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source problems for integro-differential equations are formulated and the unique-
existence results for the solution of inverse source problems are presented. Some
particular examples in support of our analysis are discussed.

Keywords: inverse problems, generalized diffusion equation, Bi-orthogonal system of func-

tions, multinomial Mittag-Leffler type functions.

AMS Subject Classification: 26A33; 35R30; 35P10; 44A10; 33E12.

1 Introduction

Partial differential equations have been used to describe problems in various
fields. However, there are some fields, such as heat transfer, diffusion concen-
tration and nuclear reactor dynamics, scientist need to consider the effect of
the past on present. Hence, a partial integro-differential equation is needed
to represent the problem. In this article, we considered the following integro-
differential equation

(g)Dη
0+,tv(x, t) =

∂2v(x, t)

∂x2
+ ρ

∫ t

0

v(x, τ)dτ + F (x, t), (x, t) ∈ Ω, (1.1)

■
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where

(g)Dη
0+,tv(x, t); =

∫ t

0

η(t− τ)v(x, τ)dτ, Ω := (0, 1)× (0, T ),

η(t) stands for the arbitrary memory kernel and ρ is a positive real number,
subject to the following Dirichlet and dynamic boundary conditions

v(0, t) = 0, vx(0, t) + αvxx(1, t) = 0, t ∈ (0, T ], α > 0. (1.2)

The equation with fractional order integro-differential are important as they
have been used in modeling several phenomena of engineering, nuclear reactor
dynamics and epidemic in biology. The Equation (1.1) is used in the modeling
of heat conduction in materials with memory [21,27], the compression of poro-
viscoelastic media [6], the analysis of space-time dependent nuclear reactor dy-
namics [22], epidemic phenomena in biology [28]. Heat equation with memory
has been studied by many researchers for various aspects. In [3], Coleman and
Gurti studied heat equation in which they discussed the regular fading memory
effects. Some researchers studied it for the aspects of controllability [5, 24, 29]
and some studied it for the numerical approximation [13,14,28], etc.
There are two inverse source problems, related to (1.1)–(1.2), to discuss.

Inverse Source Problem-I (ISP-I): In ISP-I, we will investigate the source
term in (1.1) as space dependent source term, i.e, F (x, t) = f(x). An over-
specified condition

v(x, T ) = ψ(x), x ∈ [0, 1], (1.3)

is given which is used to determine f(x) and v(x, t) from (1.1)–(1.2). A pair
of functions {v(x, t), f(x)} is said to be a regular solution of the ISP-I which
satisfies the system (1.1)–(1.2) with over-specified condition (1.3) such that
v(x, t) ∈ C(Ω); Ω = [0, 1]× [0, T ], (g)Dη

0+,tv(x, ·) ∈ C((0, T ]), v(·, t) ∈ C2([0, 1])
and f(x) ∈ C([0, 1]).

Inverse Source Problem-II (ISP-II): In ISP-II, the source term is like
F (x, t) = s(t)f(x, t), where f(x, t) is given. We have to determine the time
dependent source term s(t) and temperature distribution v(x, t) for the system
(1.1)–(1.2). For the determination of the time dependent source term, we need
some additional data, i.e., known as over-specified condition and is given by∫ 1

0

v(x, t)dx = E(t), t ∈ [0, T ]. (1.4)

The solution of the ISP-II {v(x, t), s(t)} is said to be regular solution if s(t) ∈
C([0, T ]), v(x, t) ∈ C(Ω), (g)Dη

0+,tv(x, ·) ∈ C((0, T ]) and v(·, t) ∈ C2([0, 1]).

Motivated by [16], the following transformation is used to deal with non-

local term
∫ t

0
v(x, τ)dτ ,

u(x, t) =

∫ t

0

v(x, τ)dτ.
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One can easily see that u(x, 0) = 0 and ∀t ∈ [0, T ],

∂u(x, t)

∂t
= v(x, t).

Thus the problem (1.1)–(1.2) can be written as

(g)Dη
0+,tu(x, t) =

∂2

∂x2

(
∂u(x, t)

∂t

)
+ ρu(x, t) + F (x, t), (x, t) ∈ Ω, (1.5)

ut(0, t) = 0, utx(0, t) + αutxx(1, t) = 0, t ∈ (0, T ], α > 0, (1.6)

u(x, 0) = 0. (1.7)

After transformation, (g)Dη
0+,tu(x, t) is given by

(g)Dη
0+,tu(x, t) =

∫ t

0

η(t− τ)
∂u(x, τ)

∂τ
dτ.

The direct and inverse problems with dynamic boundary conditions for heat
equation have been considered by many authors, for readers convenience, we
refer [4, 7, 9, 10, 11, 20, 23]. In last few years, the diffusion equations involving
integrals and derivatives of fractional order are considered extensively in liter-
ature. Chechkin et al. [2] studied Time Fractional Diffusion Equation (TFDE)
with varying in space fractional order of time derivative. Wei et al. [26] sur-
veyed the temporal effects in the modeling of anomalous diffusion process using
fractional order operators.

Let us mention some works of Inverse Problems (IPs) for Fractional Dif-
ferential Equations (FDEs) which become important tool in modeling of many
real-life problems. Wei et al. [25] investigated the inverse source problem of
spatial fractional anomalous diffusion equation by using the so-called coupled
method. Ismailov et al. Liao et al. [15] studied an IP of recovering a fractional
order and a space dependent source term in a multi-dimensional time frac-
tional diffusion wave equation by the final time measurement data. Malik et
al. [18] considered an IP of the determination of the source term and diffusion
concentration for a multi-term FDE with integral type over-specified condition.
Kinash et al. [12] presented two IPs for a generalized subdiffusion equation with
final over-determination condition. Asim et al. [8] studied two IPs for a multi-
term time-fractional evolution equation with an involution term, interpolating
the heat and wave equations.

The rest of the paper is organized as follows: further, in Section 2, we define
the multinomial Mittag-Leffler function and represent its several properties. In
Section 3, we give the spectral problem corresponding to system (1.5)–(1.6)
and its properties. In Section 4, we construct the solution of ISP-I and prove
to be unique existence for the solution of the ISP-I. In Section 5, we formulate
the solution of the ISP-II and investigate the existence and uniqueness results
of the ISP-II. In Section 6, we give some numerical examples and present the
conclusions in the last section.

Math. Model. Anal., 28(2):255–270, 2023.
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2 Mittag-Leffler type functions

In this section, we will present Mittag-Leffler type functions and some results
related to its estimates.

Definition 1. [17] For ζi, η > 0, wi ∈ C, i = 1, 2, ...,m, m ∈ N, the multino-
mial Mittag-Leffler function is defined as

E(ζ1,ζ2,...,ζm),η(w1, w2, . . . , wm):=

∞∑
k=0

∑
l1+l2+...+ln=k
l1≥0,...,lm≥0

(k; l1, . . . , ln)
Πm

i=1z
li
i

Γ
(
η+

∑m
i=1 ζili

) ,
where (k; l1, . . . , lm) = k!

l1!×...×lm! .

Remark 1. For w1 ̸= 0, w2 ̸= 0, w3 = ... = wm = 0, m ∈ N the multinomial
Mittag-Leffler function takes the following form

E(ζ1,ζ2)η(w1, w2) =

∞∑
k=0

∑
l1+l2=kl1≥0,l2≥0

k!

l1!l2!

wl1
1 w

l2
2

Γ (η + ζ1l1 + ζ2l2)
,

=

∞∑
k=0

k∑
i=0

k!

i!(k − i)!

wi
1w

k−i
2

Γ (η + ζ1i+ ζ2(k − i))
.

The multinomial Mittag-Leffler function E(ζ1,ζ2)η(w1, w2), will be used in
Case II.

Remark 2. For w1 ̸= 0, w2 = 0, the multinomial Mittag-Leffler function reduces
to the well known two parameter Mittag-Leffler function given by

E(ζ1,ζ2)η(w1, 0) =

∞∑
k=0

zk1
Γ (ζ1k + η)

:= Eζ1,η(w1).

Lemma 1. [18]For ζi, η, τ, σi > 0, i = 1, 2, . . . ,m, m ∈ N the Laplace trans-
form of the multinomial Mittag-Leffler function is given by

L{τη−1E(ζ1,ζ2,...,ζm),η(−σ1τ ξ1 , ...,−σmτ ξm); s} =
s−η

1 +
∑m

i=1 σis
−ζi

,

for
∣∣∑m

i=1 σis
−ζi

∣∣ < 1.

3 The spectral problem

The spectral problem of the system (1.5)–(1.6) is given by

X
′′
(x) + λX(x) = 0, (3.1)

X(0) = 0, X
′
(0) + αX

′′
(1) = 0. (3.2)
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Suppose that α ̸= 1
xi sin xi

for all i, where xi satisfy the equation sinx+x cosx =
0 on (0,∞]. In this case problem (3.1) along with the boundary conditions (3.2)
has eigenfunctions

Xn(x) =
√
2 sin(

√
λnx), n = 0, 1, 2, ..., (3.3)

where the eigenvalues λn, n = 0, 1, 2, ..., satisfy the equation α
√
λ sin

√
λ = 1,

Re
√
λ = 0.

The asymptotic estimate for the eigenvalues√
λn = πn+

(−1)n

παn
+O

(
1/n3

)
,

is valid for large n. It is shown in [19] that the system of eigenfunctions
Xn(x), n = 0, 1, 2, ..., that is, the system of eigenfunctions of spectral problem
with one deleted, is a Riesz basis L2([0, 1]) and the system

Yn(x) =
√
2

√
λ0 sin

√
λ0(1− x)−

√
λn sin

√
λn(1− x)

√
λn cos

√
λn + sin

√
λn

(3.4)

is a bi-orthogonal to the system Xn(x), n = 1, 2, 3, ..., i.e.,

⟨Xn, Ym⟩ =
∫ 1

0

Xn(x)Ym(x)dx =

{
1, m = n,

0, m ̸= n.

Lemma 2. (Theorem 1, [19] ) Suppose that a function h ∈ C([0, 1]) has a
uniformly convergent Fourier series expansion in the system

√
2 sin(πnx), n =

1, 2, ..., on the interval [0, 1]. Then this function can be expanded in a Fourier
series in the system Xn(x) =

√
2 sin(

√
λnx), n = 1, 2, ..., and this expan-

sion is uniformly convergent on every interval [0, b], 0 < b < 1. If Cλ0 ≡√
2λ0⟨h, sinλ0(1− x)⟩ = 0, then the Fourier series of h in the system Xn(x) =√
2 sin(

√
λnx), n = 1, 2, ..., is uniformly convergent on [0, 1].

We considered that u(x, t) is real valued, but we have some eigenvalues
which are complex. To get rid of these terms, method of annihilation of the
complex term of Fourier series expansion is used. The class of function which
also contains the conditions of the Lemma 2 will be denoted by

C3
nα

([0, 1]) =

{
h(x) ∈ C3([0, 1]) : h(0)=h′(0)=h′′(0) = 0, h(1)=h′′(1)=0,∫ 1

0
h(x) sin(

√
λn(1− x))dx = 0, n = 0, 1, 2, ..., nα.

Lemma 3. [10] If h(x) ∈ C3
nα

([0, 1]), then the inequality
∞∑

n=nα+1

|λnhn| ≤ c∥h′′′∥2L2([0,1])
, c = const > 0 holds, where hn = ⟨h, Yn⟩.

From this discussion, by using the Bessel and Schwarz inequalities, one can
obtain

∞∑
n=nβ+1

|λnhn| ≤ c∥h′′′∥2L2([0,1])
≤ c∥h∥C3([0,1]).

Math. Model. Anal., 28(2):255–270, 2023.
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4 Inverse Source Problem-I

In this section, we want to determine F (x, t) = f(x) and u(x, t), i.e., the
solution of the system (1.5)–(1.7).

4.1 Construction of the Solution ISP-I

By using the generalized Fourier method, the solution of the system (1.5)–(1.7)
can be written in the form

u(x, t) =

∞∑
n=1

Tn(t)Xn(x), f(x) =

∞∑
n=1

fnXn(x),

where Tn(t), and fn satisfy the following differential equation

η(t) ∗ T
′
(t)− ρ Tn(t) = −λnT

′
(t) + fn, (4.1)

and fn =
∫ 1

0
f(x)Yn(x)dx, n = 1, 2, 3, ....

Taking Laplace transform of (4.1) and due to initial condition (1.7), we have

L{Tn(t); s} =
fn

s(sL{η(t); s}+ sλn − ρ)
, =⇒ Tn(t) = fnAn(t), (4.2)

where An(t) :=
∫ t

0
Bn(τ)dτ , and Bn(t) = L−1

(
1

sL{η(t);s}+sλn−ρ

)
and “ ∗ ”

represents integral convolution given by

s1(t) ∗ s2(t) =
∫ t

0

s1(t− τ)s2(τ)dτ, 0 ≤ τ ≤ t.

The expression of fn is obtained from the over-specified condition (1.3)

fn =ψn/A
′

n(T ), (4.3)

where ψn =
∫ 1

0
ψ(x)Yk(x)dx, n = 1, 2, 3, ....

By substituting the coefficients of fn in Equation (4.2), we obtain

Tn(t) =
ψn

A′
n(T )

An(t). (4.4)

Under the conditions that, ψ(x) ∈ C3
nα

([0, 1]) ∀ t ∈ [0, T ], we have∫ 1

0

ψ(x) sin(
√
λn(1− x))dx = 0, n = 0, 1, 2, ..., nα,

implies that the Fourier coefficient ψn = 0, for n = 0, 1, 2, ..., nα and

ψn =

√
2λn√

λn cos
√
λn + sin

√
λn

∫ 1

0

ψ(x) sin(
√
λn(1− x))dx, n > nα,



On the Inverse Problems for a Family of Integro-Differential Equations 261

are real constants. Therefore, the formal solution of the system (1.5)–(1.7) is
the series

u(x, t) =

∞∑
n=nα+1

Tn(t)Xn(x), f(x) =

∞∑
n=nα+1

fnXn(x). (4.5)

Now, we will discuss some special cases of the ISP-I by taking the several
choices of the memory kernel η(t).

Case I: Letting the memory kernel η(t) = δ(t) in Equation (1.5), we have

An(t) =
1

1 + λn

∫ t

0

e
ρ

1+λn
τdτ, fn = ψn(1 + λn)

2
/∫ T

0

e
ρ

1+λn
τdτ.

Case II: Taking the memory kernel η(t) = t−β

Γ (1−β) , where 0 < β < 1 in

Equation (1.5), we get

An(t) =

∫ t

0

τβ−1E(β−1,β),β(−λnτβ−1, ρτβ)dτ,

fn = ψn

/∫ T

0

τβ−2E(β−1,β),β−1(−λnτβ−1, ρτβ)dτ.

Case III: Introducing the memory kernel η(t) =
∑n

j=1
Ujt

−βj

Γ (1−βj)
, 0 < βn < ... <

β2 < β1 < 1, Uj > 0, j = 1, 2, ..., n, in Equation (1.5), i.e., yields

An(t) =
1

U1

∫ t

0

τβ1−1E(β1−βn,...,β1−β2,β1−1,β1),β1
(ϑ)dτ,

fn = ψnU1

/∫ T

0

τβ1−1E(β1−βn,...,β1−β2,β1−1,β1),β1
(ϑ)dτ,

where

(ϑ) :=

(
−Un

U1
τβ1−βn , . . . ,−U2

U1
τβ1−β2 , . . . ,−λn

U1
τβ1−1,

ρ

U1
τβ1

)
.

Case IV: Let an exponential cut-off of the power-law memory kernel of the
form η(t) = e−dtt−β/Γ (1− β), 0 < β < 1, where d > 0 is the truncation
parameter and substitute in Equation (1.5), we obtain

An(t)=e
−dttβE(β−1,β,1,β,β+1),β+1(−λntβ−1, 2λndt

β , dt, ρtβ ,−(d2λn+dρ)t
β+1),

and fn is given by the Equation (4.3) with

A
′

n(T ) =− de−dTT βE(β−1,β,1,β,β+1),β+1(ω) + e−dTT β−1E(β−1,β,1,β,β+1),β(ω),

where

(ω) :=
(
−λnT β−1, 2λndT

β , dT, ρT β ,−(d2λn + dρ)T β+1
)
.

Math. Model. Anal., 28(2):255–270, 2023.
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4.2 Existence of the solution of the ISP-I

Lemma 4. [1] We see that Bn(t) is a completely monotone functions, fur-
thermore, for some constant C0 = C0(T ) > 0 independent of λn we have

0 < C0 ≤ λn

∫ T

0

Bn(τ)dτ < 1.

Therefore, following the strategy presented in [1], we obtain the estimate of
An(t) and An(T ). Let the functions An(t) and An(T ) for n ∈ N are continuous
on [0,∞) vanish at t = 0, positive and nondecreasing on R+. The following
estimates for t, T > 0 are satisfied:

An(t) ≤
1

λn
,

1

An(T )
≤ C0λn,

where An(t) =
∫ T

0
Bn(τ)dτ .

Theorem 1. Assume

ψ(x) ∈ C3
nα

([0, 1]); ψnα+1 > 0, ψnα+k ≥ 0, k = 2, 3, . . . .

Then, there exists a regular solution of the ISP-I for the system (1.5)–(1.7) and
(1.3).

Proof. For the proof of the existence of the solution of the ISP-I, we need to
show the uniform convergence of series corresponding to f(x), ut(x, t), uxxt(x, t)
and (g)Dη

0+,tu(x, t). First, we are going to discuss the continuity of f(x). Due
to Lemma 4 and Equation 4.3, one gets

|fn| ≤ C0|λnψn|.

By Lemma 3, one gets the following inequality

|fn| ≤ C0c∥ψ∥C3([0,1]). (4.6)

From Equation (4.6), it is clear that the fn is bounded. Hence, by using Weier-
strass M-test we can say that f(x) is a continuous function. Using Lemmas 3,
4 and Equation (4.4), one gets

|T ′
n(t)| ≤

C0c

λn
∥ψ∥C3([0,1]). (4.7)

By virtue of Equation (4.7), we can conclude that continuity of ut(x, t) is
ensured due to Weierstrass M-test.

Next, we will show that the continuity of uxxt(x, t). For this, term by term
differentiation of the series of u(x, t) in (4.5), one gets

uxxt(x, t) =

∞∑
n=nα+1

T ′
n(t)X

′′
n(x), (4.8)
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where

X ′′
n(x) =− λnXn(x), T ′

n(t) =
ψn

A′
n(T )

A′
n(t).

Due to the fact |Xn| ≤ 1, we obtain

|X ′′
n(x)| ≤ λn. (4.9)

From the relations (4.7) and Lemma 3, we can extrapolate that uxxt(x, t), given
by (4.8), is bounded above by a convergent series. Under the assumptions a
similar argument can be developed for uniform convergent of the series repre-
sentation of (g)Dη

0+,tut(x, t). ⊓⊔

Uniqueness of the solution of the ISP-I: Uniqueness of v(x, t) can be
obtained by assuming ω(x, t) and ν(x, t) be the two regular solution sets of the
ISP-I, and proving them equal i.e. ω(x, t) = ν(x, t) by using the fact that set of
bi-orthogonal system (3.3)–(3.4) of function form a complete set in L2([0, 1]).

5 Inverse Source Problem-II

In this section, we suppose the ISP-II for the system (1.1)–(1.2) with the source
term, i.e., F (x, t) = s(t)f(x, t). We will discuss the recovery of the time depen-
dent source term s(t) along with v(x, t), under the given over-specified condition
(1.4).

5.1 Construction of the Solution ISP-II

The solution of the system (1.5)–(1.7) can be written in the form

u(x, t) =

∞∑
n=1

Tn(t)Xn(x), f(x, t) =

∞∑
n=1

fn(t)Xn(x),

where Tn(t) satisfy the following differential equation

η(t) ∗ T
′
(t)− ρ Tn(t) = −λnT

′
(t) + s(t)fn(t)

and fn(t) =
∫ 0

1
f(x, t)Yn(x)dx, n = 1, 2, 3, .... Taking Laplace transform and

using initial condition (1.7), we have the expression for Tn(t) as

Tn(t) =s(t)fn(t) ∗An(t),

where s(t) is still to be determined. Under the conditions that, f(x, t) ∈
C3

nα
([0, 1]) ∀ t ∈ [0, T ], we have∫ 1

0

f(x, t) sin(
√
λn(1− x))dx = 0, n = 0, 1, 2, ..., nα,

implies that the Fourier coefficient fn(t) = 0, for n = 0, 1, 2, ..., nα and

fn(t) =

√
2λn√

λn cos
√
λn + sin

√
λn

∫ 1

0

f(x) sin(
√
λn(1− x))dx, n > nα,

Math. Model. Anal., 28(2):255–270, 2023.
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are real functions. Therefore, the formal solution of the system (1.5)–(1.7) is
the series

u(x, t) =

∞∑
n=nα+1

Tn(t)Xn(x), (5.1)

f(x, t) =

∞∑
n=nα+1

fn(t)Xn(x). (5.2)

Now, we will discuss some special cases of the ISP-I by taking the several
choices of the memory kernel η(t).

Case I: Letting the memory kernel η(t) = δ(t) in Equation (1.5), we have

An(t) =
1

1 + λn
e

ρ
1+λn

t.

Case II: Taking the memory kernel η(t) = t−β

Γ (1−β) , where 0 < β < 1 in

Equation (1.5), we get

An(t) = tβ−1E(β−1,β),β(−λntβ−1, ρtβ).

Case III: Introducing the memory kernel η(t) =
∑n

j=1
Ujt

−βj

Γ (1−βj)
, 0 < βn < ... <

β2 < β1 < 1, Uj > 0, j = 1, 2, 3, ..., n, in Equation (1.5), one can obtain

An(t) =
1

U1
tβ1−1E(β1−βn,...,β1−β2,β1−1,β1),β1

(ν),

where

(ν) :=

(
−Un

U1
tβ1−βn , ...,−U2

U1
tβ1−β2 , ...,−λn

U1
tβ1−1,

ρ

U1
tβ1

)
.

Case IV: Let an exponential cut-off of the power-law memory kernel of the
form η(t) = e−dtt−β/Γ (1− β), 0 < β < 1, where d > 0 is the truncation
parameter and substitute in Equation (1.5),

An(t) = e−bttβ−1E(β−1,β),β

(
−λntβ−1,−(bλn + ρ)tβ

)
.

5.2 Existence of the solution of the ISP-II

In this section, we are going to present the following theorem that state the
conditions under which solution of the ISP-II has a regular solution.

Theorem 2. Assume

(1) f(x, t) ∈ C(Ω̄), f(x, t) ∈ C3
nα

(Ω̄), ∀ t ∈ [0, T ], fnα+k(t) ≥ 0, k =

1, 2, 3, ... . Furthermore
(∫ 1

0

f(x, t)dx
)−1

≤ M1, t ∈ [0, T ] for some

positive constant M1.
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(2) E(t) ∈ C([0, T ]) and satisfies the consistency condition E(0) = 0.
E(t) > 0, ∀ t ∈ [0, T ].

Then, there exist a unique local in time solution of the ISP-II.

Proof. To determine s(t) of time dependent source term, we will use the over-
specified condition (1.4), we have∫ 1

0

(g)Dη
0+,tu(x, t)dx = (g)Dη

0+,tE(t).

By virtue of (1.1), we have∫ 1

0

(
∂2

∂x2

(
∂u(x, t)

∂t

)
+ ρu(x, t) + s(t)f(x, t)

)
dx = (g)Dη

0+,tE(t),

which leads to the following expression of q(t)

s(t) =

(∫ 1

0

f(x, t)dx

)−1(
(g)Dη

0+,tE(t)−
∫ t

0

K(t, τ)s(τ)dτ

)
. (5.3)

Setting

K(t, τ) =ρfn(τ)Bn(t− τ)− λnfn(τ)B
′
n(t− τ).

Due to Lemma 4, we can have some positive constant M2 such that

∥K(t, τ)∥C([0,T ]×[0,T ]) ≤M2.

Let us define the mapping A : C([0, T ]) → C([0, T ]) by A(s(t)) := s(t), where
s(t) is given by (5.3). The mapping A(s(t)) is well defined due to uniformly
convergent of ∥K(t, τ)∥C([0,T ]×[0,T ]). Next, we will show that under the as-

sumption T < 1
M1M2

, the mapping A(s(t)) is contraction. Consider

|A(s1(t))−A(s2(t))| =
(∫ 1

0

f(x, t)dx

)−1 (∫ t

0

K(t, τ)|s1(τ)− s2(τ)|dτ
)
.

By assumptions of Theorem 2 , we obtain

max
0≤t≤T

|A(s1(t))−A(s2(t))| ≤M1M2T max
0≤t≤T

|s1(τ)− s2(τ)|,

∥A(s1)−A(s2)∥C([0,T ]) ≤M1M2T∥s1 − s2∥C([0,T ]),

which shows that the mappingA(s(t)) is a contraction. Hence, unique existence
of s(t) is guaranteed by Banach fixed point theorem. Since, s ∈ C([0, T ]) and
for some constant M > 0, we have

∥s∥C([0,T ]) ≤M.

Existence of the solution of the ISP-II: To prove the existence of the
solution of the ISP-II, we will establish the continuity of ut(x, t), uxxt(x, t),
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(g)Dη
0+,tu(x, t). Let us first note that the estimate of the f(x, t) given by Equa-

tion (5.2) in the norm space is defined as

∥f∥2C2,0(Ω̄))=

∫ T

0

∥f∥2C2([0,1])dt=

∫ T

0

∞∑
n=nα+1

|fn(t)|2dt=
∞∑

n=nα+1

∥fn(t)∥2C([0,T ]).

By using the Young inequality for the integral convolution and due to estimates
(42), see [1], we have

∥∥∥∫ t

0

Bn(t− τ)fn(t)dτ
∥∥∥2
C([0,T ])

≤
(∫ T

0

Bn(t)dt
)2

∫ T

0

|fn(t)|2dt

≤ 1

λ2n

∫ T

0

|fn(t)|2dt. (5.4)

By Lemmas 3, 4 and estimate (5.4), we have

|T ′
n(t)| ≤

M

λ2n
∥fn(t)∥2C([0,T ]). (5.5)

The uniform convergence of the series ut(x, t) given by Equation (5.1) is
bounded above due to inequalities (5.5). Consequently, continuity of u(x, t) is
obtained by using Weierstrass M-test.

Next, we will show that the continuity of uxxt(x, t). From the relations of
(5.5) and (4.9), we can deduce that uxxt(x, t) is bounded above by a convergent
series. Hence, by Weierstrass M-test, uxx(x, t) represents a continuous function.

Similarly, we can prove that (g)Dη
0+,tu(x, t) represent a continuous function.

Uniqueness of the solution of the ISP-II: Banach fixed point theorem
has been used to prove the uniqueness of u(t). Uniqueness of v(x, t) can be
obtained by assuming z(x, t) and r(x, t) be the two regular solution sets of the
ISP-II, and proving them equal i.e. z(x, t) = r(x, t) by using the fact that set of
bi-orthogonal system (3.3)–(3.4) of function form a complete set in L2([0, 1]).
⊓⊔

6 Examples

In this section, we are going to provide two examples i.e., Example 1 and
Example 2 related to the inverse source problem I and inverse source problem
II, respectively.

Example 1. Let ψ(x) = sin3(πx), then

ψn =

√
2
√
λn

4
(√
λn cos

√
λn + sin

√
λn

)
×
(
3 sin 1− 3

√
λn sin

√
λn

1− λn
− 3 sin 3−

√
λn sin

√
λn

9− λn

)
.
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Substituting the value of ψn in (4.5), one can obtain

u(x, t) =

∞∑
n=nα+1

(
3 sin 1− 3

√
λn sin

√
λn

1− λn
− 3 sin 3−

√
λn sin

√
λn

9− λn

)

×
√
λn sin(

√
λnx)An(t)

2A′
n(T )

(√
λn cos

√
λn + sin

√
λn

) ,
f(x) =

∞∑
n=nα+1

(
3 sin 1− 3

√
λn sin

√
λn

1− λn
− 3 sin 3−

√
λn sin

√
λn

9− λn

)

×
√
λn sin(

√
λnx)

2A′
n(T )

(√
λn cos

√
λn + sin

√
λn

) .
Example 2. In ISP-I, we take the memory kernel (dirac delta function), that is,
η(t) = δ, f(x, t) = (2 + λnα+1t) sin(

√
λnα+1x), and over-specified condition is∫ 1

0

u(x, t)dx =
2t2

λnα+1
.

Indeed, using (5.1) the solution of the system is given by

u(x, t) =
√
2
{
a(t)f1(t) ∗ e−λnα+1t

}
sin(

√
λnα+1x),

f1(t) = (2 + λnα+1t)/
√
2.

In Case I, the expression for s(t) given by (5.3) takes the form

s(t) =

(∫ 1

0

f(x, t)dx

)−1 (
E′(t)−𭟋(t)−

∫ t

0

K(t, τ)s(τ)dτ

)
,

where∫ 1

0

f(x, t)dx =
(2 + λnα+1t)(1− cos(

√
λnα+1x))√

λnα+1

, E′(t) =
4t

λnα+1
,

𭟋(t) =0, K(t, τ) =
(2 + λnα+1t)(1− cos(

√
λnα+1x))√

λnα+1

e−π(t−τ).

In this case, we can find expression for s(t) given by s(t) = t. Hence, we obtain

u(x, t) =
√
2t2 sin(

√
λnα+1x).

Example 3. In ISP-II, we consider the power law memory kernel, that is,

η(t) =
tβ

Γ (1− β)
, f(x, t) =

( Γ (2)

Γ (2− β)
+ λnα+1t

β0

)
sin(

√
λnα+1x)

and over-specified condition is∫ 1

0

u(x, t)dx =
2t

λnα+1
.
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In Case II, the solution of the ISP-II is given by

u(x, t) =
√
2

{
a(t)f1(t) ∗ Eβ,β(t;λnα+1)

}
sin(

√
λnα+1x),

f1(t) =

(
Γ (2)

Γ (2− β)
+ λnα+1t

β

)
.

In Case II, the expression for s(t) takes the following form

s(t) =

(∫ 1

0

f(x, t)dx

)−1 (
Dβ

0+,tE(t)−𭟋(t)−
∫ t

0

K(t, τ)s(τ)dτ

)
,

where∫ 1

0

f(x, t)dx =
1− cos(

√
λnα+1x)√

λnα+1

(
Γ (2)

Γ (2− β)
+ λnα+1t

β

)
,

Dβ
0+,tE(t) =

4

λnα+1

Γ (2)

Γ (2− β)
t1−β , 𭟋(t) = 0,

K(t, τ) =
1− cos(

√
λnα+1x)√

λnα+1

(
Γ (2)

Γ (2− β)
+ λnα+1t

β

)
Eβ,β(t− τ ;λnα+1).

In this case, we can find expression for s(t) given by s(t) = t1−β . Hence, we
obtain

u(x, t) =
√
2t sin(λnα+1x).

7 Conclusions

Generalized integro-differential equation written as convolution of arbitrary
memory kernel η(t) is considered. Several well known nonlocal diffusion equa-
tions are special cases of Equation (1.1) and can be obtained by taking several
choices of the kernel function η(t). Two inverse problems namely, ISP-I and
ISP-II defined for generalized diffusion Equation (1.1) with nonlocal boundary
conditions involving a parameter β > 0 are considered. A bi-orthogonal sys-
tem of functions obtained from spectral and its conjugate problems is used to
construct the series representations for the solutions of inverse problems. With
over-specified data given at some time T , the determination of space depen-
dent source term along with diffusion concentration comprised the ISP-I. The
existence and uniqueness of regular solution of the ISP-I is proved. An integral
type over-determination condition is used for the recovery of a time dependent
source term in ISP-II. The unique existence of the time dependent source term
is obtained by using Banach fixed point theorem. The solution of the ISP-II
exists under the certain assumptions (see Theorem 2). Several spacial cases of
the inverse problems are discussed by taking particular choice of kernel η(t).
The proposal of regularizing algorithms for the inverse problems investigated
in this article is an interesting topic to be considered.
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