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1 Introduction

Problems with nonlocal conditions are widely used in mathematical modeling
of various processes and phenomenon of the real world. The survey of the
first papers on the applications of problems with nonlocal conditions could be
found in [12, 22, 33]. It is worth to admit that the investigation of mathe-
matical models with nonlocal conditions has great influence on the theory of
modern numerical methods. As an example, could be taken investigation of
the spectrum of nonsymmetrical matrices. Taking separately, the following in-
verse eigenvalue problem is important enough: what limitations should satisfy
the parameters (or functions) of nonlocal conditions of the differential problem
that the spectrum of a nonsymmetrical matrix of difference problem should
possess the property which would be specified in advance. For example, all the
eigenvalues would be real and positive, or all the eigenvalues would possess the
property Reλ > 0 and so on. The similar problems were investigated in many
papers [6, 10,16,17,30].

In the present paper, we investigate the boundary value problem for non-
linear elliptic equation with nonlocal integral condition

∂2u

∂x2
+

∂2u

∂y
= f(x, y, u), (x, y) ∈ Ω = {0 < x < 1, 0 < y < 1}, (1.1)

u(x, 0) = µ1(x), u(x, 1) = µ2(x), u(0, y) = µ3(y), (1.2)

u(1, y) = γ

∫ 1

ξ

u(x, y)dx+ µ4(y), (1.3)

where ξ and γ are real parameters and ξ ∈ [0, 1), γ ∈ (−∞,∞).
The finite difference or other numerical methods were applied for the solu-

tion of elliptic equations with various type nonlocal conditions. To investigate
the numerical methods (error estimation, convergence, etc.) various approaches
were used. One of them is an investigation of the structure of spectrum. It
can be said, that eigenvalue problems of differential or difference equations
with nonlocal conditions form separate quite important branch in the modern
numerical analysis.

The values of solution of two-dimensional problem (1.1)–(1.3) in one coordi-
nate direction are conected by nonlocal condition (1.3). This is quite often and
characteristic formulation of nonlocal condition for elliptic equation in two- or
multi-dimensional case [1, 2, 3, 4, 5, 13,14,18].

In paper [3] the existence and uniqueness of the solution for a multi-dimen-
sional elliptic equation with integral conditions:∫ ξ1

0

u(x, y)dy = 0,

∫ 1

ξ2

u(x, y)dy = 0, x = (x1, x2, . . . , xn),

were investigated. In these nonlocal conditions, as in condition (1.3), the in-
terval of integration is less than interval of definition of the solution by one
of the variables. In paper [5] the convergence of finite difference method for
two-dimensional elliptic equation with nonlocal condition was proved.
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In paper [1] boundary value problem for the multidimensional elliptic equa-
tion with one integral condition was investigated. In [18] the difference problem
for Poisson equation with multipoint nonlocal condition

u(1, y) =

m∑
i=1

αiu(ξi, y) + η(y)

instead of integral condition was investigated. In [13] Laplace equation with
the multipoint nonlocal condition was solved by the difference method of fourth
order accuracy.

Situation when in nonlocal condition the interval of integration is less than
the interval of definition of the solution is characteristic not only for ellip-
tic equations. Such formulation for nonlocal conditions naturally occurs for
parabolic equations too, as models of real processes. In [7], when formulat-
ing the problem for the one-dimensional heat equation, the following nonlocal
condition was used:

E(t) =

∫ x(t)

0

u(x, t)dx,

in which E(t) and x(t) are known functions.
For two-dimensional parabolic equation also could be formulated condition

of the same type [8].
The structure of spectrum for one-dimensional eigenvalue problem with

nonlocal condition in the form (1.3) was investigated in paper [24]. The struc-
ture of spectrum of corresponding difference eigenvalue problem was considered
in [6]. Analogous investigations with different forms of nonlocal conditions were
performed in [19, 23, 25, 30] (see also the review article [33]). The structure of
spectrum for ordinary differential equation of more general form with nonlocal
condition (1.3) was investigated in [34].

The examination of structure of the spectrum for parabolic equations is one
of the effective methods proving the stability of difference scheme with nonlocal
conditions [9, 17,19,20,21,27].

The eigenvalue problem for two-dimensional Poisson equation with various
types of nonlocal conditions was investigated in many papers (see, for example,
[15] and references therein). The structure of the spectrum for two-dimensional
elliptic equation with nonlocal condition in the form (1.3) when ξ = 0 was
considered in [35]. In papers [10,11,20,28,32] the structure of spectrum for two-
dimensional problem in connection with the theory of M-matrices was applied
for theoretical investigation (convergence of finite difference method, stability
of difference schemes, convergence of iterative methods) of difference schemes
with nonlocal condition (1.3) when ξ = 0.

Difference method of fourth order of accuracy for two-dimensional Laplace
equation with nonlocal condition

u(x, 0) = α

∫ b

ξ

u(x, y)dy + µ(x), 0 < x < a, 0 < y < b

has been considered in [14].
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The main aim of the present paper is to investigate the limitation of the
parameters γ and ξ of the problem (1.1)–(1.3) assuming that all the eigenvalues
of corresponding difference problem would be real and positive.

The structure of the paper is as follows. In Section 2, following the method-
ology provided in papers [6,24], we investigated conditions of existence of neg-
ative eigenvalue of the corresponding one-dimensional problem and its prop-
erties. In Section 3, we applied these results for two-dimensional eigenvalue
problem. In the last Section 4, the conclusions and generalizations are pro-
vided.

2 Spectrum structure of one-dimensional difference
eigenvalue problem

We consider one-dimensional eigenvalue problem with nonlocal condition

d2u

dx2
+ λu = 0, x ∈ (0, 1), (2.1)

u(0) = 0, u(1) = γ

∫ 1

ξ

u(x)dx, (2.2)

where ξ ∈ [0, 1) and γ ∈ (−∞,∞) are real numbers. We write down the
corresponding difference eigenvalue problem

ui−1 − 2ui + ui+1

h2
+ λui = 0, i = 1, 2, . . . , N − 1, (2.3)

u0 = 0, u
N
= hγ

(
um + u

N

2
+

N−1∑
i=m+1

ui

)
, (2.4)

where Nh = 1, ξ = mh.
The specificity of nonlocal problem (2.1)–(2.2) is such that an interval of

integration is only a part of an interval [0, 1].
We examine structure of spectrum of the problem (2.3)–(2.4). As it was

mentioned in an Introduction, structure of spectrum of differential and dif-
ference problems (2.1)–(2.2) and (2.3)–(2.4) was considered in [6, 24]. Not to
repeat the theoretical research done in [6, 24] we complement them by quan-
titative conclusions about dynamics of negative eigenvalue varying parameters
γ, ξ and h.

In [24] the following main properties of the spectrum of problem (2.1)–(2.2)
are proved.

Proposition 1. [24] All eigenvalues of problem (2.1)–(2.2) with real γ and ξ
are real.

Proposition 2. [24] For differential problem (2.1)–(2.2) the eigenvalue λ = 0
exists if and only if γ = 2/(1− ξ2).

Proposition 3. [24] For γ > 2/(1− ξ2) one negative eigenvalue of the prob-
lem (2.1)–(2.2) exists, and for γ < 2/(1− ξ2) there aren’t negative eigenvalues.
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In [6] these statements are generalized for difference problem (2.3)–(2.4).
We examine in more detail conditions of existence of negative eigenvalue for

the difference eigenvalue problem (2.3)–(2.4). According to the Propositions 2
and 3, all eigenvalues of the problem (2.3)–(2.4) are positive in the case γ ≤ 0.
So, we investigate in the present paper only the case γ > 0.

Let us say that the following hypothesis is true.

Hypothesis 1. Mesh size of the grid h is sufficiently small with respect to
parameter γ: h < 2/γ.

When λ < 0, then
1− λh2/2 > 1.

Consequently, in the Equation (2.3) instead of eigenvalue λ < 0 other parameter
β > 0 could be introduced by one-to-one dependence:

1− λh2/2 = cosh(βh).

From there it follows

λ = − 4

h2
sinh2

(
βh

2

)
. (2.5)

Now the general solution of the Equation (2.3) could be search in the form:

ui = C1 cosh(iβh) + C2 sinh(iβh). (2.6)

Requiring that nontrivial solution (eigenvector) (2.6) satisfying not only
the Equation (2.3) but also conditions (2.4) should exist, we get the following
expression:

sinh(β) =
γh

2

cosh(β)− cosh(βξ)

tanh
(

βh
2

) . (2.7)

Hence, we can formulate the following preliminary conclusion.

Proposition 4. For difference eigenvalue problem (2.3)–(2.4) the unique nega-
tive eigenvalue exists, if and only if the unique root β0 > 0 of the Equation (2.7)
exists.

Remark 1. In this paper, we use real parameter β > 0 to define negative eigen-
value. In papers [6, 24], the universal complex parameter q (Req > 0) suitable
for expression of whichever eigenvalue λ ̸= 0, was used. When λ < 0, relation
between β from present article and q from papers [6,24] is the following: q = iβ
in [24] and πq = iβ in [6], where i - imaginary unit.

In that way the problem on the existence of negative eigenvalue (2.3)–(2.4)
is reduced to more simple problem on the existence of the root β0 > 0 of
the Equation (2.7).The existence and uniqueness of this solution we present
graphically, receiving the quantitative information needed in this way.

With such an aim we rewrite the Equation (2.7) in another form

2

γh
tanh

(
βh

2

)
=

cosh(β)− cosh(βξ)

sinh(β)
. (2.8)
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Now we define functions f1(β) and f2(β) in the interval β ∈ (0,∞):

f1(β) =
cosh(β)− cosh(βξ)

sinh(β)
, f2(β) =

2

γh
tanh

(
βh

2

)
.

It is evident, that the unique solution β0 for the Equation (2.7) exists if and
only if graphics of functions f1(β) and f2(β) would have the only crossing point.
Both of functions also depend on the parameters ξ or γ, h .

The behavior of the functions f1(β) and f2(β) and their derivatives in the
limiting points of the interval (0,∞) is directly calculated

lim
β→0

f1(β) = 0, lim
β→∞

f1(β) = 1, lim
β→0

f2(β) = 0, lim
β→∞

f2(β) =
2

γh
, (2.9)

lim
β→0

f ′
1(β)=

1− ξ2

2
, lim

β→∞
f ′
1(β)=0, lim

β→0
f ′
2(β)=

1

γ
, lim

β→∞
f ′
2(β)=0. (2.10)

Furthermore, functions f1(β) and f2(β) are monotonically increasing functions
in whole the interval β ∈ (0,∞). Graphics of the functions f1(β) and f2(β)
with several different values of parameters γ and ξ are presented in Figures 1
and 2.

Figure 1. Graphics of the function f1(β) for various ξ.

In Figure 1 the values of function f1(β) with all values of the parameters ξ
approach to 1, as β → ∞. We note, as larger the parameter ξ value, as lower
the graphic of function f1(β) in the coordinate plane is.

Figure 2. Graphics of the function f2(β) for various γ; h = 0.02.

Similary, in Figure 2 the graphic of function f2(β) is lower in the coordinate
plane as value of the parameter γ is larger.

Few following conclusions follow from the properties of functions f1(β) and
f2(β) which we demonstrate in Figures 3–10. In Figure 3, the illustration of
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statement from Proposition 3, i.e., if γ ≤ 2/(1− ξ2), then the negative eigen-
value for difference eigenvalue problem (2.3)–(2.4) does not exist, is presented.
When ξ is fixed (in Figure 3, ξ = 0.5), then graphic of function f1(β) with
the values of parameter γ less than 2

1−ξ2 = 8
3 , has no crossing point with the

graphic of function f2(β). Equation (2.8) has no roots, λ < 0 does not exist.

Figure 3. Graphics of the function f1(β) for ξ = 0.5 and function f2(β) for h = 0.02 and
variuos γ. The root β0 of Equation (2.8) does not exist.

In Figure 4, the illustration of another statement from Proposition 3 is
presented. Namely, if γ > 2

1−ξ2 then one negative eigenvalue exists. Indeed,

when ξ = 0.5 and γ > 2
1−ξ2 = 8

3 , then all the graphics of function f2(β) have

only one crossing point with the graphic of function f1(β).

Figure 4. Graphics of the function f1(β) for ξ = 0.5 and function f2(β) for h = 0.02 and
variuos γ. The root β0 of Equation (2.8) exist.

The following proposition presented in Figures 5 and 6, could be interpreted
not only as the illustration of the theory but also as the complementation of
the theory. Here the situation is demonstrated when h > 2

γ (or hγ > 2), i.e.,
the Hypothesis 1 is not fulfilled.

Figure 5. Graphics of the function f1(β) for ξ = 0.5 and function f2(β) for h = 0.02 and
various γ. The existence of the root β0 of Equation (2.8) depend of γ.
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In Figure 5, the grid step h is fixed, and parameter γ of function f2(β)
changes. When h = 0.02 and γ ≥ 100, then hγ ≥ 2. In this case, graphics of
the functions f1(β) and f2(β) do not cross each other, although the condition
γ > 2

1−ξ2 is fulfilled. Equation (2.8) has no the root, negative eigenvalue does
not exist.

Similarly in Figure 6, when γ = 50 and h ≥ 0.04, the Hypothesis 1 is
not fulfilled. Equation (2.8) has no root. So, the inequality γ > 2

1−ξ2 is only
necessary, but not sufficient condition for the existence of the root of Equation
(2.8). The value of h influences on that, too. Such situation, that when ξ = 0,
was observed in [27]. When ξ ̸= 0, as far as it is known for authors, concrete
limitations for the step h were not considered.

Figure 6. Graphics of the function f1(β) for ξ = 0.5 and function f2(β) for γ = 50 and
vanish h. The existence of the root β0 of Equation (2.8) depend on h.

So, according to the results presented in Figures 5 and 6, it is possible to
specify the formulation of Proposition 3 for difference problem (2.3)–(2.4) on
the structure of spectrum.

Proposition 5. For difference eigenvalue problem (2.3)–(2.4), the negative eigen-
value exists if and only if both conditions

2/(1− ξ2) < γ < 2/h

are fulfilled.

Now, we analyze how the root of Equation (2.8) vary depending on change
of parameters γ and ξ. With this aim we rewrite this equation in the different
form:

γ = f(β, ξ), (2.11)

where

f(β, ξ) =
2

h
tanh

(
βh

2

)
sinh(β)

cosh(β)− cosh(βξ)
.

Proposition 6. [6, 24] Function f(β, ξ) is monotonically increasing function
of variable β in whole the interval β ∈ (0,∞).

Proposition 7. Function f(β, ξ) is monotonically increasing function of vari-
able ξ in whole the interval ξ ∈ [0, 1).

This proposition follows from the inequality

∂f

∂ξ
=

2

h
tanh

(
β

2

)
ξ sinh(β) sinh(βξ)

(cosh(β)− cosh(βξ))2
> 0.

Math. Model. Anal., 27(4):610–628, 2022.
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We denote by βi
0 the root of Equation (2.11), when the values of the parameters

γ and ξ are γi, ξi, i = 1, 2.

Proposition 8. Suppose, β1
0 and β2

0 are two solutions of Equation (2.11), when
ξ1 and ξ2 are different values and value of γ is fixed:

γ = f(β1
0 , ξ1), γ = f(β2

0 , ξ2). (2.12)

If ξ2 > ξ1, then β2
0 < β1

0 .

Proof. Suppose the contrary, i.e., it follows from conditions (2.12) and ξ2 >
ξ1, that β2

0 ≥ β1
0 . Function f(β, ξ) is monotonically increasing function of

both variables β and ξ. Consequently, it follows from inequalities β2
0 ≥ β1

0 and
ξ2 > ξ1, that

f(β2
0 , ξ2) > f(β1

0 , ξ1).

We get contradiction with the conditions (2.12). So, β2
0 < β1

0 (see Figures 7–8).
⊓⊔

Figure 7. Grapfics of the
function f(β, ξ) for ξ = 0.1 and
ξ = 0.6. h = 0.02; γ = 3.44. If

ξ2 > ξ1, then β2
0 < β1

0 .

Figure 8. Grapfics of the
function f(β, ξ) for ξ = 0.6. If

γ2 > γ1, then β2
0 > β1

0 .

Proposition 9. Suppose, β1
0 and β2

0 are two solutions of Equation (2.11) with
different values of γ1 and γ2 and fixed value of ξ: γ1 = f(β1

0 , ξ), γ2 = f(β2
0 , ξ).

If γ2 > γ1, then β2
0 > β1

0 .

Proof. Whereas γ2 > γ1, then f(β2
0 , ξ) > f(β1

0 , ξ). It follows from the monotony
of the function f(β, ξ), that β2

0 > β1
0 . ⊓⊔

From the definition of functions f1(β), f2(β) and f(β, ξ) follows, that

f(β, ξ) =
γf2(β)

f1(β)
.

So, accordingly with the expressions (2.9)–(2.10), we get the following limiting
values of the function f(β, ξ):

lim
β→0

f(β, ξ) = lim
β→0

γf2(β)

f1(β)
= lim

β→0

γf ′
2(β)

f ′
1(β)

=
2

1− ξ2
, (2.13)

lim
β→∞

f(β, ξ) = lim
β→∞

γf2(β)

f1(β)
=

2

h
. (2.14)
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We take fixed values ξ1 ∈ [0, 1) and β0 ∈ (0,∞) and define

γ1 = f(β0, ξ1). (2.15)

It follows from (2.13) and (2.14), that

2/(1− ξ21) < γ1 < 2/h.

Equation (2.15) could be interpreted in a following way. β0 > 0 is the root of
Equation (2.11) with the values of parameters γ1 and ξ1.

On the other hand, it is possible to state, that formula (2.15) depicts the
constructive algorithm how to obtain the value of the parameter γ such, that
in the presence of fixed value ξ1 the root of Equation (2.11) would be equal to
given in advance value β0 > 0. The conclusion follows from these considerations
and Propositions 4 and 9.

Corollary 1. Suppose, the root of Equation (2.11) with the values of parameters
γ1 and ξ1 is β0, i.e., γ1 = f(β0, ξ1). Then equation γ = f(β, ξ1) with all values
of γ, satisfying the condition

2

1− ξ21
< γ ≤ γ1 = f(β0, ξ1)

possesses the root β > 0, belonging to the interval (0, β0).

We reformulate this conclusion for the eigenvalues (2.5) of difference eigen-
value problem.

Corollary 2. Suppose, Equation (2.11) with the parameters γ1 and ξ1 possesses
the root β0 > 0, i.e., the negative eigenvalue exists for the problem (2.3)–(2.4)

λ = − 4

h2
sinh2

(
β0h

2

)
.

Then with all the values of γ, satisfying condition

2

1− ξ21
< γ ≤ γ1 = f(β0, ξ1),

negative eigenvalue belonging to the interval
[
− 4

h2 sinh
2
(
β0h
2

)
, 0
)
of the eigen-

value problem (2.3)–(2.4) exists.

This conclusion is the main result of Section 2 which will be needful for the
investigation of two-dimensional eigenvalue problem.

3 Two-dimensional eigenvalue problem

We solve the differential problem (1.1)–(1.3) by finite difference method. We
write down the corresponding difference problem in the following form:

δ2xuij + δ2yuij = fij(uij), i, j = 1, N − 1, (3.1)

ui0 = (µ1)i, uiN = (µ2)i, u0j = (µ3)j , (3.2)

uNj = hγ

(
umj + uNj

2
+

N−1∑
i=m+1

uij

)
+ (µ4)j , j = 1, N − 1, (3.3)

Math. Model. Anal., 27(4):610–628, 2022.
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where

δ2xuij =
ui−1,j − 2uij + ui+1,j

h2
, δ2yuij =

ui,j−1 − 2uij + ui,j+1

h2
,

hN = 1, ξ = mh, N and m are integers.
If the solution of boundary value problem (1.1)–(1.3) is smooth enough,

then the error of approximation of differential problem is O(h2).
The system of difference equations (3.1)–(3.3) we write down in the matrix

form. With this aim we express from Equation (3.3) uNj by another unknowns

uNj =

N−1∑
i=1

αiuij +
2γh

2− γh
(µ4)j , (3.4)

where, depending on ξ = mh, in the case 1 < m < N − 1

αi =


0, if i = 1,m− 1,

γh/(2− γh), if i = m,

2γh/(2− γh), if i = m+ 1, N − 1.

In the case ξ = 0 (m = 0), formula (3.3) is reduced to

uNj =
2γh

2− γh

(
N−1∑
i=1

uij +
(µ3)j
2

+ (µ4)j

)
.

From here it is clear that it is possible to write down the equation in the
form (3.4) only when h ̸= 2

γ . We remind that in Section 2 the certain condition

was required also, defining the relation between h and γ ( hγ < 2 according to
presumption Hypothesis 1).

Putting down the expression (3.4) into Equations (3.1), when i = N−1, we
rearrange the system of difference equations (3.1) to another equivalent form:

δ2xuij + δ2yuij = fij(uij), i = 1, N − 2, (3.5)

uN−2,j − 2uN−1,j +
N−1∑
i=1

αiuij

h2
+ δ2yuN−1,j = fN−1,j(uN−1,j)−

(µ4)j
h2

, (3.6)

where j = 1, N − 1.
In this way, the system of difference equations (3.1), (3.3) with boundary

conditions (3.2), in which there are (N − 1)N equations and the same number
of unknowns is rearranged to the different form. In the new form there are two
systems. These are the system (3.5), (3.6) with boundary conditions (3.2), in
which there are (N − 1)2 of equations and the same number of unknowns, and
another system (3.4) (more precisely, the explicit formulas).

Now we can at first solve the system (3.5), (3.6), (3.2). Indeed, in the
system (3.5), (3.6), (3.2) there are no more nonlocal conditions and unknowns
uNj , j = 1, N − 1. So, we find values uij , i, j = 1, N − 1. This system has an
unique solution. After that we find uNj , j = 1, N − 1 according to the formulas
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(3.4). This approach is described in many papers in which spectrum structure
of two-dimensional difference eigenvalue problems and iterative methods for
systems of difference equations were investigated [10,11,28,30,35].

Onward we write down the system (3.5), (3.6) in the matrix form

Au+ f(u) = φ, (3.7)

where A is the matrix of order (N − 1)2 and u, f(u) and φ are the vectors
of order (N − 1)2 (φ is a vector composed by the values µ1, µ2, µ3, µ4 of
functions of boundary conditions). Matrix A could be writen as A = Λ − C,
where Λ = Λ1 + Λ2 is a matrix corresponding to difference operator −δ2x − δ2y
in the area Ω with Dirichlet type conditions. C is a matrix composed by
coefficients αi in Equations (3.6). More precisely, C is a block matrix

C = diag(C1, C1, . . . , C1)

where

C1 = h−2


0 0 . . . 0
0 0 . . . 0
. . . . . .
0 0 . . . 0
α1 α2 . . . αN−1

 .

Number of blocks C1 in matrix C is N − 1, order of block C is also N − 1.
We write down the eigenvalue problem of matrix A. With this aim firstly,

we write down the difference eigenvalue problem, corresponding to differential
eigenvalue problem for Laplace operator with homogeneous boundary condi-
tions (1.2), (1.3)

δ2xuij + δ2yuij + λuij = 0, i, j = 1, N − 1, (3.8)

uNj = hγ

(
umj + uNj

2
+

N−1∑
i=m+1

uij

)
, j = 1, N − 1, (3.9)

ui0 = uiN = u0j = 0. (3.10)

We reduce this problem to another form analogously as we reduced the sys-
tem of equations (3.1)–(3.3). With this aim we express u

N j from Equation (3.9)
and put it into Equation (3.8), where i = N − 1. After these transformations
we get matrix form

Au = λu, (3.11)

where A is the same matrix as in the system (3.7). So we get the following
statement.

Proposition 10. If Hypothesis 1 is fulfilled, then the eigenvalue problem (3.11)
for matrix A as matrix of system of difference equations, is equivalent to two-
dimensional eigenvalue problem (3.8)–(3.10).

We refer some properties of matrix A.
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622 K. Pupalaigė, M. Sapagovas and R. Čiupaila

Proposition 11. If hγ < 1, then diagonal elements of matrix A are positive.
Nondiagonal elements of matrix A are always nonpositive.

Proof. From Equations (3.5) and (3.6) we get that diagonal elements of ma-
trix A are 4h−2 or h−2(4− αi). We estimate diagonal element, when

αi = 2γh/(2− γh).

We get
4− αi

h2
=

(
4− 2hγ

2− hγ

)
1

h2
=

8− 6hγ

h2(2− hγ)
>

1

h2
,

when hγ < 1. Nondiagogal elements A = Λ−C are composed by nondiagonal
elements of matrices Λ and C, which are nonpositive. ⊓⊔

We investigate, with wich values of parameters γ and ξ all the eigenvalues
of difference problem (3.8)–(3.10) are positive.

Using the Fourier method, we separate variables in problem (3.8)–(3.10) as
uij = viwj . In this way two-dimensional eigenvalue problem is reduced to two
one-dimensional problems:

δ2xvi + ηvi = 0, i = 1, N − 1

v0 = 0, vN = hγ

(
vm + vN−1

2
+

N−1∑
i=m+1

vi

)
, (3.12)

δ2ywj + µwj = 0, j = 1, N − 1,

w0 = 0, wN = 0. (3.13)

For eigenvalues of problem (3.8)–(3.10) the following equality is true:

λkl = ηk + µl, k, l = 1, N − 1.

The eigenvalues of problem (3.13) are

µl =
4

h2
sin2

lπh

2
, l = 1, N − 1,

and all of them are unconditionally positive. From Proposition 4 it follows that
all eigenvalues of problem (3.12) are positive, if γ < 2

1−ξ2 . When the values

of parameters γ1 and ξ1 are such that γ > 2
1−ξ2 , then Equation (2.11) has the

root β0, i.e.
γ1 = f(β0, ξ1).

In this case one negative eigenvalue

η1 = − 4

h2
sinh2

(
β0h

2

)
of one-dimentional eigenvalue problem (3.12) exists.

Further, when
|η1| = min

l
µl, (3.14)
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then one eigenvalue of two-dimensional eigenvalue problem is equal zero, and
the rest of eigenvalues are positive.

From Equation (3.14) we get

4

h2
sinh2

(
β0h

2

)
=

4

h2
sin2

πh

2
.

From here we express

β0 =
2

h
ln

(
sin

πh

2
+

√
sin2

πh

2
+ 1

)
. (3.15)

We notice that β0 ≈ π, when h is small enough. Moreover, β0 < π and β0 → π,
as h → 0.

Now we can use Corollary 2 from Section 2 and rephrase the proposition
for two-dimensional problem.

Corollary 3. Suppose, h is small enough, i.e. hγ < 1. We take any fixed value
ξ0 ∈ [0, 1) and β0 under formula (3.15). We define

γ1 = f(β0, ξ0) =
2

h
tanh

(
β0h

2

)
sinh(β0)

cosh(β0)− cosh(β0ξ0)
. (3.16)

All the eigenvalues of two-dimensional eigenvalue problem (3.8)–(3.10) with
parameters ξ0 and γ are positive if and only if

γ < γ1. (3.17)

The propositions under which this conclusion is obtained and the conclusion
itself could be demonstrated in the Table 1.

Table 1. The dynamics of the least eigenvalue λ11 depending on γ.

γ γ < γ0 γ = γ0 γ0 < γ < γ1 γ = γ1 γ > γ1

η1 ∄ η1 < 0 ∄ η1 < 0 ∃ η1< 0 ∃ η1 < 0 ∃ η1 < 0
all ηk > 0 ∃ ηk = 0 |η1| < µ1 |η1| = µ1 |η1| > µ1

λ11 λ11 > 0 λ11 > 0 λ11 > 0 λ11 = 0 λ11 < 0

In Table 1 the dynamics of the least eigenvalue λ11 of the problem (3.8)–
(3.10) is demonstrated in the case when ξ0 is fixed, and γ varies; here η1 is
the negative eigenvalue of the problem (3.12), µ1 is the least eigenvalue of
the problem (3.13), β0 and γ1 are calculated by formulas (3.15) and (3.16);
γ0 = 2

(1−ξ2) > 2.

If γ is negative, condition (3.17) is always fulfilled independently from the
values of γ and ξ. So, when γ < 0, all the eigenvalues of the problem (3.8)–
(3.10) are positive for all values ξ ∈ [0, 1).

Now we return from the eigenvalue problem (3.8)–(3.10) to the system (3.7)
of nonlinear equations. Diagonal elements of the matrix A of this system are
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positive and nondiagonal element are nonpositive (Proposition 11). Eigenvalues
of matrix A are positive when γ < γ1 (Corollary 3). The statement follows from
these properties.

Proposition 12. Suppose, hγ < 1. If for ξ0 ∈ [0, 1), the condition 0 < γ < γ1
is fulfilled, where γ1 is defined by formula (3.16), and β0 is defined by formula
(3.15), then matrix A is an M-matrix.

In Figures 9–10 the dependence of γ1 from ξ is presented. When ξ = 0,
then γ1 ≈ 3.4234 [35]. If ξ is increasing in the interval [0, 1), then γ1 slowly
increases in the beginning of the interval and it increases fast on the points
close to the value 1, approaching the value γ1 = 2

h .

Figure 9. Grapfics of value γ1
(formula (3.16)) depending on ξ.

β0 = 3.1406; h = 0.02.

Figure 10. The part of
Figure 9.

When in the differential problem (1.1)–(1.3) function f depends on the
solution u, we formulate the presumptions which the function f should satisfy.

Hypothesis 2. 0 ≤ ∂f
∂u ≤ β < ∞ for all u and (x, y) ∈ Ω.

Proposition 13. [28] If matrix A is an M-matrix and Hypothesis 2 is fulfilled
then the unique solution of problem (3.7) exists.

Convergence of iterative methods of the system (3.7) depends not only on the
matrix A, but also on the matrix A + D, where D is a diagonal matrix with

diagonal elements
∂fij(ũij)

∂uij
in some intermediate points ũij . We notice that

under the Hypothesis 2, matrix A+D also is an M-matrix. This follows from
the following properties of M-matrix.

Proposition 14. [36] If A is an M-matrix and D is a diagonal matrix with
the nonnegative elements, then A+D is an M-matrix.

Taken separately, this means that for all the eigenvalues of matrix A +D the
following property is true:

Reλ(A+D) > 0.
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So, when matrices A and A + D are M-matrices there are many conver-
gent explicit and implicit iterative methods for the system of equations (3.7),
considered in [10,28,35].

But when γ < 0, then matrix A is not an M-matrix. It only possesses a
property, that all the eigenvalues are positive. Thus, when all the eigenvalues
are positive and γ < 0, convergence of iterative methods for system (3.7)
remains as an open issue, at least, for the system of nonlinear equations. But
in the case of linear equation (1.1) (i.e., ∂f

∂u = const > 0), the positiveness of
all eigenvalues of matrix A is the sufficient condition for convergence of many
iterative methods [26, 35], including Peaceman-Rachford alternating direction
method [29].

4 Conclusions and comments

When we solve the elliptic or parabolic equations with nonlocal conditions by
the finite difference method, matrix of the system of difference equations very
often is an M-matrix. It is sufficiently good property of nonsymmetric matrix.
In the presence of this property it is possible in many cases to prove convergence
of finite difference method [11, 31], to analyse stability of difference schemes
and convergence of iterative methods for solution of the system of difference
equations [28,35].

In present paper basing on the investigation of spectrum structure of dif-
ference problem we obtained necessary and sufficient conditions for the matrix
of the system would be an M-matrix. Thus, we noticed and emphasized few
peculiarities of spectrum of difference eigenvalue problem characteristic for the
problems with nonlocal conditions.

One of these peculiarities appears when the presumption is ignored, that
solving the difference problem the step of the grid h should be sufficiently small
in comparison with the value of parameter γ. At this point we present short
comment. It is proved in [27] and in the present paper, that under some con-
nection between parameters γ and h the negative eigenvalue in the spectrum
of difference problem which is characteristic for differential problem could dis-
appear. This property of difference eigenvalue problem would be estimated
ambiguously. The matter is that when the negative eigenvalue is disappeared
from the spectrum the properties of the spectrum even get better. From the
other hand, as more properties of the differential problem are reflected in dif-
ference problem, as of better quality the approximation is. Such situation in
difference problem occurred when the nonlocal boundary conditions were being
investigated.

We present one more property of difference eigenvalue problem character-
istic for the problems with nonlocal conditions.

When differential problem is formulated with classical (Dirichlet or Neu-
mann type) boundary conditions, then usually there is no difference among
difference eigenvalue problem and matrix eigenvalue problem. In principle both
of these notions could be considered as synonymous.

But for the problems with nonlocal conditions this is not true. This depends
not only on the form of nonlocal conditions but also on the values of parameters
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(or functions) in the nonlocal condition. For difference eigenvalue problem
considered in the present paper the situation is similar when hγ = 2. When
value of h is fixed and value of the parameter γ gradually increasing approaches
to value of 2

h then negative eigenvalue approaches to −∞. And analogously,
when γ approaches to the value 2

h decreasing then one positive eigenvalue
indefinitely grows, i.e. approaches +∞, Thus, in other words, one eigenvalue
of difference eigenvalue problem in the point γ = 2

h has a discontinuity from
−∞ to +∞. Undoubtedly, there is no such analogous in the spectrum of matrix.
Simply, when hγ = 2 the difference eigenvalue problem is not equivalent to the
matrix eigenvalue problem.

By the investigation of difference eigenvalue problem and by the results of
this investigation we would like to emphasize that this problem with nonlocal
conditions is a separate object for investigation nonequivalent for the matrix
eigenvalue problem. Many properties and peculiarities of the spectrum of dif-
ference eigenvalue problem with other type of nonlocal conditions are analyzed
in [30]. Some examples are provided in that paper, where is demonstrated that
the number of eigenvalues could depend on the value of parameter in nonlocal
condition. Moreover, it could happen that spectrum of the difference eigenvalue
problem could be continuous or empty set.
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