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Abstract. The goal of the present paper is to study the viscoelastic wave equa-
tion with the time-varying delay under initial-boundary value conditions. By using
the multiplier method together with some properties of the convex functions, the ex-
plicit and general stability results of the total energy are proved under the general
assumption on the relaxation function g.
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1 Introduction

This paper investigates the following initial-boundary value problem with the
time-varying delay

|ut|ρutt −∆u−∆utt +
∫ t

0
g(t− s)∆u(s)ds

+µ1ut(x, t) + µ2ut(x, t− τ(t)) = b|u|p−2u, (x, t) ∈ Ω × (0,∞),

ut(x, t− τ(0)) = f0(x, t− τ(0)), (x, t) ∈ Ω × (0, τ(0)),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

u(x, t) = 0, (x, t) ∈ ∂Ω × [0,∞),

(1.1)
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where Ω ⊂ RN (N ≥ 1) is a bounded domain with a smooth boundary ∂Ω, the
unknown u := u(x, t) is a real valued function defined on Ω × (0,∞), ρ, b, µ1

are positive constants, µ2 is a real number, τ(t) represents the positive and
non-constant time delay, g is the kernel of the memory term, and the initial
data (u0, u1, f0) are given functions belonging to suitable spaces. In addition,
the following assumptions are imposed throughout this paper:

(H1) The relaxation function g : [0,∞) → (0,∞) is a differentiable function
satisfying

1−
∫ ∞

0

g(s)ds = l > 0, (1.2)

and there exists a C1 function G : (0,∞) → (0,∞) which is either linear or
strictly increasing and strictly convex C2 function on (0, r], r ≤ g(0), with
G(0) = G′(0) = 0 such that

g′(t) ≤ −ζ(t)G(g(t)) for t ≥ 0. (1.3)

Here ζ(t) is a positive non-increasing differentiable function.
(H2) ρ and p satisfy

0 < ρ ≤ 2

N − 2
for N ≥ 3 and ρ > 0 for N = 1, 2,

2 < p ≤ 2(N − 1)

N − 2
for N ≥ 3 and p > 2 for N = 1, 2.

(H3) The function τ ∈W 2,∞([0, T ]) for any T > 0, and there exists positive
constants τ0 and τ1 such that

0 < τ0 ≤ τ ≤ τ1 for t > 0 and τ ′(t) ≤ d < 1 for t > 0.

(H4) µ1 and µ2 satisfy |µ2| < 2(1−d)
2−d µ1.

It is well known that time delay effects which often appear in many practical
applications may induce some instabilities. Some results on the local existence
and blow-up of solutions to a class of equations with delay have been obtained,
the interested readers can refer to [5, 10, 11, 12, 22] and the reference therein.
Nicaise and Pignotti [19] considered the wave equation with a delay term in the
boundary condition as well as the wave equation with a delayed velocity term
and mixed Dirichlet-Neumann boundary condition in a bounded and smooth
domain, respectively. Introducing suitable energies and using some observabil-
ity inequalities, they proved an exponential stability of the solution in both
cases under suitable assumptions. Kirane and Said-Houari [13] studied the
following initial-boundary problem

utt −∆u+
∫ t

0
g(t− s)∆u(s)ds

+µ1ut(x, t) + µ2ut(x, t− τ) = 0, (x, t) ∈ Ω × (0,∞),

ut(x, t− τ) = f0(x, t− τ), (x, t) ∈ Ω × (0, τ),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

u(x, t) = 0, (x, t) ∈ ∂Ω × [0,∞),

(1.4)
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where µ1, µ2 are positive constants, τ > 0 represents the time delay. They
proved the existence of a unique weak solution for µ2 ≤ µ1 relying on the
Faedo-Galerkin approximations and some energy estimates. Provided that g :
R+ → R+ is a C1 function satisfying g(0) > 0 and (1.2), and there exists a
positive non-increasing differentiable function ζ(t) such that

g′(t) ≤ −ζ(t)g(t) for t ≥ 0 and

∫ +∞

0

ζ(t)dt = +∞, (1.5)

by establishing suitable Lyapunov functionals, they also obtained the corre-
sponding exponential stability for µ2 < µ1 and for µ2 = µ1, respectively. Sub-
sequently, Dai and Yang [6] proved an existence result of problem (1.4) without
restrictions of µ1, µ2 > 0 and µ2 ≤ µ1. Making full use of the viscoelastic-
ity term controls the delay term, they also proved an energy decay result for
problem (1.4) in the case µ1 = 0 provided that g : R+ → R+ is a C1 function
satisfying g(0) > 0 and (1.2), and there exists a positive constant ζ such that

g(t) ≤ −ζg(t) for t > 0. (1.6)

Liu [14] generalized the results obtained by Kirane and Said-Houari [13]. That
is, by the similar method in [13], they established a general energy decay re-
sult for problem (1.4) with τ(t) instead of τ . In the absence of the source
term b|u|p−2u and the time delay is constant in problem (1.1), Wu [21] proved
an energy decay by the similar method in [13], and generalized the results to
the time-varying delay in [23]. There are many papers concerning with the
stability of viscoelastic equations with time delay, the interested readers may
refer to [2, 7, 18] and the reference therein. However, the relaxation function g
are mainly limited to satisfying among the three conditions, which are (1.5),
(1.6) and that g : R+ → R+ is a differentiable function satisfying g(0) > 0
and (1.2), and there exists a positive function G ∈ C1(R+) and G is linear
or strictly increasing and strictly convex C2 function on (0, r], r < 1, with
G(0) = G′(0) = 0, such that g′(t) ≤ −G(g(t)) for t > 0. Until recently, Chel-
laoua and Boukhatem [3] generalized the previous conditions that the relax-
ation function g satisfied, specifically investigated the following second-order
abstract viscoelastic equation in Hilbert spaces

utt +Au−
∫ ∞

0

g(s)Bu(t− s)ds+ µ1ut(t) + µ2ut(t− τ) = 0,

where A : D(A) → H and B : D(B) → H are a self-adjoint linear positive
operator with domains D(A) ⊂ D(B) ⊂ H such that the embeddings are
dense and compact. They established an explicit and general decay results of
the energy solution by introducing a suitable Lyapunov functional and some
properties of the convex functions under the condition (H1). Chellaoua and
Boukhatem also addressed the stability results for the following second-order
abstract viscoelastic equation in Hilbert spaces with time-varying delay in [4]

utt +Au−
∫ t

0

g(t− s)Bu(s)ds+ µ1ut(t) + µ2ut(t− τ(t)) = 0

Math. Model. Anal., 28(1):23–41, 2023.
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under the condition (H1). It is worth pointing out that Mustafa [16] first
proposed the condition (H1) to study the decay rates for the following equation

utt −∆u+

∫ t

0

g(t− s)∆u(s)ds = 0.

After that, many authors popularized the method used by Mustafa in [16]. The
readers may see the references [1, 8, 9, 15,17] to get more details.

Motivated by the above works, we are committed to considering the sta-
bility of problem (1.1) when the relaxation function g satisfies the condition
(H1). To the best of our knowledge, there is no decay result for problem (1.1)
when the relaxation functions satisfy (H1), although Wu [22] has investigated
problem (1.1) with the constant time delay τ and proved the blow-up result
with nonpositive and positive initial energy. With minimal conditions on the
relaxation function g, the general and optimal energy decay rates of problem
(1.1) are established in Theorem 2. Our proof is based on the multiplier method
and the similar arguments in [4,16] but it is different from the previous presen-
tation since the presence of ∆utt and the external force source b|u|p−2u. Note
that the external force generally promotes the blow-up of the solution.

The outline of this paper is as follows: In Section 2, we give some preliminary
lemmas. Section 3 is used to present the energy decay (see Theorem 2) and its
proof.

2 Preliminaries

Throughout this paper, we denote by ∥·∥p and ∥∇·∥2 the norm on Lp(Ω) with

1 ≤ p ≤ ∞ and H1
0 (Ω), respectively. Let λ1 be the first eigenvalue of

−∆ψ = λψ, x ∈ Ω

with ψ = 0, x ∈ ∂Ω. The symbol cs is the optimal embedding constant of
H1

0 (Ω) ↪→ Lp(Ω).
Motivated by Nicaise and Pignotti [19,20], let us introduce the new variable

z(x, κ, t) = ut(x, t−τ(t)κ) for x ∈ Ω, κ ∈ (0, 1), then problem (1.1) is equivalent
to

|ut|ρutt −∆u−∆utt +
∫ t

0
g(t− s)∆u(s)ds

+µ1ut(x, t) + µ2z(x, 1, t) = b|u|p−2u, (x, t) ∈ Ω × (0,∞),

τ(t)zt(x, κ, t) + (1− κτ ′(t))zκ(x, κ, t) = 0, (x, t) ∈ Ω × (0,∞), κ ∈ (0, 1),

z(x, 0, t) = ut(x, t), (x, t) ∈ Ω × (0,∞),

z(x, κ, 0) = f0(x,−τ(0)κ), x ∈ Ω,

ut(x, t− τ(0)) = f0(x, t− τ(0)), (x, t) ∈ Ω × (0, τ(0)),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

u(x, t) = 0, (x, t) ∈ ∂Ω × [0,∞).

(2.1)
For the completeness of results, in what follows, we state the existence of the
solution without proof. In fact, the proof is easy by following Nicaise and
Pignotti [19, 20].
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Theorem 1. Let (H1) − (H4) hold. Assume that u0, u1 ∈ H1
0 (Ω) and f0 ∈

L2(Ω × (0, 1)), then there exists a unique solution (u, z) of problem (2.1) sat-
isfying u, ut ∈ C([0, T );H1

0 (Ω)), z ∈ C([0, T );L2(Ω × (0, 1))), for T > 0.

Remark 1. For |µ2| = 2(1−d)
2−d µ1, the above existence theorem still hold. How-

ever, the stability of the energy only is given under |µ2| < 2(1−d)
2−d µ1.

Define the energy functional of problem (2.1) as follows

E(t) =
1

ρ+ 2
∥ut∥ρ+2

ρ+2 +
1

2

(
1−

∫ t

0

g(s)ds
)
∥∇u∥22 +

1

2
(g ◦ ∇u)(t)

+
1

2
∥∇ut∥22 +

ξ

2
τ(t)

∫
Ω

∫ 1

0

z2(x, κ, t)dκdx− b

p
∥u∥pp ,

(2.2)

where ξ satisfies |µ2|
1−d ≤ ξ ≤ 2µ1−|µ2|, (g ◦u)(t) =

∫ t

0
g(t−s) ∥u(s)− u(t)∥22 ds.

Lemma 1. The total energy E(t) is a non-increasing function and

E′(t) ≤ −ω(∥ut∥22 + ∥z(x, 1, t)∥22) +
1

2
(g′ ◦ ∇u)(t)− 1

2
g(t) ∥∇u∥22

≤ −ω(∥ut∥22 + ∥z(x, 1, t)∥22) ≤ 0 for all t ≥ 0,

(2.3)

where ω = min
{
− |µ2|

2 + µ1 − ξ
2 ,−

|µ2|
2 + ξ(1−d)

2

}
≥ 0.

Proof. This proof is similar to [4, Lemma 2.5]. For convenience, let us give
our proof. Multiplying (2.1)1 by ut, and then integrating over Ω, we get

d

dt

[ 1

ρ+ 2
∥ut∥ρ+2

+
1

2

(
1−

∫ t

0

g(s)ds
)
∥∇u∥22 + ∥∇ut∥22 + (g ◦ ∇u)(t)− b

p
∥u∥pp

]
− 1

2
(g′ ◦ ∇u)(t) + 1

2
g(t) ∥∇u(t)∥22 + µ1 ∥ut∥22 + µ2z(x, 1, t)ut = 0. (2.4)

Here we have used∫ t

0

g(t−s)
∫
Ω

∇u(s)∇ut(t)dxds = −1

2

∫ t

0

g(t−s)
(
d

dt
∥∇u(s)−∇u(t)∥22

)
ds

+
1

2

∫ t

0

g(s)

(
d

dt
∥∇u(t)∥22

)
ds = −1

2

d

dt
(g ◦ ∇u)(t)

+
1

2
(g′ ◦ ∇u)(t) + 1

2

d

dt

∫ t

0

g(s) ∥∇u(t)∥22 ds−
1

2
g(t) ∥∇u(t)∥22 .

Multiplying (2.1)2 by ξz(x, κ, t), integrating over Ω, and then integrating over
(0, 1) with respect to κ, one obtains

τ(t)ξ

2

∫ 1

0

∂

∂t
∥z(x, κ, t)∥22 dκ+

(1− κτ ′(t))ξ

2

∫ 1

0

∂

∂κ
∥z(x, κ, t)∥22 dκ = 0.

As a consequence, we have

d

dt

(τ(t)ξ
2

∫ 1

0

∂

∂t
∥z(x, κ, t)∥22 dκ

)
=
ξ

2

[
∥ut∥22 −(1− τ ′(t)) ∥z(x, 1, t)∥22

]
. (2.5)

Math. Model. Anal., 28(1):23–41, 2023.
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Combining (2.4) with (2.5), and using Cauchy’s inequality and (H3), it follows
that

E′(t) =
1

2
(g′ ◦ ∇u)(t)− 1

2
g(t) ∥∇u(t)∥22 +

( |µ2|
2

− µ1 +
ξ

2

)
∥ut∥22

+
( |µ2|

2
− ξ(1− d)

2

)
∥z(x, 1, t)∥22 .

⊓⊔

Lemma 2. If u is a solution for problem (2.1) and E(0) < E1 = p−2
2p σ

2
1 ,

l ∥∇u0∥22 < σ2
1 , here σ1 = b−

1
p−2B

− p
p−2

1 , B1 = cpsl
− p

2 , then there exists a positive
constant σ2 satisfying 0 < σ2 < σ1 such that

l ∥∇u∥22 + (g ◦ ∇u)(t) ≤ σ2
2 for all t ≥ 0. (2.6)

Proof. Taking the combination of equations (2.2) and (1.2) with the embed-
ding H1

0 (Ω) ↪→ Lp(Ω), one has

E(t) ≥ F
(√

l ∥∇u∥22 + (g ◦ ∇u)(t)
)
, (2.7)

where F (x) = 1
2x

2 − bBp
1

p xp for x > 0. We know that F is strictly increasing

in (0, σ1), strictly decreasing in (σ1,∞), and F has a maximum at σ1 with
the maximum value E1. Since E(0) < E1, there exists a σ2 < σ1 such that

F (σ2) = E(0). Set σ0 :=
√
l ∥∇u0∥22, recall (2.7), then F (σ0) ≤ E(0) = F (σ2),

which implies σ0 ≤ σ2 due to the given condition σ2
0 < σ2

1 . To complete the
proof of (2.6), we suppose by contradiction that for some t0 > 0,

σ(t0) =

√
l ∥∇u(t0)∥22 + (g ◦ ∇u)(t0) > σ2.

The continuity of
√
l ∥∇u∥22 + (g ◦ ∇u)(t) illustrates that we may choose t0

such that σ1 > σ(t0) > σ2, then we have E(0) = F (σ2) < F (σ(t0)) ≤ E(t0).
This is a contradiction because of Lemma 1. ⊓⊔

Lemma 3. Under all the conditions of Lemma 2, there exists a positive con-
stant D such that for all t ≥ 0,

∥u∥pp ≤ DE(t) ≤ DE(0), (2.8)

1

ρ+ 2
∥ut∥ρ+2

ρ+2 +
1

2

(
1−

∫ t

0

g(s)ds
)
∥∇u∥22 +

1

2
(g ◦ ∇u)(t) + 1

2
∥∇ut∥22

+
ξτ(t)

2

∫
Ω

∫ 1

0

z2(x, κ, t)dκdx ≤ DE(t) ≤ DE(0). (2.9)
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Proof. Using the embedding H1
0 (Ω) ↪→ Lp(Ω), (2.2) and (2.6), we have

b

p
∥u∥pp ≤ bBp

1

p

(
l ∥∇u∥22 + (g ◦ ∇u)(t)

) p−2
2

[l ∥∇u∥22 + (g ◦ ∇u)(t)]

≤ 2bBp
1

p

(
l ∥∇u∥22 + (g ◦ ∇u)(t)

) p−2
2
(
E(t) +

b

p
∥u∥pp

)
≤ 2bBp

1

p
σp−2
2

(
E(t) +

b

p
∥u∥pp

)
,

which yields (2.8) with D =
2pBp

1σ
p−2
2

p−2bBp
1σ

p−2
2

> 0. One has (2.9) by combining (2.8)

with (2.2). ⊓⊔

Lemma 4 [Lemma 4.1 in [1]]. For u ∈ H1
0 (Ω), we have for all t ≥ 0,∫

Ω

(∫ t

0

g(t− s)(∇u(s)−∇u(t))ds
)2

dx ≤ Cα(hα ◦ ∇u)(t) (2.10)

where, for any 0 < α < 1,

Cα =

∫ ∞

0

g2(s)

αg(s)− g′(s)
ds and hα(t) = αg(t)− g′(t). (2.11)

Let us follow from the proof of Lemma 4.1 in [1], we have in fact∫
Ω

(∫ t

0

g(t− s)(u(s)− u(t))ds
)2

dx ≤ Cα(hα ◦ u)(t). (2.12)

Lemma 5 [Lemma 2.2 in [4]]. There exist positive constants γ and t1 such
that

g′(t) ≤ −γg(t) for t ∈ [0, t1]. (2.13)

Lemma 6. Let u be a solution of problem (2.1), then the functional

I1(t) =
1

ρ+ 1

∫
Ω

|ut|ρutudx+

∫
Ω

∇ut∇udx, (2.14)

satisfies, for ε > 0 and for all t ≥ 0,

I ′1(t) ≤
1

ρ+ 1
∥ut∥ρ+2

ρ+2 −
[
l −

(
1 +

µ1

λ1
+
µ2

λ1

)
ε
]
∥∇u∥22 (2.15)

+
1

4ε
Cα(hα ◦ ∇u)(t) + |µ2|

4ε
∥z(x, 1, t)∥22 + b ∥u∥pp + ∥∇ut∥22 +

µ1

4ε
∥ut∥22 .

Proof. Multiplying (2.1)1 by u, integrating on x over Ω, and then using inte-
gration by parts, we give∫

Ω

|ut|ρuttudx+
∫
Ω

∇utt∇udx=−
(
1−

∫ t

0

g(s)ds
)
∥∇u∥22 +

∫
Ω

∇u(t)
∫ t

0

g(t−s)

×∇(u(s)−u(t))ds−
∫
Ω

µ1ut(x, t)udx−
∫
Ω

µ2z(x, 1, t)udx+b ∥u∥pp . (2.16)

Math. Model. Anal., 28(1):23–41, 2023.
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Differentiating (2.14) on t, and using (2.16), one has

I ′1(t) =
1

ρ+ 1
∥ut∥ρ+2

ρ+2 +

∫
Ω

|ut|ρuttudx+

∫
Ω

∇utt∇udx+ ∥∇ut∥22

= −
(
1−

∫ t

0

g(s)ds
)
∥∇u∥22 +

∫
Ω

∇u(t)
∫ t

0

g(t− s)∇(u(s)− u(t))ds (2.17)

+
1

ρ+ 1
∥ut∥ρ+2

ρ+2 −
∫
Ω

µ1ut(x, t)udx−
∫
Ω

µ2z(x, 1, t)udx+ b ∥u∥pp + ∥∇ut∥22 .

Applying Cauchy’s inequality with ε > 0 and λ1 ∥u∥22 ≤ ∥∇u∥22, it follows that

−
∫
Ω

µ1ut(x, t)udx ≤ µ1

4ε
∥ut∥22 + µ1ε ∥u∥22 ≤ µ1

4ε
∥ut∥22 +

µ1ε

λ1
∥∇u∥22 ,

−
∫
Ω

µ2z(x, 1, t)udx ≤ |µ2|
4ε

∥z(x, 1, t)∥22 +
|µ2|ε
λ1

∥∇u∥22 . (2.18)

It follows from Cauchy’s inequality with ε > 0 and (2.10) that∫
Ω

∇u(t)
∫ t

0

g(t− s)(∇u(s)−∇u(t))ds ≤ ε ∥∇u∥22 +
1

4ε
Cα(h ◦∇u)(t). (2.19)

Inserting (2.18)–(2.19) into (2.17), we obtain (2.15). ⊓⊔

Lemma 7. Under all the conditions of Lemma 2, let u be a solution of problem
(2.1), then the functional

I2(t) =

∫
Ω

(
∆ut −

1

ρ+ 1
|ut|ρut

)∫ t

0

g(t− s)(u(t)− u(s))dsdx, (2.20)

satisfies, for δ > 0 and for all t ≥ 0,

I ′2(t) ≤ B1 ∥∇u∥22 +B2(hα ◦ ∇u)(t) +
[
B3 −

∫ t

0

g(s)ds
]
∥∇ut∥22

+ δ ∥z(x, 1, t)∥22 −
∫ t

0

g(s)ds · 1

ρ+ 1
∥ut∥ρ+2

ρ+2 , (2.21)

here B1, B2 and B3 are positive constants depending on δ shown in (2.25).

Proof. Differentiating (2.20) on t, and using (2.1)1 and integration by parts
yield

I ′2(t) =

∫
Ω

∇u(t)
∫ t

0

g(t− s)∇(u(t)− u(s))ds

−
∫
Ω

∫ t

0

g(t− s)∇u(s)ds
∫ t

0

g(t− s)∇(u(t)− u(s))dsdx

+

∫
Ω

µ1ut(x, t)

∫ t

0

g(t− s)(u(t)− u(s))dsdx
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+

∫
Ω

µ2z(x, 1, t)

∫ t

0

g(t− s)(u(t)− u(s))dsdx− b

∫
Ω

|u|p−2u

×
∫ t

0

g(t−s)(u(t)−u(s))dsdx−
∫
Ω

∇ut
∫ t

0

gt(t− s)∇(u(t)− u(s))dsdx

−
∫
Ω

1

ρ+ 1
|ut|ρut

∫ t

0

gt(t− s)(u(t)− u(s))dsdx

−
∫ t

0

g(s)ds · ∥∇ut∥22 −
∫ t

0

g(s)ds · 1

ρ+ 1
∥ut∥ρ+2

ρ+2 (2.22)

= J1 + J2 + · · ·+ J8 + J9.

It is direct from Cauchy’s inequality with δ > 0 and (2.10) that

J1 ≤ δ ∥∇u∥22 +
1

4δ
Cα(hα ◦ ∇u)(t),

J2 ≤ 2δ

∫
Ω

(∫ t

0

g(t− s)|∇u(s)−∇u(t)|ds
)2

dx+ 2δ(1− l)2 ∥∇u(t)∥22

+
1

4δ

∫
Ω

(∫ t

0

g(t− s)|∇u(s)−∇u(t)|ds
)2

dx

≤
(
2δ +

1

4δ

)
Cα(hα ◦ ∇u)(t) + 2δ(1− l)2 ∥∇u∥22 . (2.23)

Cauchy’s inequality with δ > 0 and (2.12) yield

J3 ≤δ ∥ut∥22 +
µ2
1

4δ
Cα(hα ◦ u)(t) ≤ δ

λ1
∥∇ut∥22 +

µ2
1

4δλ1
Cα(hα ◦ ∇u)(t),

J4 ≤δ ∥z(x, 1, t)∥22 +
µ2
2

4δλ1
Cα(hα ◦ ∇u)(t).

It follows from Cauchy’s inequality with δ > 0, (2.12), the embeddingH1
0 (Ω) ↪→

L2(p−1)(Ω) and (2.9) that

J5 ≤ bδ ∥u∥2(p−1)
2(p−1) +

b

4δ

∫
Ω

(∫ t

0

g(t− s)(u(t)− u(s))ds
)2

dx

≤ bδ ∥u∥2(p−1)
2(p−1) +

b

4δ
Cα(hα ◦ u)(t)

≤ bδc2(p−1)
s

(2D
l
E(0)

)p−2

∥∇u∥22 +
b

4δλ1
Cα(hα ◦ ∇u)(t).

Recalling the definition of g′(t) in (2.11), and using Cauchy’s inequality with
δ > 0, (2.10) and Hölder’s inequality, one obtains

J6 = −
∫
Ω

∇ut
∫ t

0

αg(t− s)∇(u(t)− u(s))dsdx

+

∫
Ω

∇ut
∫ t

0

hα(t− s)∇(u(t)− u(s))dsdx

≤ δ ∥∇ut∥22 +
α2

4δ

∫
Ω

(∫ t

0

g(t− s)∇(u(t)− u(s))ds
)2

dx
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+ δ ∥∇ut∥22 +
1

4δ

∫
Ω

(∫ t

0

hα(t−s)∇(u(t)− u(s))ds
)2

dx ≤ 2δ ∥∇ut∥22

+
α2

4δ
Cα(hα ◦ ∇u)(t)+ 1

4δ

∫ t

0

hα(s)ds

∫ t

0

hα(t−s) ∥∇(u(t)−u(s))∥22 ds

≤ 2δ ∥∇ut∥22 +
(α2

4δ
Cα +

α(1− l) + g(0)

4δ

)
(hα ◦ ∇u)(t).

Similarly, we get

J7 = −
∫
Ω

1

ρ+ 1
|ut|ρut

∫ t

0

αg(t− s)(u(t)− u(s))dsdx

+

∫
Ω

1

ρ+ 1
|ut|ρut

∫ t

0

hα(t− s)(u(t)− u(s))dsdx

≤ δ

ρ+ 1
∥ut∥2(ρ+1)

2(ρ+1) +
α2

4(ρ+ 1)δ

∫
Ω

(∫ t

0

g(t− s)(u(t)− u(s))ds
)2

dx

+
δ

ρ+ 1
∥ut∥2(ρ+1)

2(ρ+1) +
1

4(ρ+ 1)δ

∫
Ω

(∫ t

0

hα(t− s)(u(t)− u(s))ds
)2

dx

≤ 2δ

ρ+ 1
∥ut∥2(ρ+1)

2(ρ+1) +
α2

4(ρ+ 1)δ
Cα(hα ◦ u)(t) + 1

4(ρ+ 1)δ

∫ t

0

hα(s)ds

×
∫ t

0

hα(t− s) ∥u(t)− u(s)∥22 ds ≤
2δ

ρ+ 1
c2(ρ+1)
s

(
2DE(0)

) ρ
2 ∥∇ut∥22

+
( α2

4(ρ+ 1)δ
Cα +

α(1− l) + g(0)

4(ρ+ 1)δ

) 1

λ1
(hα ◦ ∇u)(t). (2.24)

Inserting (2.23)–(2.24) into (2.22), one has

I ′2(t) ≤ B1 ∥∇u∥22 +B2(hα ◦ ∇u)(t) +
[
B3 −

∫ t

0

g(s)ds
]
∥∇ut∥22

+ δ ∥z(x, 1, t)∥22 −
∫ t

0

g(s)ds · 1

ρ+ 1
∥ut∥ρ+2

ρ+2 ,

with 

B1 = δ + 2δ(1− l)2 + bδc
2(p−1)
s

(
2D
l E(0)

)p−2

;

B2 =
[

1
2δ + 2δ +

µ2
1

4δλ1
+

µ2
2

4δλ1
+ b

4δλ1
+ α2

4δ + α2

4(ρ+1)δλ1

]
Cα

+α(1−l)+g(0)
4δ + α(1−l)+g(0)

4(ρ+1)δλ1
;

B3 = δ
λ1

+ 2δ + 2δ
ρ+1c

2(ρ+1)
s

(
2DE(0)

) ρ
2

.

(2.25)

⊓⊔

Lemma 8 [Lemma 2.8 in [4]]. The functional

I3(t) =

∫ 1

0

e−2τ(t)κ ∥z(x, κ, t)∥22 dκ
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satisfies for all t ≥ 0,

I ′3(t) = −2I3(t) +
1

τ0
∥ut∥22 −

(1− d)e−2τ1

τ1
∥z(x, 1, t)∥22 . (2.26)

Lemma 9 [Lemma 3.4 in [16]]. The functional

I4(t) =

∫ t

0

f(t− s) ∥∇u(s)∥22 ds (2.27)

satisfies for all t ≥ 0,

I ′4(t) ≤ 3(1− l) ∥∇u∥22 −
1

2
(g ◦ ∇u)(t), (2.28)

where f(t) =
∫∞
t
g(s)ds.

3 Stability results

In this section, we will present and prove the decay results of the energy func-
tional E(t) based on the lemmas in Section 2. To begin with, we define a
functional

L(t) =ME(t) +

3∑
i=1

NiIi(t), (3.1)

where M, N1, N2, N3 are positive constants. The following lemma is shown
to illustrate that L(t) is equivalent to E(t).

Lemma 10. Under all the conditions of Lemma 2, assume that M is enough
large, then there exist two positive constants β1 and β2 such that

β1E(t) ≤ L(t) ≤ β2E(t).

Proof. Recalling the definition of I1(t) in (2.14), using Young’s inequality and
Cauchy’s inequality, and then applying the embedding H1

0 (Ω) ↪→ Lρ+2(Ω) and
(2.9), it is not hard to give

|I1(t)| ≤
1

ρ+ 2
∥ut∥ρ+2

ρ+2 +
1

(ρ+ 1)(ρ+ 2)
∥u∥ρ+2

ρ+2 +
1

2
∥∇ut∥22 +

1

2
∥∇u∥22

≤ 1

ρ+ 2
∥ut∥ρ+2

ρ+2 +
[ cρ+2

s

(ρ+ 1)(ρ+ 2)

(2D
l
E(0)

) ρ
2

+
1

2

]
∥∇u∥22 +

1

2
∥∇ut∥22 .

Recalling the definition of I2(t) in (2.20), using integration by parts, Cauchy’s
inequality, Young’s inequality and Hölder’s inequality, we give

|I2(t)| ≤
1

2
∥∇ut∥22 +

1

2

∫
Ω

(∫ t

0

g(t− s)(∇u(t)−∇u(s))ds
)2

dx

+
1

ρ+ 2
∥ut∥ρ+2

ρ+2 +
1

(ρ+ 1)(ρ+ 2)

∫
Ω

(∫ t

0

g(t− s)(u(t)− u(s))ds
)ρ+2

dx

≤ 1

2
∥∇ut∥22 +

1− l

2
(g ◦ ∇u)(t) + 1

ρ+ 2
∥ut∥ρ+2

ρ+2

+
1

(ρ+ 1)(ρ+ 2)
(1− l)ρ+1cρ+2

s

(2D
l
E(0)

) ρ
2

(g ◦ ∇u)(t),
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where we have used∫
Ω

(∫ t

0

g(t− s)(u(t)− u(s))ds
)ρ+2

dx

≤
∫
Ω

(∫ t

0

(g(t− s))
ρ+1
ρ+2 (g(t− s))

1
ρ+2 (u(t)− u(s))ds

)ρ+2

dx

≤
(∫ t

0

g(s)ds
)ρ+1

∫ t

0

g(t− s) ∥u(t)− u(s))∥ρ+2
ρ+2 ds

≤ (1− l)ρ+1cρ+2
s

∫ t

0

g(t− s) ∥∇u(t)−∇u(s))∥ρ+2
2 ds

≤ (1− l)ρ+1cρ+2
s

(2D
l
E(0)

) ρ
2

(g ◦ ∇u)(t).

Therefore, it follows from (2.9) that

|L(t)−ME(t)| =

∣∣∣∣∣
3∑

i=1

NiIi(t)

∣∣∣∣∣ ≤ CE(t),

where C is some positive constant. ⊓⊔

Lemma 11. Under all the conditions of Lemma 2, the functional L(t) defined
in (3.1) satisfies, for t ≥ t1

L′(t) ≤ −C1 ∥ut∥ρ+2
ρ+2 − C2 ∥∇ut∥22 − 4(1− l) ∥∇u∥22

+N1b ∥u∥pp +
1

4
(g ◦ ∇u)(t)− 2N3

∫ 1

0

e−2τ(t)κ ∥z(x, κ, t)∥22 dκ. (3.2)

where C1, C2 are positive constants given in (3.4).

Proof. Taking the combination of (2.3), (2.15) and (2.21) with (2.26), recalling

(2.11), and applying g1 =
∫ t1
0
g(s)ds ≤

∫ t

0
g(s)ds for t ≥ t1, one has

L′(t) ≤ −Mω(∥ut∥22 + ∥z(x, 1, t)∥22) +
M

2
(g′ ◦ ∇u)(t)− M

2
g(t) ∥∇u∥22 (3.3)

+
N1

ρ+ 1
∥ut∥ρ+2

ρ+2 −N1

[
l −

(
1 +

µ1

λ1
+
µ2

λ1

)
ε
]
∥∇u∥22 +

N1

4ε
Cα(hα ◦ ∇u)(t)

+
N1|µ2|
4ε

∥z(x, 1, t)∥22 +N1b ∥u∥pp +N1 ∥∇ut∥22 +N1
µ1

4ε
∥ut∥22

+N2B1 ∥∇u∥22 +N2B2(hα ◦ ∇u)(t) +N2

[
B3 −

∫ t

0

g(s)ds
]
∥∇ut∥22

+N2δ ∥z(x, 1, t)∥22 −N2

∫ t

0

g(s)ds · 1

ρ+ 1
∥ut∥ρ+2

ρ+2

− 2N3I3(t) +
N3

τ0
∥ut∥22 −

N3(1− d)e−2τ1

τ1
∥z(x, 1, t)∥22

≤ −C1 ∥ut∥ρ+2
ρ+2 − C2 ∥∇ut∥22 − C3 ∥∇u∥22 − C4 ∥z(x, 1, t)∥22 − C5(hα ◦ ∇u)(t)



Asymptotic Stability for a Viscoelastic Equation 35

+N1b ∥u∥pp +
αM

2
(g ◦ ∇u)(t)− C6 ∥ut∥22 − 2N3

∫ 1

0

e−2τ(t)κ ∥z(x, κ, t)∥22 dκ

with

C1 = N2g1 · 1
ρ+1 − N1

ρ+1 ;

C2 = N2

[
g1 −

(
δ
λ1

+ 2δ + 2δ
ρ+1c

2(ρ+1)
s

(
2DE(0)

) ρ
2
)]

−N1;

C3=N1

[
l−

(
1+µ1

λ1
+ |µ2|

λ1

)
ε
]
−N2

[
δ+2δ(1−l)2+bδc2(p−1)

s

(
2D
l E(0)

)p−2]
;

C4 = ωM + N3(1−d)e−2τ1

τ1
−N1

|µ2|
4ε −N2δ;

C5=
M
2 −N1

1
4εCα−N2

[(
1
2δ+2δ+

µ2
1

4δλ1
+

µ2
2

4δλ1
+ b

4δλ1
+α2

4δ+
α2

4(ρ+1)δλ1

)
Cα

+α(1−l)+g(0)
4δ + α(1−l)+g(0)

4(ρ+1)δλ1

]
;

C6 = ωM − N3

τ0
−N1

µ1

4ε ,

(3.4)
where we have used the values of B1, B2 and B3 defined in (2.25).

Next, we choose δ such that

δ <

{
lg1

16
[
1 + 2(1− l)2 + bc

2(p−1)
s

(
2D
l E(0)

)p−2] , lg1
1024(1− l)2

,

5

8
g1
/( 1

λ1
+ 2 +

2

ρ+ 1
c2(ρ+1)
s

(
2DE(0)

) ρ
2
)}

.

Let us choose N1 = 3
8g1N2, then

C1 = N2g1 ·
1

ρ+ 1
− 3

8
g1N2

1

ρ+ 1
=

5

8
g1N2

1

ρ+ 1
> 0, C2 > 0.

Let us fix ε = 3l
4

1

1+
µ1
λ1

+
|µ2|
λ1

, then

C3 =
N1l

4
−N2

[
δ + 2δ(1− l)2 + bδc2(p−1)

s

(2D
l
E(0)

)p−2]
>

l

32
g1N2 > 0.

By taking N2 = 1
8δ(1−l) , we get C3 >

l
32g1N2 = lg1

256δ(1−l) > 4(1− l).

Since g′(s) ≤ 0, one has αg2(s)
αg(s)−g′(s) ≤ g(s), further we get

lim
α→0+

αCα = lim
α→0+

∫ ∞

0

αg2(s)

αg(s)− g′(s)
ds = 0.

Thus, there exists 0 < α0 < 1 so that if α < α0, then

αCα <
1

8
[
N2

(
1
2δ + 2δ +

µ2
1

4δλ1
+

µ2
2

4δλ1
+ b

4δλ1
+ α2

4δ + α2

4(ρ+1)δλ1

)
+N1

1
4ε

] .
Let us choose M sufficiently large such that for α = 1

2M ,

C5 =
M

4
−N2

[α(1− l) + g(0)

4δ
+
α(1− l) + g(0)

4(ρ+ 1)δλ1

]
> 0,
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C4 = ωM +
N3(1− d)e−2τ1

τ1
−N1

|µ2|
4ε

−N2δ > 0, C6 = ωM − N3

τ0
−N1

µ1

4ε
> 0.

Here we have used ω > 0 given in Lemma 1 based on the condition (H4).
Based on the above discussion, one has from (3.3)

L′(t) ≤ −C1 ∥ut∥ρ+2
ρ+2 − C2 ∥∇ut∥22 − 4(1− l) ∥∇u∥22

+N1b ∥u∥pp +
1

4
(g ◦ ∇u)(t)− 2N3

∫ 1

0

e−2τ(t)κ ∥z(x, κ, t)∥22 dκ.

⊓⊔

Now, we give the following stability results.

Theorem 2. Let (H1)− (H4) hold, and E(0) < E1, l ∥∇u0∥22 < σ2
1, then there

exist positive constants k1, k2, k3 and k4 such that the solution of problem
(1.1) satisfies for all t ≥ t1,

E(t) ≤

{
k1e

−k2

∫ t
t1

ζ(s)ds
for G is linear;

k4G
−1
1

(
k3

∫ t

t1
ζ(s)ds

)
for G is nonlinear,

where E1 and σ1 are shown in Lemma 2, G1(t) =
∫ r

t
1

sG′(s)ds is strictly de-

creasing and convex in (0, r] with limt→0G1(t) = +∞.

Proof. Using (2.13) and (2.3), one has, for t ≥ t1,∫ t1

0

g(s) ∥∇u(t)−∇u(t− s)∥22 ds

≤ − 1

γ

∫ t1

0

g′(s) ∥∇u(t)−∇u(t− s)∥22 ds ≤ −cE′(t). (3.5)

Here c is used to denote a generic positive constant throughout this proof.
Define a functional F (t) that is obviously equivalent to E(t) as follows

F (t) = L(t) + cE(t),

then based on (3.2), (2.2), (3.5), for some m > 0 and for any t ≥ t1, we have

F ′(t) ≤ −C1 ∥ut∥ρ+2
ρ+2 − C2 ∥∇ut∥22 − 4(1− l) ∥∇u∥22

+N1b ∥u∥pp +
1

4
(g ◦ ∇u)(t)− 2N3

∫ 1

0

e−2τ(t)κ ∥z(x, κ, t)∥22 dκ+ cE′(t)

≤ −mE(t)−
(bc
p

−N1b
)
∥u∥pp + c(g ◦ ∇u)(t) + cE′(t)

≤ −mE(t) + c

∫ t

t1

g(s) ∥∇u(t)−∇u(t− s)∥22 ds, (3.6)

where we have chosen N1 so small that bc/p−N1b > 0.
In what follows, we will discuss in two cases.
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Case 1: G is linear. Multiplying (3.6) by ζ(t), using (H1) and (2.3), one
gives

ζ(t)F ′(t) ≤ −mζ(t)E(t) + cζ(t)

∫ t

t1

g(s) ∥∇u(t)−∇u(t− s)∥22 ds

≤ −mζ(t)E(t)− c

∫ t

t1

g′(s) ∥∇u(t)−∇u(t−s)∥22 ds ≤ −mζ(t)E(t)− cE′(t),

which implies

(ζ(t)F (t) + cE(t))′ ≤ −mζ(t)E(t) for t ≥ t1.

Integrating the above inequality over (t1, t), and using the fact that ζ(t)F (t)+
cE(t) is equivalent to E(t), one has

E(t) ≤ k1e
−k2

∫ t
t1

ζ(s)ds
for t ≥ t1,

where k1 and k2 are constants Case 2: G is nonlinear. Define a functional
H(t) = L(t) + I4(t). Taking the combination of Lemma 10 and the non-
negativity of E(t) obtained by Lemma 3 with the definition of I4(t) in (2.27),
it is not difficult to get the non-negativity of H(t). It follows from (3.2) and
(2.28) that for some m1 > 0 and t ≥ t1,

H ′(t) = L′(t) + I ′4(t) ≤ −C1 ∥ut∥ρ+2
ρ+2 − C2 ∥∇ut∥22 − (1− l) ∥∇u∥22

+N1b ∥u∥pp −
1

4
(g ◦ ∇u)(t)− 2N3

∫ 1

0

e−2τ(t)κ ∥z(x, κ, t)∥22 dκ ≤ −m1E(t).

Integrating the above inequality over (t1, t) yields

m1

∫ t

t1

E(s)ds ≤ H(t1)−H(t) ≤ H(t1),

which implies ∫ ∞

0

E(s)ds < +∞.

Define

λ(t) = p

∫ t

t1

∥∇u(t)−∇u(t− s)∥22 ds,

by using (2.9), then we give

λ(t) ≤ 2p

∫ t

0

(
∥∇u(t)∥22 + ∥∇u(t−s)∥22

)
ds ≤ 8pD

l

∫ t

0

(
E(t) + E(t− s)

)
ds

≤ 16pD
l

∫ t

0

E(t− s)ds =
16pD
l

∫ t

0

E(s)ds ≤
∫ ∞

0

E(s)ds < +∞.

Thus, we can choose p so small that for t ≥ t1,

λ(t) < 1. (3.7)
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It is direct that

G(θz) ≤ θG(z) for 0 ≤ θ ≤ 1 and z ∈ (0, r], (3.8)

since G is strictly convex on (0, r] and G(0) = 0. Based on (1.3), (3.7), (3.8)
and Jensen’s inequality, one gives

I(t)=
1

pλ(t)

∫ t

t1

λ(t)(−g′(s))p ∥∇u(t)−∇u(t−s)∥22 ds≥
1

pλ(t)

∫ t

t1

λ(t)ζ(s)G(g(s))

× p ∥∇u(t)−∇u(t−s)∥22 ds ≥
ζ(t)

pλ(t)

∫ t

t1

G(λ(t)g(s))p ∥∇u(t)−∇u(t−s)∥22 ds

≥ ζ(t)

p
G
(
p

∫ t

t1

g(s) ∥∇u(t)−∇u(t− s)∥22 ds
)
,

which yields ∫ t

t1

g(s) ∥∇u(t)−∇u(t− s)∥22 ds ≤
1

p
G

−1
(pI(t)
ζ(t)

)
,

where G has an extension G which is a strictly increasing and strictly convex
C2 function on (0,+∞) [4, Remark 2.1]. Therefore, (3.6) becomes

F ′(t) ≤ −mE(t) +
c

p
G

−1
(pI(t)
ζ(t)

)
. (3.9)

Let us define the functional

F1(t) = G
′(
r1E(t)/E(0)

)
F (t) + E(t)

with 0 < r1 < r, then F1 is equivalent to E and

F ′
1(t) =

r1E
′(t)

E(0)
G

′′(r1E(t)

E(0)

)
F (t) +G

′(r1E(t)

E(0)

)
F ′(t) + E′(t)

≤ −mE(t)G
′(r1E(t)

E(0)

)
+
c

p
G

−1
(pI(t)
ζ(t)

)
G

′(r1E(t)

E(0)

)
+ E′(t)

(3.10)

by using (3.9), (2.3), G′ > 0 and G′′ > 0. Let G
∗
be the convex conjugate of

G in the sense of Young, which is given by

G
∗
(s) = s(G

′
)−1(s)−G

[
(G

′
)−1(s)

]
(3.11)

and it satisfies the following Young’s inequality

AB ≤ G
∗
(A) +G(B). (3.12)

Choosing

A = G
′(
r1E(t)/E(0)

)
and B = G

−1(
pI(t)/ζ(t)

)
,

then using (3.12), (3.11) and the non-negativity of G, (3.10) becomes

F ′
1(t) ≤ −mE(t)G

′(r1E(t)

E(0)

)
+
c

p
G

−1
(pI(t)
ζ(t)

)
G

′(r1E(t)

E(0)

)
+ E′(t)
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≤ −mE(t)G
′(r1E(t)

E(0)

)
+
c

p
G

∗(
G

′(r1E(t)

E(0)

))
+ c

I(t)

ζ(t)
+ E′(t)

≤ −mE(t)G
′(r1E(t)

E(0)

)
+
c

p

r1E(t)

E(0)
G

′(r1E(t)

E(0)

)
−G

(r1E(t)

E(0)

)
+c

I(t)

ζ(t)
+E′(t)

≤ −mE(t)G
′(r1E(t)

E(0)

)
+
c

p

r1E(t)

E(0)
G

′(r1E(t)

E(0)

)
+ c

I(t)

ζ(t)
+ E′(t). (3.13)

Note that (2.3) implies

I(t) ≤
∫ t

t1

−g′(s) ∥∇u(t)−∇u(t− s)∥22 ds ≤ −2E′(t),

then one has

ζ(t)F ′
1(t) ≤ −mζ(t)E(t)G′

(r1E(t)

E(0)

)
+
c

p
ζ(t)

r1E(t)

E(0)
G′

(r1E(t)

E(0)

)
− cE′(t)

multiplying (3.13) by ζ(t) and using the fact

G
′(
r1E(t)/E(0)

)
= G′(r1E(t)/E(0)

)
.

Define the functional F2(t) = ζ(t)F1(t)+ cE(t) which is equivalent to E(t),
which means

γ1F2(t) ≤ E(t) ≤ γ2F2(t) (3.14)

for some γ1 and γ2. Under a suitable choice of r1 and for a positive constant
k, we have

F ′
2(t) ≤ −kζ(t)E(t)

E(0)
G′

(r1E(t)

E(0)

)
= −kζ(t)G2

(E(t)

E(0)

)
(3.15)

with G2(t) = tG′(r1t). Obviously, G2 and G′
2 are positive in (0, 1] since

G′
2(t) = G′(r1t) + r1t

2G′′(r1t)

and the convexity of G in (0, r]. Inequalities (3.15) and (3.14) imply(γ1F2(t)

E(0)

)′
≤ −kζ(t) γ1

E(0)
G2

(E(t)

E(0)

)
≤ −k3ζ(t)G2

(γ1F2(t)

E(0)

)
(3.16)

with k3 = k γ1

E(0) . Setting R(t) = γ1F2(t)
E(0) , and then integrating (3.16) over

(t1, t), one has ∫ t

t1

− R′(s)

G2(R(s))
ds ≥

∫ t

t1

k3ζ(s)ds.

Since r1R(t1) < r, we have

G1(r1R(t)) =

∫ r1R(t1)

r1R(t)

1

sG′(s)
ds ≥ k3

∫ t

t1

ζ(s)ds.
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It is noted that G1 is strictly decreasing function on (0, r] and limt→0G1(t) =

+∞ in Theorem 2, then R(t) ≤ 1
r1
G−1

1

(
k3

∫ t

t1
ζ(s)ds

)
. Since R(t) is equivalent

to E(t), further one obtains

E(t) ≤ k4G
−1
1

(
k3

∫ t

t1

ζ(s)ds
)

with k4 = 1
r1
. This completes the proof of this theorem. ⊓⊔
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