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Abstract. In this paper, polynomially based projection and modified projection
methods for approximating the solution of Fredholm integral equations with a kernel
of Green’s function type are studied. The projection is either an orthogonal projec-
tion or an interpolatory projection using Legendre polynomial basis. The orders of
convergence of these methods and those of superconvergence of the iterated versions
are analysed. A numerical example is given to illustrate the theoretical results.
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1 Introduction

Consider the Fredholm integral equation defined on X = L∞[−1, 1] by

u(s)−
∫ 1

−1

κ(s, t)u(t)dt = f(s), s ∈ [−1, 1], u ∈ X, (1.1)

where κ is a real-valued function. Assume that for f ∈ X the above equation
has a unique solution u. The projection methods are standard methods for
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finding numerical solutions of equations of type (1.1) (see Atkinson [3]). These
methods include the Galerkin method based on the orthogonal projection and
the collocation method based on an interpolatory projection. Sloan in [18]
introduced iterated Galerkin/iterated collocation solutions obtained by one step
of iteration which improves upon the projection solution. In Kulkarni [12] a
new method (so-called modified projection or multi-projection method) based
on projections is proposed for solving (1.1). It is shown that if κ and f are
suitably smooth, the resulting solution converges faster than the projection
and the Sloan solutions. Moreover, the iterated modified projection solution
obtained by performing one step of iteration converges the fastest of all. These
results have been extended in Kulkarni [13] to the case when the kernel fails to
be sufficiently differentiable because of discontinuities along the diagonal. For
this kind of kernels, convergence results for the projection methods have been
already discussed by Chatelin and Lebbar in [7,8], while the discrete Galerkin
method and its iterated version were discussed in Atkinson and Potra [5].

It is well known that to get better precision in these methods by using
piecewise polynomial approximation, the number of partition points should
be increased. Hence, in such cases, we should solve a large system of linear
equations, which is computationally expensive.

This paper aims to investigate the projection and the modified projection
methods to solve Equation (1.1) with a non-smooth kernel using global poly-
nomial basis functions rather than piecewise polynomial basis functions which
reduces highly the size of linear system. In fact, integral equations with Green’s
function type kernel are of interest and seem not to be studied at the moment
by global polynomials. In particular, Legendre polynomials can be used as ba-
sis functions which have nice properties of orthogonality and low computational
cost. Obviously, low degree polynomials imply small linear systems, something
which is highly appreciated in practical computations. We obtain improved
order bounds as compared to the existing methods. Indeed, we show that the
iterated modified projection method performs better than the projection, Sloan
and modified projection methods. Note that, the size of the system of equa-
tions in the Legendre modified projection methods remains the same as in the
projection methods. For this reason, this method has benefits theoretically and
computationally.

In several recent papers, various polynomially based numerical methods for
linear integral equations were studied. In [3, Chap.3] the author considers the
use of trigonometric polynomials as approximations in solving Fredholm in-
tegral equations with periodic kernels. The discrete Galerkin method using
Legendre polynomials was introduced in Golberg [10] and was extended by the
same author in [9] to some equations with singular kernels. The discrete it-
erated Galerkin method was proposed in Kulkarni and Gnaneshwar [14] and
the convergence of the Legendre-Galerkin solution in the case of weakly singu-
lar kernels was considered in Panigrahi and Gnaneshwar [16]. Moreover, the
Legendre multi-projection, as well as its iterated version, were studied in G.
Long et al. [15]. In Allouch et al. [2], Legendre superconvergent projection-type
methods for nonlinear Hammerstein equations were proposed.

Here is an outline of the paper. In Section 2, the notations are set and some
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preliminary results are recalled. In Section 3, the orders of convergence of the
proposed methods and those of their iterated versions for both the orthogonal
and the interpolatory projection are obtained. Numerical results are given in
Section 4.

2 Method and notations

Let Π = [−1, 1]× [−1, 1]. Divide Π into two parts Π1 and Π2, where

Π1 = {(s, t) : −1 ≤ s ≤ t ≤ 1} and Π2 = {(s, t) : −1 ≤ t ≤ s ≤ 1}.

Let α and γ be two integers such that α ≥ γ, α ≥ 0 and γ ≥ −1. We assume
that the kernel κ defined in (1.1) has the following form

κ(s, t) =

{
κ1(s, t), (s, t) ∈ Π1, s ̸= t,
κ2(s, t), (s, t) ∈ Π2,

where κi ∈ Cα(Πi), i = 1, 2. If γ ≥ 0, then κ ∈ Cγ(Π). If γ = −1, then κ may
have a discontinuity of the first kind along the line s = t. Following Chatelin
and Lebbar [8], we say that κ is of class C(α, γ). For µ = 0, . . . , α, set

Mi,µ=max

{∣∣∣∣∂µκi

∂tµ
(s, t)

∣∣∣∣ : (s, t) ∈ Πi

}
, i=1, 2, Mµ=max{M1,µ,M2,µ}.

Let T be the integral operator defined by

(Tx)(s) =

∫ 1

−1

κ(s, t)x(t)dt, s ∈ [−1, 1].

The operator T is compact and is completely continuous from L∞[−1, 1] into
Cγ1 [−1, 1], where γ1 = min{α, γ + 1}.

Equation (1.1) can be written symbolically as

u− Tu = f. (2.1)

Let u be the unique solution of (2.1). If f ∈ Cα[−1, 1], then from Corollary 3.2
of Atkinson and Potra [4], u ∈ Cα[−1, 1]. If x ∈ C [−1, 1], then

(Tx)(µ)(s) =

∫ 1

0

∂µκ

∂sµ
(s, t)x(t)dt, 0 ≤ µ ≤ γ1, (2.2)

where the kernel q(s, t) = ∂µκ
∂sµ (s, t) ∈ C(α−µ, γ−µ). According to Kulkarni [13],

we have ∥∥(Tx)(µ)∥∥∞ ≤ c ∥x∥∞ , 0 ≤ µ ≤ γ1 + 1. (2.3)

Let Xn be the set of all polynomials of degree ≤ n defined on [−1, 1]. Then the
dimension of Xn is n + 1, and the Legendre polynomials {L0, L1, L2, . . . , Ln}
defined by

L0(s) = 1, L1(s) = s, s ∈ [−1, 1],

(i+ 1)Li+1(s) = (2i+ 1)sLi(s)− iLi−1(s), i = 1, 2, . . . , n− 1
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form an orthogonal basis for Xn. Since

⟨Li, Lj⟩ =
{

2/(2i+ 1), i = j,
0, i ̸= j,

an orthonormal basis for Xn is given by
{
φi(s) =

√
2i+1
2 Li(s) : i = 0, 1, . . . n

}
.

Orthogonal projection operator. For x, y ∈ L2[−1, 1], the inner product is
given by

⟨x, y⟩ =
∫ 1

−1

x(t)y(t)dt and norm is ∥x∥L2 =

(∫ 1

−1

x(t)2dt

) 1
2

.

Let πG
n u denote the restriction to X of the orthogonal projection from L2[−1, 1]

onto Xn. Then for x ∈ X

⟨πG
n x, φi⟩ = ⟨x, φi⟩, i = 0, 1, . . . , n. (2.4)

Interpolatory projection operator. For x ∈ C [−1, 1], let πC
n x denote the unique

polynomial of degree n that satisfies

(πC
n x)(τi) = x(τi), i = 0, 1, . . . , n, (2.5)

where {τ0, τ1, . . . , τn} are the zeros of the Legendre polynomial Ln+1. Clearly,
πC
n is a linear projection operator on C [−1, 1], whose range is Xn. For notational

convenience, from now on we write πG
n or πC

n as πn. Throughout this paper C
will denotes a generic constant independent of n.

Lemma 1. (Jackson’s theorem). Let r ≥ 0 be an integer. For any x ∈
Cr[−1, 1],

inf
v∈Xn

∥x− v∥L2 ≤ Cn−r∥x(r)∥L2 ,

where C is independent of x (Schumaker [17], page 96).

We define Hr[−1, 1] to be the Hilbert space of the functions x ∈ L2[−1, 1] such
that all the derivatives of x of order up to r can be represented by functions in
L2[−1, 1]. In short,

Hr[−1, 1] =
{
x ∈ L2[−1, 1] : x(k) ∈ L2[−1, 1], 0 ≤ k ≤ r

}
.

The crucial properties of πn are given in the following lemma.

Lemma 2. (Canuto et al. [6, p.287]). Let πn : C [−1, 1] → Xn be the projection
operator defined by (2.4) or (2.5). There exists a constant p > 0 independent
of n such that for any n ∈ N and any x ∈ L2[−1, 1],

∥πnx∥L2 ≤ p∥x∥L2 , (2.6)

∥x− πnx∥L2 ≤ (1 + p) inf
v∈Xn

∥x− v∥L2 → 0, n → ∞. (2.7)
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Whenever x ∈ Hr[−1, 1] with r ≥ 1, one has

∥x− πnx∥L2 ≤ C1n
−r∥x(r)∥L2 , (2.8)

∥x− πnx∥∞ ≤ C1n
β−r∥x(r)∥L2 , n ≥ r − 1, (2.9)

where C1 is a constant independent of n, β = 3
4 for the orthogonal projection

and β = 1
2 for the interpolatory projection.

The estimate (2.7) shows that ∥x − πnx∥L2 → 0 as n → ∞ for all x ∈
C [−1, 1], whereas the estimate (2.9) imply that ∥x − πnx∥∞ → 0 as n → ∞,
for any x ∈ Cr[−1, 1] with r ≥ 1.

The operator πn is unbounded in the infinity norm. More precisely,

∥πG
n ∥∞ ≤ C log n, (2.10)

(see Golberg [10,11]) and

∥πC
n ∥∞ = 1 +

2
3
2

√
π
n

1
2 +B0 + O(n− 1

2 ), (2.11)

where B0 is a bounded constant (see Tang et al. [19]).
Note that, using (2.2) and (2.3), we see that T is a continuous operator on

L2[−1, 1] into Hγ1+1[−1, 1]. On the one hand

∥(Tx)(µ)∥L2 ≤ max
s∈[−1,1]

(∫ 1

−1

∣∣∣∣∂µκ

∂sµ
(s, t)

∣∣∣∣2 dt
) 1

2

∥x∥L2 , 0 ≤ µ ≤ γ1.

On the other hand, if x is a piecewise continuous function over a quasi-uniform
partition ∆ of [−1, 1], then for s /∈ ∆ (see Kulkarni [13])

(Tx)(γ1+1)(s) =

∫ 1

−1

∂γ1+1

∂sγ1+1
κ(s, t)x(t)dt+

∂γ1

∂sγ1
κ1(s, s)x(s)−

∂γ1

∂sγ1
κ2(s, s)x(s)

(2.12)
and the values (Tx)(γ1+1)(s + 0) and (Tx)(γ1+1)(s − 0) will exist using limits
in (2.12), for all s ∈ ∆. Hence, we deduce that ∥(Tx)(γ1+1)∥L2 can be bounded
by C∥x∥L2 . Finally, we conclude that for each x ∈ L2[−1, 1],

∥(Tx)(µ)∥L2 ≤ K∥x∥L2 , 0 ≤ µ ≤ γ1 + 1, (2.13)

where K is a positive constant depending on κ.
In the classical projection method, Equation (1.1) is approximated by

un − πnTun = πnf,

while in the iterated projection method proposed by Sloan, it is approximated
by

ũn − Tπnũn = f.

In order to obtain a more accurate approximation solution than ũn, the follow-
ing modified projection method is proposed in Kulkarni [12]

uM
n − TM

n uM
n = f, (2.14)
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where

TM
n = πnT + Tπn − πnTπn.

The iterated modified projection solution is defined as

ũM
n = TuM

n + f

and it may converge to u at a faster rate than the approximation uM
n does.

As for the projection methods, Equation (2.14) can be reduced to a system
of linear equations of size n + 1. To discuss the existence and uniqueness of
the approximate solutions we need first to recall the following definition of
ν-convergence and a lemma from [1].

Definition 1. (ν-convergence) Let X be Banach space and BL(X) be space of
bounded linear operators from X into X. Let A,An ∈ BL(X). We say that An

is ν–convergent to A if

(H1) ∥An∥ ≤ c < ∞, (H2) ∥(An −A)A∥ → 0 as n → ∞,

(H3) ∥(An −A)An∥ → 0 as n → ∞.

Lemma 3. (Ahues et al. [1]) Let X be a Banach space and A,An be bounded
linear operators on X. If ∥An − A∥ → 0, as n → ∞ or An is ν-convergent
to A and (I − A)−1 exists, then for n large enough (I − An)

−1 exists and is
uniformly bounded on X.

3 Convergence rates

Lemma 4. Assume that the inverse of (I−T ) exists and is uniformly bounded.
Then, for a sufficiently large n, the operators (I − πnT )

−1 and (I − Tπn)
−1

exist. Moreover,

∥(I − πnT )
−1∥∞ ≤ C1 and ∥(I − Tπn)

−1∥∞ ≤ C2

for a suitable constants C1 and C2 independents of n.

Proof. We need to show that Tπn is ν-convergent to T. Let x ∈ C [−1, 1] and
let s ∈ [−1, 1]. By using the Cauchy-Schwarz inequality, one has

|(Tπnx)(s)| =
∣∣∣∣∫ 1

−1

κ(s, t)(πnx)(t)dt

∣∣∣∣ ≤ [∫ 1

−1

|κ(s, t)|2dt
] 1

2

×
[∫ 1

−1

|(πnx)(t)|2dt
] 1

2

.

Hence, by (2.6)

∥Tπnx∥∞ ≤ Ap∥x∥L2 ≤
√
2Ap∥x∥∞, (3.1)

where

A = max
s∈[−1,1]

[∫ 1

−1

|κ(s, t)|2dt
] 1

2

.
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Thus, (H1) is satisfied with c =
√
2Ap. Similarly to (3.1), we have

∥T (I − πn)Tx∥∞ ≤ A∥(I − πn)Tx∥L2 ≤
√
2A∥(I − πn)T∥L2∥x∥∞.

Since T is a compact linear integral operator in L2[−1, 1] and πn converges
to the identity operator pointwise, then it follows that ∥(I − πn)T∥L2 → 0 as
n → ∞. Hence, we deduce that

∥T (I − πn)T∥∞ ≤
√
2A∥(I − πn)T∥L2 → 0 as n → ∞.

This proves (H2). The condition (H3) can be checked in the same way as (H2).
According to Lemma 3, the operators (I − Tπn)

−1 exist and are uniformly
bounded for all sufficiently large n. The existence and the uniform boundedness
of the operators (I−πnT )

−1 follows immediately from Lemma 3.4.1 of Atkinson
[3]. This completes the proof. ⊓⊔

The following well known error estimates are quoted from Atkinson [3, Chap.3].

∥u− un∥∞ ≤ ∥(I − πnT )
−1∥∞∥(I − πn)u∥∞, (3.2)

∥u− ũn∥∞ ≤ ∥(I − Tπn)
−1∥∞∥T (I − πn)u∥∞. (3.3)

For a fixed s ∈ [−1, 1], let κs(t) ≡ κ(s, t) for t ∈ [−1, 1] be the s section of
κ. The function κs, is of class Cγ1 in [−1, s] and [s, 1]. Furthermore, by our

assumptions on κ1 and κ2, the values κ
(γ1)
s (s − 0) and κ

(γ1)
s (s + 0) will exist.

Then, κ
(γ1)
s is bounded in this way

∥κ(γ1)
s ∥∞ ≤ 2Mγ1

. (3.4)

Corollary 1. Let the kernel κ be of class C(α, γ). Then for each s ∈ [−1, 1],
there exists a polynomial vs of degree ≤ n such that

∥κ(γ1)
s − vs∥L2 = O(n− 1

2 (γ2−γ1)), (3.5)

where γ2 = min{α, γ + 2}.

Proof. Let

ℓ(s, t) =
∂γ1κ

∂tγ1
(s, t), s, t ∈ [−1, 1].

For a fixed s ∈ [−1, 1], we denote ℓs(t) = ℓ(s, t), t ∈ [−1, 1]. Since ℓs ∈
L2[−1, 1], for all s ∈ [−1, 1] from Schumaker [17, p.92] there is a polynomial vs
of degree ≤ n such that

∥ℓs − vs∥L2 ≤ C1ω
(
ℓs, 1/n

)
,

where ω denotes the modulus of smoothness of ℓs with respect to the L2− norm

ω
(
ℓs,

1

n

)
= sup

0≤δ≤ 1
n

(∫ 1−δ

−1

|ℓs(t+ δ)− ℓs(t)|2dt

) 1
2

. (3.6)
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Note that if α ≤ γ1, we have γ2 − γ1 = 0 and (3.5) holds, since

∥κ(γ1)
s − vs∥L2 ≤ 2

√
2Mγ1

+ max
s∈[−1,1]

∥vs∥L2 = O(1).

Suppose α ≥ γ1 + 1, and let |s| ≤ 1− 3δ/2. Then∫ 1−δ

−1

|ℓs(t+ δ)− ℓs(t)|2dt =
∫ s− 3δ

2

−1

|ℓ2s(t+ δ)− ℓ2s(t)|2dt

+

∫ s− δ
2

s− 3δ
2

|ℓs(t+ δ)− ℓ2s(t)|2dt+
∫ s+ δ

2

s− δ
2

|ℓ1s(t+ δ)− ℓs(t)|2dt

+

∫ 1−δ

s+ δ
2

|ℓ1s(t+ δ)− ℓ1s(t)|2dt,

(3.7)

where ℓis = κ
(γ1)
is and κis is the s section of κi, i = 1, 2. The function ℓis ∈

Cα−γ1(Πi), then using the mean value theorem,

|ℓis(t+ δ)− ℓis(t)| ≤ sup
−1≤s,t≤1

∣∣∣∣∂γ1+1κi

∂tγ1+1
(s, t)

∣∣∣∣ δ ≤ Mi,γ1+1δ.

The second and the third integral in (3.7) can be bounded by 4(M2,γ1
)2δ. Thus,

the resulting global bound for (3.6) is O(δ
1
2 ). In the case |s| ≥ 1− 3δ

2 , the proof
is essentially the same and this reach the proof. ⊓⊔

Theorem 1. Let the kernel κ be of class C(α, γ). Then for each s ∈ [−1, 1]

max
s∈[−1,1]

∥κs − πnκs∥L2 = O(n− 1
2 (γ1+γ2)). (3.8)

Proof. Note that if s = −1,

∥κs − πnκs∥L2 = ∥κ2s − πnκ2s∥L2 = O(n−α)

and a similar estimate is obtained for s = 1. Thus, (3.8) holds. From (3.4), κs

belongs to Hγ1 [−1, 1], and the estimate (2.8) yields

∥κs − πnκs∥L2 ≤ C1n
−γ1∥κ(γ1)

s ∥L2 . (3.9)

We observe that replacing κ(γ1) by κ(γ1) − vs leaves the left-hand side of (3.9)
unchanged since πnvs = vs. Hence, the estimate (3.5) concludes the proof. ⊓⊔

Lemma 5. Let T be an integral operator with a kernel κ ∈ C(α, γ). Then the
operators (I − TM

n )−1 exist and are uniformly bounded for a sufficiently large
n, i.e. there exists a constant C3 > 0 such that

∥(I − TM
n )−1∥∞ ≤ C3 < ∞. (3.10)

Proof. Let πG
n be the orthogonal projection defined by (2.4). We first note

that from (2.10) it follows that

∥(T − TM
n )x∥∞ = ∥(I − πG

n )T (I − πG
n )x∥∞ ≤ (1 + C log n)∥T (I − πG

n )x∥∞.

Math. Model. Anal., 27(4):652–667, 2022.
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Since
⟨v, (I − πG

n )x⟩ = 0, ∀v ∈ Xn,

we can write

|[T (I − πG
n )x](s)| =

∣∣∣∣∫ 1

−1

κ(s, t)(x− πG
n x)(t)dt

∣∣∣∣
= |⟨κs, (I − πG

n )x⟩| = |⟨(I − πG
n )κs, (I − πG

n )x⟩|.
(3.11)

It results now from the Cauchy-Schwarz inequality that

∥(T − TM
n )x∥∞ ≤ (1 + C log n) max

s∈[−1,1]
∥(I − πG

n )κs∥L2∥(I − πG
n )x∥L2 .

Thus,

∥T − TM
n ∥∞ ≤

√
2(1 + p)(1 + C log n) max

s∈[−1,1]
∥(I − πG

n )κs∥L2 .

Therefore, estimate (3.8) leads to

∥T − TM
n ∥∞ = O(n− 1

2 (γ1+γ2) log n) → 0 as n → ∞.

This is due to the fact that γ1 + γ2 ≥ 1. The desired result is now immediate
from Lemma 3.
For the interpolatory projection, we need to assume that α ≥ 1 and γ ≥ 0. In
other words, γ1 ≥ 1. Let x ∈ C [−1, 1]. Since x− πC

n x ∈ C [−1, 1], it follows that
T (I − πC

n )x ∈ Cγ1 [−1, 1]. Hence, the bounds (2.9) and (2.11) imply that

∥(T − TM
n )x∥∞ ≤ C1n

1
2−γ1∥(T (I − πC

n )x)
(γ1)∥∞

≤ C1A1n
1
2−γ1∥(I − πC

n )x∥L2 , (3.12)

where

A1 = max
s∈[−1,1]

[∫ 1

−1

∣∣∣∣∂γ1κ

∂sγ1
(s, t)

∣∣∣∣2 dt
] 1

2

.

Consequently,

∥T − TM
n ∥∞ ≤

√
2C1(1 + p)A1n

1
2−γ1 → 0 as n → ∞.

The proof is complete. ⊓⊔

Remark 1. In the case of the interpolatory projection, it can be easily checked
from (2.6) and (2.7) that, TM

n is ν−convergent to T in L2−norm for all γ ≥ −1.
This means that

sup
n≥N

∥(I − TM
n )−1∥2 ≤ c < ∞.

Now, we have from (2.3) and (3.10),

∥T (I − TM
n )−1∥∞ ≤ C3∥T∥∞ < ∞.
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Then, the following two results are quoted from [12] and [15] respectively.

∥u− uM
n ∥∞ ≤ ∥(I − TM

n )−1∥∞∥(I − πn)T (I − πn)u∥∞, (3.13)

∥u−ũM
n ∥∞≤

{
1+

√
2p∥T (I − TM

n )−1∥∞
}
∥T (I − πn)T (I − πn)u∥∞. (3.14)

We immediately, obtain

∥u− uM
n ∥∞ ≤ C3(1 + ∥πn∥∞)∥T (I − πn)u∥∞, (3.15)

∥u− uM
n ∥∞ ≤ C3∥(I − πn)T∥∞∥(I − πn)u∥∞, (3.16)

∥u− ũM
n ∥∞ ≤ C2∥T (I − πn)T∥∞∥(I − πn)u∥∞. (3.17)

The above bounds will allow us to establish several rates of convergence for
uM
n and ũM

n and to deduce then the optimal ones.

3.1 Galerkin and modified Galerkin methods

The following result is crucial.

Theorem 2. Let T be an integral operator with kernel κ ∈ C(α, γ). For µ =
0, . . . , α, if x ∈ Cµ[−1, 1], then for n large enough

∥T (I − πG
n )x∥∞ ≤ Cn−µ− 1

2 (γ1+γ2)∥x(µ)∥L2 . (3.18)

Proof. For each s ∈ [−1, 1], by (3.11) and the Cauchy-Schwarz inequality, we
obtain ∣∣[T (I − πG

n )x](s)
∣∣ ≤∥(I − πG

n )κs∥L2∥(I − πG
n )x∥L2 .

Taking supremum over s ∈ [−1, 1], and using (2.8), (3.8) show the desired
result. ⊓⊔

In the rest of this section, we assume for the projection methods that κ ∈
C(α, γ), while for modified projection method it is assumed that κ ∈ C(2α, γ).
It is to be noted that the analysis of the error for uM

n and ũM
n is adapted from

Kulkarni [13].

Theorem 3. Assume that f ∈ Cα[−1, 1]. Let uG
n and ũG

n be the Galerkin and
the iterated Galerkin solutions respectively. Then, for n large enough,

∥u− uG
n ∥∞ = O(n−α+ 3

4 ), (3.19)

∥u− ũG
n ∥∞ = O(n−α− 1

2 (γ1+γ2)), (3.20)

∥u− uM
n ∥∞ = O(n−α− 1

2 (γ1+γ2) log n), (3.21)

∥u− ũM
n ∥∞ = O(n−α−γ1−γ2). (3.22)

Proof. The estimate (3.19) is obtained by combining (2.9) and (3.2), while
(3.20) is a consequence of (3.3) and (3.18). The operator T is a continuous
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operator from Cα[−1, 1] into Cα[−1, 1]. Then, as u ∈ Cα[−1, 1] we have T (I −
πG
n )u ∈ Cα[−1, 1] ⊂ Cγ1 [−1, 1]. It follows from (2.9) that

∥(I − πG
n )T (I − πG

n )u∥∞ ≤ C1n
−γ1+

3
4 ∥(T (I − πG

n )u)
(γ1)∥∞. (3.23)

Noting that

(T (I − πG
n )u)

(γ1)(s) =

∫ 1

−1

q(s, t)(I − πG
n )u(t)dt,

where the kernel q is of class C(α, γ − γ1), the estimate (3.18) gives,

∥(T (I−πG
n )u)

(γ1)∥∞≤Cn−α− 1
2 (min{α,γ−γ1+1}+min{α,γ−γ1+2})∥x(α)∥L2 . (3.24)

By combining (3.23) and (3.24) with (3.13), we obtain

∥u− uM
n ∥∞ = O(n

3
4−α− 1

2 (γ1+γ2)).

We observe that the required order of convergence in (3.21) is higher and is
derived simply from (2.10), (3.18) and (3.15).

By (3.18) and (3.24), one gets

∥T (I − πG
n )T (I − πG

n )u∥∞ ≤ Cn−γ1− 1
2 (γ1+γ2)∥(T (I − πG

n )u)
(γ1)∥L2

≤ Cn−α−γ1−γ2∥x(µ)∥L2

and the estimate (3.14) shows (3.22). This order is better than the one that
can be achieved using the error bound (3.17). Indeed, by (3.11), (2.13) and
(3.8) we have for each x ∈ L2[−1, 1] and each s ∈ [−1, 1]

|T (I − πG
n )Tx(s)| ≤ ∥(I − πG

n )κs∥L2∥(I − πG
n )Tx∥L2

≤ C1n
− 1

2 (γ1+3γ2)∥(Tx)(γ2)∥L2 ≤
√
2C1Kn− 1

2 (γ1+3γ2)∥x∥∞.

As a consequence,

∥T (I − πG
n )T∥∞ = O(n− 1

2 (γ1+3γ2)).

This together with (2.9) show that

∥u− ũM
n ∥∞ = O(n−α− 1

2 (γ1+3γ2)+
3
4 ).

Taking into account that γ1 + 1 ≥ γ2, the remark γ1 + γ2 ≥ 1
2 (γ1 + 3γ2) − 3

4 ,
ends the proof. ⊓⊔

Remark 2. From Theorem 3, we observe that while uM
n and ũG

n have almost
the same rate of convergence, the solution ũM

n is more accurate than both of
them. We see also that ũG

n , is more accurate than uG
n . If α > γ + 1, we obtain

the orders

∥u− uG
n ∥∞ = O(n−α+ 3

4 ), ∥u− ũG
n ∥∞ = O(n−α−γ− 3

2 ),

∥u− uM
n ∥∞ = O(n−α−γ− 3

2 log n), ∥u− ũM
n ∥∞ = O(n−α−2γ−3).
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3.2 Collocation and modified collocation methods

Theorem 4. Let T be an integral operator with kernel κ ∈ C(α, γ). For µ =
0, . . . , α, if x ∈ Cµ[−1, 1], then

∥M(I − πC
n )v∥∞ ≤ Cn−µ∥v(µ)∥2. (3.25)

Proof. Since

[T (I − πC
n )v](s) =

∫ 1

−1

m(s, t)(v − πC
n v)(t)dt, s ∈ [−1, 1].

By taking the supremum over [−1, 1], we get

∥M(I − πC
n )v∥∞ ≤ max

s∈[−1,1]
∥ms∥2∥v − πC

n v∥2 ≤
√
2C1M0n

−µ∥v(µ)∥2.

Whence, (3.25) is proved. ⊓⊔

Theorem 5. Let γ ≥ 0 and assume that f ∈ Cα[−1, 1] with α ≥ 1. Let uC
n and

ũC
n be the collocation and the iterated collocation solutions respectively. Then,

for n large enough,

∥u− uC
n ∥∞ = O(n−α+ 1

2 ), (3.26)

∥u− ũC
n ∥∞ = O(n−α), (3.27)

∥u− uM
n ∥∞ = O(n−α−γ2+1), (3.28)

∥u− ũM
n ∥∞ = O(n−α−γ2+

1
2 ). (3.29)

Proof. The estimate (3.26) follows from (2.9) and (3.2), while (3.27) follows
from (3.25) and (3.3). We notice that if we use (3.15) and (3.25), we get only the

order O(n−α+ 1
2 ) for uM

n . This order can be improved and reach a O(n−α−γ2+1),
if the bound (3.16) is used. Indeed, by (2.9) and by (2.3)

∥(I − πC
n )Tx∥∞ ≤ C1n

−γ2+
1
2 ∥(Tx)(γ2)∥∞ ≤ Cn−γ2+

1
2 ∥x∥∞,

which leads to
∥(I − πC

n )T∥∞ = O(n−γ2+
1
2 ).

The required result follows from (2.9) and the above estimate. Now, the optimal
order is recovered by using (3.12) and (2.8).

Note that by (2.8) and (2.13),

∥(I − πC
n )Tx∥L2 ≤ C1n

−γ2∥(Tx)(γ2)∥L2 ≤ C1Kn−γ1−1∥x∥L2 .

Hence ∥(I − πC
n )T∥L2 = O(n−γ2) and therefore

∥T (I − πC
n )T∥∞ = O(n−γ2). (3.30)

Here we have used

|T (I − πC
n )Tx(s)| ≤ A1∥(I − πC

n )Tx∥L2 ,

Math. Model. Anal., 27(4):652–667, 2022.



664 C. Allouch, D. Sbibih and M. Tahrichi

which is equivalent to

∥T (I − πC
n )T∥∞ ≤ A1∥(I − πC

n )T∥L2 .

Combining (3.30) and (2.9) with (3.17) ends the proof of (3.29). It is to be noted
that when we combine (3.25) with (3.14), we obtain only the order O(n−γ1−α)
which is slower than (3.29). ⊓⊔

Remark 3. In general, the iterated modified solution ũM
n is the fastest solution

and the collocation solution is the slowest. Moreover, the modified collocation
solution uM

n converge faster than the iterated collocation solution ũC
n . For γ = 0,

we obtain

∥u− uC
n ∥∞ = O(n−α+ 1

2 ), ∥u− ũC
n ∥∞ = O(n−α),

∥u− uM
n ∥∞ = O(n−α−1), ∥u− ũM

n ∥∞ = O(n−α− 3
2 ).

Noting that πC
n un = πC

n ũn and πC
n u

M
n = πC

n ũ
M
n , which implies that at the col-

location nodes, the collocation and the modified collocation methods converge
with the same speed as their iterated versions.

Remark 4. It was also possible to use the collocation at the Gauss-Radau, the
Gauss-Lobatto points or even at Tchebychev points. In this case, we expect
the same convergence orders obtained previously.

4 Numerical results

In this section, a numerical example is given to illustrate the theory established
in the previous sections. We consider the following integral equation quoted
from [13]

u(s)−
∫ 1

0

κ(s, t)u(t)dt = f(s), s ∈ [−1, 1],

where

κ(s, t) =

{
s(1− t), s ≤ t,
t(1− s), t ≤ s,

and f(s) is selected so that u(s) = s
9
2 . Thus, u ∈ C4[0, 1] and u /∈ C5[0, 1]. In

this example we have

α = 4, γ = 0, γ1 = 1, γ2 = 2.

Let Xn be the space of polynomials of degree ≤ n. The computations are done
for 2 ≤ n ≤ 8. Note that, all required integrals were calculated by a Gauss-
quadrature rule. We present the errors obtained by the modified projection
method and its iterated version and we compare them with those obtained by
the projection and the iterated projection methods. The results are given in
Tables 1–2.

Even though the iterated projection and the modified projection methods
have the same rate, we observe, in conformity with the theory, that the iterated
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Table 1. Orthogonal projection.

n ∥u− uG
n ∥∞ ∥u− ũG

n ∥∞ ∥u− uM
n ∥∞ ∥u− ũM

n ∥∞

2 1.45877× 10−1 1.13050× 10−3 9.51061× 10−4 1.32928× 10−5

3 2.58135× 10−2 1.31364× 10−4 1.00386× 10−4 9.74411× 10−7

4 1.51176× 10−4 4.10769× 10−6 3.72095× 10−6 2.03446× 10−8

5 8.64590× 10−5 1.42896× 10−7 1.40984× 10−7 5.21080× 10−10

6 1.31632× 10−5 1.33924× 10−8 1.50929× 10−8 3.64242× 10−11

7 3.00966× 10−6 2.03645× 10−9 2.53317× 10−9 4.41795× 10−12

8 8.77996× 10−7 4.14569× 10−10 5.60523× 10−10 7.11813× 10−13

Table 2. Interpolatory projection.

n ∥u− uC
n ∥∞ ∥u− ũC

n ∥∞ ∥u− uM
n ∥∞ ∥u− ũM

n ∥∞

2 1.65449× 10−1 1.52518× 10−3 8.68407× 10−4 1.95506× 10−5

3 2.69583× 10−2 1.31524× 10−4 1.00361× 10−4 2.30886× 10−6

4 1.58336× 10−3 4.13678× 10−6 3.40545× 10−6 3.47622× 10−8

5 9.73069× 10−5 1.35795× 10−7 1.16787× 10−7 8.42624× 10−10

6 1.56602× 10−5 1.30225× 10−8 1.12519× 10−8 5.52156× 10−11

7 3.74297× 10−6 1.94947× 10−9 1.69288× 10−9 6.24665× 10−12

8 1.13231× 10−6 3.85032× 10−10 3.34933× 10−10 9.88022× 10−13

modified projection approximation converges the fastest than both of them. We
believe that sharper estimates than those stated previously could have been
provided, especially in the case of the interpolatory projection.

Let

τj = cos

[
2j − 1

2n
π

]
, j = 1, . . . , n.

These points are known as the classical Chebyshev points, and are the zeros of
the nth degree Tchebychev polynomial of the first kind Tn, defined by

Tn(cosnθ) = cosnθ.

By using these points, we obtain the results given in Table 3.

Table 3. Collocation at Tchebychev points.

n ∥u− uC
n ∥∞ ∥u− ũC

n ∥∞ ∥u− uM
n ∥∞ ∥u− ũM

n ∥∞

2 1.03409× 10−1 2.55726× 10−3 1.53757× 10−3 3.90372× 10−5

3 1.47021× 10−2 3.56504× 10−4 1.72021× 10−4 5.72928× 10−6

4 7.82493× 10−3 8.33308× 10−6 5.46370× 10−6 7.03910× 10−8

5 4.47585× 10−5 2.49501× 10−7 1.88432× 10−7 1.89603× 10−9

6 6.81413× 10−6 2.11725× 10−8 1.79098× 10−8 1.09988× 10−10

7 1.55786× 10−6 3.33072× 10−9 2.63310× 10−9 1.15512× 10−11

8 4.54432× 10−7 6.64968× 10−10 5.37712× 10−10 1.79301× 10−12

It can be seen that the collocation at the Gauss points is slightly better
than the corresponding one at the Tchebychev points.
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5 Conclusions

The above tables illustrate that high accuracy is obtained by the proposed
methods even when the polynomials are of low degree and the exact solution
with limited smoothness. It should be mentioned that to obtain an accuracy of
comparable order by piecewise polynomials a very much larger linear systems
are needed to be solved. For example, to obtain the error of order 10−13 in the
iterated modified projection method with n = 8, a system of size 9×9 is needed
to be solved, whereas in the piecewise polynomial basis (see [13]) we need to
solve a system of size 256 × 256. We feel that the methods proposed in this
paper can be extended naturally to nonlinear Urysohn integral equations and
also to eigenvalue problems. We expect that for the special case of Hammerstein
equations the Legendre superconvergent projection-type methods studied in [2]
will give the same performance as the modified projection methods.
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