021.3094471
https://doi.org/10.32604/cmc.2020.012610
https://doi.org/10.1016/j.amc.2015.04.094
https://doi.org/10.1007/s10092-015-0149-9
https://doi.org/10.1080/00207160.2019.1652739
https://doi.org/10.1016/j.amc.2020.125849

	Introduction
	Development of methods
	Computational complexity
	Comparison of efficiencies

	Numerical experimentation
	Conclusions
	References

