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Abstract. In the present paper, a new family of multi-layers (deep) neural network
(NN) operators is introduced. Density results have been established in the space of
continuous functions on [−1, 1], with respect to the uniform norm. First, the case
of the operators with two-layers is considered in detail, then the definition and the
corresponding density results have been extended to the general case of multi-layers
operators. All the above definitions allow us to prove approximation results by a con-
structive approach, in the sense that, for any given f all the weights, the thresholds,
and the coefficients of the deep NN operators can be explicitly determined. Finally,
examples of activation functions have been provided, together with graphical exam-
ples. The main motivation of this work resides in the aim to provide the corresponding
multi-layers version of the well-known (shallow) NN operators, according to what is
done in the applications with the construction of deep neural models.
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1 Introduction

The study of deep neural networks (NNs) currently represents one of the most
studied topic (see, e.g., [25,39,40]), in view of the possible implications regard-
ing several application aspects ( [26, 28]), including artificial intelligence and
machine learning. A very complete overview on the topic can be found, e.g.,
in [35].

In particular, it is known since the end of the 80’s that among the main
tasks that can be performed by NNs there is the functions approximation. For
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this regard, in the literature can be found a wide number of articles, in par-
ticular for what concerns the approximation by one-layer (shallow) NNs. One
of the pioneering work in this sense is due to Cybenko [20], who established a
uniform approximation result in case of NNs activated by sigmoidal function.
Cybenko’s approximation theorem was proved by resorting to non-constructive
arguments, and exploiting the well-known Hahn-Banach theorem of functional
analysis. More precisely, he proved that the vector space containing one-layer
NNs activated by continuous and non-decreasing sigmoidal functions is dense
with respect to the uniform topology in the space of continuous functions de-
fined on the multivariate set [0, 1]d := [0, 1]× · · · × [0, 1] ⊂ Rd, d ≥ 1. In other
words, he claims that a continuous function of several variables can be uni-
formly approximated by any degree of accuracy by the superposition of certain
(univariate) sigmoidal functions using a sufficiently high number of artificial
neurons. The latter fact is known in the literature as the so-called ”universal
approximation property” in the spirit of the well-known Kolmogorov approxi-
mation theorem (see, e.g., [27]).

Later on, several authors studied the above problem; the peculiarity of many
of them was that they are faced by non-constructive techniques. Among them
we can quote, e.g., [5, 31,32,33].

However, especially for the applications, it can be important to have at
disposal constructive approximation algorithms; this has motivated several re-
search in this direction, that mainly concerned shallow NNs (see, e.g., [11, 29]
for some old papers, or, e.g., [8, 9, 21] for some more recent ones).

For instance, the theory of neural network (NN) operators introduced with
the work of Cardaliaguet and Euvrard [10] is one of the possible ways to ap-
proach the above problem. The main limit of the theory proposed in [10] was
that it could be applied only in case of bell-shaped activation functions with
compact support. This limit has been overcome in [8], where NN operators (of
one-variable) activated by the logistic function have been considered. Subse-
quently, in [16, 17] the theory of the NN operators has been formulated (for
functions of one and several variables) for a wide class of sigmoidal activa-
tion functions (including, of course, the logistic function) satisfying suitable
assumptions.

Even if the theory of NN operators have been studied in depth by several
authors, only the one-layer case has been considered, see, e.g., [1, 2, 3, 4, 15, 19,
24,37].

For the above reason, in the present paper we introduce a family of multi-
layers (deep) NN operators, and we provide constructive approximation results.
More precisely, we provide density theorems for the family of multi-layers (deep)
NN operators in the space of continuous functions on the interval [−1, 1].

The main motivation of this work resides in the aim to provide the cor-
responding multi-layers version of the well-known (shallow) NN operators, ac-
cording to what is done in the applications with the construction of deep neural
models.

From the mathematical point of view, the family of operators here intro-
duced consists in the evaluation of the approximation performances of the
nested application of families of positive linear operators.



Density Results by Deep Neural Network Operators 549

This is done exploiting the ”density approach”, as typically occurs with
NN type approximation, see, e.g., [22,23]; due to this property one can usually
claim that NNs are universal approximators.

The proposed approach can be defined ”constructive” in the sense that for
any given f all the weights, the thresholds, and the coefficients of the NN
operators can be explicitly determined.

For the sake of clarity, in the paper we first propose the theory in case
of two-layers operators (see Section 3), and then we propose its multi-layers
generalization (see Section 4).

The above results have been proved in case of sigmoidal activation functions
σ; all the required assumptions on σ, together with some preliminary considera-
tions have been recalled in Section 2. However, other than sigmoidal activation
functions, we also show that (see Section 5) deep NN operators based upon the
well-known ReLU (Rectified Linear Unit, [38]) activation function, and also
on RePUs (rectified powers units functions, [30]) are included in the present
theory. Finally, graphical examples have been provided with the purpose of
illustration.

2 Preliminaries

A measurable function σ : R → R is called a sigmoidal function if:

lim
x→−∞

σ(x) = 0 and lim
x→+∞

σ(x) = 1.

From now on, we always consider non-decreasing sigmoidal functions σ,
satisfying the following assumptions:

(Σ1) σ(x)− 1/2 is an odd function;
(Σ2) σ ∈ C2(R) is concave for x ≥ 0;
(Σ3) σ(x) = O(|x|−α) as x→ −∞, for some α > 0.
Now, we can recall the definition of the density function (see, e.g., [16]):

ϕσ(x) :=
1

2
[σ(x+ 1)− σ(x− 1)], x ∈ R.

Note that, based on the above properties, it is not difficult to see that 0 ≤
σ′(x) ≤ σ′(0), x ∈ R, then it turns out that σ (and obviously also ϕσ) is
Lipschitz continuous on R.

Further, it is well-known (see [16]) that under the above assumptions the
function ϕσ turns out to be non-negative, even, and it satisfies the following
property:

ϕσ(x) is non-decreasing for x < 0 and non-increasing for x ≥ 0, (2.1)

with ϕσ(1) > 0, and ϕσ(x) = O(|x|−α), as x → ±∞, where α is the positive
constant of condition (Σ3). Hence, it turns out that ϕσ ∈ L1(R) provided that
α > 1.

Moreover, based on the above assumptions, it is not difficult to see that
(see [16] again):

1 ≥
n∑

k=−n

ϕσ(nx− k) ≥ ϕσ(1) > 0, (2.2)

Math. Model. Anal., 27(4):547–560, 2022.
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for every x ∈ [−1, 1] and n ∈ N+.

Remark 1. Note that, if we remove condition (Σ2) on σ, and we assume directly
that ϕσ satisfies (2.1) together with ϕσ(1) > 0, the theory still holds, see
e.g. [16]. The consequence of the above observation is that, we can apply the
above theory to C2 as well as to non-smooth sigmoidal functions, such that the
corresponding ϕσ satisfies (2.1) and ϕσ(1) > 0.

Now, we can define the discrete absolute moments of ϕσ, as follows:

Mν(ϕσ) := sup
u∈R

∑
k∈Z

|ϕσ(u− k)| |u− k|ν ,

with ν ≥ 0.
It is well-known (see, e.g., [7]) that under the above assumptions, and as-

suming in addition that the parameter α > 1, it turns out that:

Mν(ϕσ) < +∞, 0 ≤ ν < α− 1. (2.3)

Now, we recall the (shallow) neural network (NN) operators, introduced in [16].
Let σ be a sigmoidal function assumed as above. We define the (shallow)

NN operators, by:

(Fnf)(x) =

n∑
k=−n

f (k/n)ϕσ (nx− k)

n∑
k=−n

ϕσ(nx− k)
, x ∈ I := [−1, 1],

n ∈ N+, where f : I → R is bounded.
Notice that, Fn are well-defined; this is a consequence of the previous prop-

erties of the function ϕσ. Further, it is well-known ( [16]) the following conver-
gence theorem holds.

Theorem 1. Let σ be a sigmoidal function satisfying assumption (Σ3) with
α > 1, and let f ∈ C(I) be fixed. Then:

lim
n→+∞

∥Fnf − f∥∞ = 0.

3 Two-layers NN operators: approximation results

We now introduce the following family of deep NN operators.

Definition 1. Let σ be a sigmoidal function, assumed as in Section 2. We
introduce the two-layers (deep) neural network operators as follows:

(D2
(n1,n2)

f)(x) :=

n1∑
k=−n1

f
(

k
n1

)
ϕσ

(
n1

n2∑
j=−n2

j
n2
ϕσ(n2x− j)∑n2

j=−n2
ϕσ(n2x− j)

− k

)
n1∑

k=−n1

ϕσ(n1x− k)

, x ∈ I,

with f : I → R, and n1, n2 ∈ N+.
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Note that, the operators D2
(n1,n2)

f turns out to be well-defined, e.g., for boun-

ded functions. Indeed, using (2.2), we have:

|(D2
(n1,n2)

f)(x)| ≤ 1

ϕσ(1)

∣∣∣∣ n1∑
k=−n1

f

(
k

n1

)
ϕσ

(
n1

n2∑
j=−n2

j
n2
ϕσ(n2x− j)∑n2

j=−n2
ϕσ(n2x− j)

− k

)∣∣∣∣
≤ ∥f∥∞

ϕσ(1)

n1∑
k=−n1

ϕσ

(
n1

n2∑
j=−n2

j
n2
ϕσ(n2x− j)∑n2

j=−n2
ϕσ(n2x− j)

− k

)
≤ ∥f∥∞

ϕσ(1)
sup
u∈R

∑
k∈Z

ϕσ(u− k) =
∥f∥∞
ϕσ(1)

M0(ϕσ) < +∞,

for every x ∈ I, and n1, n2 ∈ N+, where M0(ϕσ) < +∞ in view of what is
observed in (2.3).

Remark 2. We can observe that the two-layers NN operators are in fact deep
NNs, organized in two layers. This can be simply seen observing that, in fact,
the above operators are constructed by a mathematical composition of two,
one-layer NNs. In practice, two simple NNs have been nested to get a more
complex architecture composed of (2n1 + 1) + (2n2 + 1) artificial neurons.

Since the structure of the considered operators is slightly different from
classical NNs, below we can provide a comparison of D2

(n1,n2)
f (for any fixed

f) with classical feed-forward neural network models. Indeed, one and two layer
classical feed-forward NNs activated by a sigmoidal function σ are defined (from
the mathematical point of view) by:

N1(x) :=

n1∑
k1=0

ak1σ(wk1x− θk1), N2(x) :=

n2∑
k2=0

ak2σ(wk2N1(x)− θk2),

respectively. In the above definitions, wk1
and wk2

are the weights, θk1
and

θk2
are thresholds, and finally ak1

and ak2
are the coefficients of the networks.

Comparing N2 with D2
(n1,n2)

f we can observe what follows.

(i) In the inner layer ofD2
(n1,n2)

f (with 2n2+1 neurons, that can be compared

with N1), we have the network:

n2∑
j=−n2

j

n2
ϕσ(n2x− j) /

n2∑
j=−n2

ϕσ(n2x− j),

where the integer parameter n2 represents the (constant) weights, the
parameter j (with j = −n2, ..., n2) provide the threshold values (or bias),
while the values:

s

n2
∑n2

j=−n2
ϕσ(n2x− j)

, s = −n2, ..., n2
1, (3.1)

are the coefficients of the inner network.
1 Here we denoted the index at the numerator with the parameter s (instead of j as in
Definition 1) in order to avoid confusion with the parameter j at the denominator.

Math. Model. Anal., 27(4):547–560, 2022.
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(ii) Concerning the second layer of D2
(n1,n2)

f with 2n1 + 1 neurons, we have
that the integer parameter n1 represents the weights,
k (with k = −n1, ..., n1) are the threshold values, and finally:

f(s/n1)∑n1

k=−n1
ϕσ(n1x− k)

, s = −n1, ..., n1
2, (3.2)

are the coefficients.

(iii) The activation functions of the operators D2
(n1,n2)

f are defined using sig-
moidal functions, as happens in N1 and N2.

We can note that the denominators in the definition of the above operators
(that is crucial from the mathematical point of view) can be seen (see Equa-
tions (3.1) and (3.2)) as a part of the coefficients of both layers of D2

(n1,n2)
. This

can be interpreted as the presence of a further connection among the various
neurons of each layer. More precisely, the above denominators show that the
input layer has a double (direct) connection with both the involved layers of
the network.

Obviously, in view of the above comparison we can finally observe that
the NN operators D2

(n1,n2)
can not be viewed as usual two-layer NNs, since

coefficients stated in (3.1) and (3.2) are not constants, as instead happens for
N1 and N2.

Now, we can prove the following density theorem for the family of two-layers
NN operators into the space C(I) of all real valued continuous functions on I,
with respect to the usual norm ∥ · ∥∞.

Theorem 2. Let σ be a sigmoidal function satisfying assumption (Σ3) with
α > 1, and let f ∈ C(I) be fixed. For any ε > 0 there exist n1, n2 ∈ N+ such
that:

∥D2
(n1,n2)

f − f∥∞ < ε.

Proof. Let ε > 0. Then, using Theorem 1 we know that, corresponding to ε/2
there exists n1 ∈ N+ sufficiently large such that:

∥Fn1
f − f∥∞ < ε/2. (3.3)

Now, we can also choose n2 ∈ N+ such that:

∥Fn2
θ − θ∥∞ <

ε

2 ∥f∥∞n1(2n1 + 1)|σ′(0)|
ϕσ(1),

where the function θ(x) := x, x ∈ I. Now, for every fixed x ∈ I we have:

|(D2
(n1,n2)

f)(x)− f(x)|

≤ |(D2
(n1,n2)

f)(x)− (Fn1f)(x)|+ |(Fn1f)(x)− f(x)| =: I1 + I2.

2 Here, we used the parameter s at the numerator (instead of k), for the same reason as
before.
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Concerning I1, recalling that ϕσ is Lipschitz continuous with Lipschitz constant
|σ′(0)|, we can write what follows:

I1 =

∣∣∣∣ n1∑
k=−n1

f

(
k

n1

)[
ϕσ

(
n1

n2∑
j=−n2

j
n2
ϕσ(n2x− j)∑n2

j=−n2
ϕσ(n2x− j)

− k

)
− ϕσ(n1x− k)

]∣∣∣∣∑n1

k=−n1
ϕσ(n1x− k)

≤ ∥f∥∞
ϕσ(1)

n1∑
k=−n1

∣∣∣∣∣ϕσ
(
n1

n2∑
j=−n2

j
n2
ϕσ(n2x− j)∑n2

j=−n2
ϕσ(n2x− j)

− k

)
− ϕσ(n1x− k)

∣∣∣∣∣
≤ ∥f∥∞

ϕσ(1)
|σ′(0)|

n1∑
k=−n1

n1

∣∣∣∣∣
n2∑

j=−n2

j

n2
ϕσ(n2x− j)∑n2

j=−n2
ϕσ(n2x− j)

− x

∣∣∣∣∣
=

∥f∥∞
ϕσ(1)

|σ′(0)|n1 (2n1 + 1) |(Fn2θ)(x)− θ(x)| < ε/2.

Hence the proof follows by observing that also I2 < ε/2 in view of (3.3). ⊓⊔

Remark 3. Note that the density approach is one of the most common when
one deals with NN type approximation. In this sense, we can refer, e.g., to the
Cybenko approximation theorem [20] (inspired by the well-known Kolmogorov
representation theorem).

4 Multi-layers NN operators

In Section 3, we introduced and studied a family of deep NN operators with
two layers. In this section, the above definition and the corresponding density
results will be extended to the more general context of multi-layers NN oper-
ators. The idea is to extend the above definition proceeding by induction on
the number of layers.

Definition 2. Let σ be a sigmoidal function, assumed as in Section 2. We
define the m-layers (deep) NN operators, m ∈ N, m ≥ 2, as follows:

(Dm
n[m]

f)(x) =

n1∑
k=−n1

f

(
k

n1

)
ϕσ

(
n1 (D

m−1
n[m−1]

θ)(x)− k
)

n1∑
k=−n1

ϕσ(n1x− k)

, x ∈ I,

where f : I → R, θ(x) := x, x ∈ I, n[m] ∈ Nm
+ , with n[m] = (n1, n2, ..., nm),

n[m−1] ∈ Nm−1
+ , with n[m−1] = (n2, n3, ..., nm), and:

(D1
n[1]

θ)(x) := (Fnmθ)(x),

Math. Model. Anal., 27(4):547–560, 2022.
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(D2
n[2]

θ)(x) :=

nm−1∑
k=−nm−1

k

nm−1
ϕσ(nm−1(D

1
n[1]

θ)(x)− k)

nm−1∑
k=−nm−1

ϕσ(nm−1x− k)

,

· · ·

(Dm
n[m−1]

θ)(x) :=

n2∑
k=−n2

k

n2
ϕσ(n2(D

m−1
n[m−2]

θ)(x)− k)

n2∑
k=−n2

ϕσ(n2x− k)

, m ∈ N.

Clearly, for m = 2 the above deep NN operators coincide with those con-
sidered in Section 3.

Further, we can observe that the multi-layers NN operators are well-defined
for every m ≥ 2, for any bounded function f . Indeed, it is easy to see that:

|(Dm
n[m]

f)(x)| ≤ ∥f∥∞
ϕσ(1)

n1∑
k=−n1

ϕσ

(
n1 (D

m
n[m−1]

θ)(x)− k
)

≤ ∥f∥∞
ϕσ(1)

M0(ϕσ) < +∞,

since (Dm
n[m−1]

θ)(x) ∈ R, for every x ∈ I and n[m] ∈ Nm
+ . Now, we are able

to prove the following density result for the family of multi-layers (deep) NN
operators in the space C(I) with respect to the uniform norm.

Theorem 3. Let σ be a sigmoidal function satisfying assumption (Σ3) with
α > 1. Further, let m ∈ N, m ≥ 2 and f ∈ C(I) be fixed. Then, for every
ε > 0 there exists n[m] ∈ Nm

+ such that:

∥Dm
n[m]

f − f∥∞ < ε.

Proof. We proceed by induction on m ≥ 2. In the case m = 2 the density
result immediately follows by Theorem 2. We now suppose that the thesis
holds for m−1 ≥ 2. Let now f ∈ C(I) and ε > 0 be fixed. In view of Theorem
1, we can choose ñ ∈ N+ such that:

∥Fñf − f∥∞ < ε/2.

Further, by the inductive assumption, in correspondence to ε/2 there exists
n[m−1] ∈ Nm−1

+ , with n[m−1] = (n1, n2, ..., nm−1), such that:

∥Dm−1
n[m−1]

θ − θ∥∞ <
εϕσ(1)

2 ∥f∥∞ |σ′(0)|ñ(2ñ+ 1)
.

Now, we set n[m] = (ñ, n1, n2, ..., nm−1) ∈ Nm
+ . Thus, in the case of m-layers

NN operators we can write what follows:

∥Dm
n[m]

f−f∥∞ ≤ ∥Dm
n[m]

f−Fñf∥∞+∥Fñf−f∥∞<∥Dm
n[m]

f−Dm−1
n[m−1]

f∥∞+ε/2.
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Let now x ∈ I be fixed. Using the fact that ϕσ is Lipschitz continuous with
Lipschitz constant |σ′(0)|, we immediately have:

∣∣∣∣∣
ñ∑

k=−ñ

f
(
k
ñ

)
ϕσ

(
ñ (Dm−1

n[m−1]
θ)(x)− k

)
∑ñ

k=−ñ ϕσ(ñx− k)
−

ñ∑
k=−ñ

f
(
k
ñ

)
ϕσ (ñ x− k)∑ñ

k=−ñ ϕσ(ñx− k)

∣∣∣∣∣
≤ |σ′(0)| ∥f∥∞

ϕσ(1)

ñ∑
k=−ñ

ñ
∣∣∣(Dm−1

n[m−1]
θ)(x)− x

∣∣∣ < ε/2.

This completes the proof. ⊓⊔

5 Activation functions and graphical examples

As a first example, we study in detail the case of the deep NN operators acti-
vated by the well-known logistic function:

σℓ(x) :=
(
1 + e−x

)−1
, x ∈ R.

It is well-known (see, e.g., [16, 19]) that the logistic function is a Lipschitz
continuous function satisfying (Σ1), (Σ2) and (Σ3). In particular, due to its
exponential decay to zero as x → −∞, σℓ fulfills condition (Σ3) for every
α > 0.

Based on the above considerations, we deduce that in case of the logistic
function, the density results established in the previous section hold, hence we
can formulate what follows.

Corollary 1. Let σℓ be the logistic function, m ∈ N, m ≥ 2, and f ∈ C(I) be
fixed. Then, denoting by Dσℓ,m

n[m]
the m-layers NN operators activated by σℓ, for

every ε > 0 there exists n[m] ∈ Nm
+ such that:

∥Dσℓ,m
n[m]

f − f∥∞ < ε.

As a second example, we consider the sigmoidal function σMd
(x) (intro-

duced in [18]) that are associated to the central B-spline ( [6, 12]):

Md(x) :=
1

(d− 1)!

d∑
i=0

(−1)i
(
d

i

)(
d

2
+ x− i

)d−1

+

, x ∈ R.

The sigmoidal function σMd
(x) ( [18]) are defined by the following integral-

formula:

σMd
(x) :=

∫ x

−∞
Md(t) dt, x ∈ R,

and the corresponding density functions assume the following expression:

ϕσMd
(x) :=

1

2
[σMd

(x+ 1)− σMd
(x− 1)]

=
1

2

∫ x+1

x−1

Ms(t) dt =
1

2

∫ +1

−1

Ms(y + x) dy, x ∈ R.

Math. Model. Anal., 27(4):547–560, 2022.
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In [18] it has been proved that σMd
(x) satisfies all the assumptions required in

Section 2. In particular, since the central B-spline has compact support, the
σMd

(x) = 0, for every x < −T , where T > 0 is a suitable constant. This shows
that assumption (Σ3) is satisfied by σMd

(x), for every α > 0.
As a consequence, the following corollary can be formulated.

Corollary 2. Let σMd
, d ∈ N, m ∈ N, m ≥ 2, and f ∈ C(I) be fixed. Then,

denoting by D
σMd

,m
n[m]

the m-layers NN operators activated by σMd
, for every

ε > 0 there exists n[m] ∈ Nm
+ such that:

∥DσMd
,m

n[m]
f − f∥∞ < ε.

Finally, we also observe that, in case of d = 1:

σM1
(x) =: σR(x) =

 0, x < −1/2,
x+ (1/2), −1/2 ≤ x ≤ 1/2,
1, x > 1/2.

The function σM1
(x) is also known with the name of the ramp function, see

e.g., [9,13,14]. Now, if we recall the definition of the well-known ReLu activation
function (see, e.g., [21]): ψReLu(x) := (x)+, x ∈ R, it turns out that:

σM1(x) := ψReLu(x+ 1/2)− ψReLu(x− 1/2),

then, the corresponding density function can be expressed in term of ReLu
activation function:

ϕσR
(x) = ϕσM1

(x) =
1

2

[
ψReLu(x+ 3/2)

− ψReLu(x+ 1/2)− ψReLu(x− 1/2) + ψ(x− 3/2)
]
.

As a consequence of the above relation, the deep NN operators D
m,σM1
n can be

considered as a deep NN activated by the above linear combination of ReLu
activation function. For more details concerning the usefulness of ψReLu, see,
e.g., [38].

Note that, central B-splines, and consequently the corresponding σMd
, can

be easily expressed in terms of powers of ψReLU . In the theory of NNs, powers
of the ReLU function are known with the name of rectified power unit functions
(RePUs). Hence, reasoning in a similar way to the case of ReLu function, it is
clear that the above results hold also in case of deep NN operators activated
by suitable combinations of RePUs activation functions (see, e.g., [30]).

Finally, we provide the following graphical examples with the main purpose
to illustrate the approximation performances of the deep NN operators. For
instance, here we consider the continuous function f(x) = x2−1+sinx, on the
interval [−1, 1]; approximation of f by means of the 2-layers and 3-layers NN
operators activated by the logistic function have been considered in Figure 1.

6 Conclusions

The multi-layers (deep) neural network operators introduced and studied in the
present paper allows to establish constructive approximation results by a family



Density Results by Deep Neural Network Operators 557

Figure 1. On the left: the plots of the function f (red line) and of the 2-layers NN
operators D2

(10,10)
f (blue dots) activated by the logistic function. On the right: the plots of

the function f (red line) and of the 3-layers NN operators D3
(10,10,10)

f (blue dots) activated

by the logistic function.

of deep neural networks. The present theory deals with the approximation of
functions of one-variable. It is well-known that the theory of artificial neural
networks is mainly a multivariate theory; indeed the present results lead the
way to the introduction of the corresponding version of deep NN operators for
approximating functions of several variables. This will be done in a future work
following the strategy depicted in [17].

In recent years, the theory of multi-layer NNs has been deeply studied,
see, e.g., [34], in view of its wide importance in both theoretical and applied
fields. Concerning very recent approximation results (that can be interpreted
as density theorems) for the above tools, one can see, e.g., [36]. In the latter
paper, the authors established the order of approximation for deep (two or
multi-layer) NNs activated by ReLU functions, in case of multivariate Hölder
continuous functions. One of the main aspects arising from the above result
was that the approximation error depends not only from the number of the
considered neurons but also from the depth of the net, i.e., by the number of
considered layers. Indeed, increasing the number of the layers in the NNs the
accuracy of the approximation improves.

In view of the importance covered by the above topic, in the present paper
we decided to introduce a multi-layer (deep) version of the so-called NN opera-
tors. Here, only the density problem has been treated, however the considered
results are not limited to the case of the ReLU function, but hold also for a class
of activation functions including RePUs and sigmoidal functions. Obviously,
the role that the additional layers of the NN operators play for the degree of
accuracy of the achieved approximations will be the object of a future investi-
gation. Actually, the graphical results shown in the previous section seems to
suggest the fact that, also in this case, by increasing the number of layers, the
corresponding order of approximation improves. Finally, also the problem of
best approximation will be considered in detail in a future study.
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