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Abstract. In this paper, we establish a strong convergence theorem that approx-
imates a common fixed point of two nonlinear mappings by comprehensively using
an Ishikawa iterative method, a hybrid method, and a mean-valued iterative method.
The shrinking projection method is also developed. The nonlinear mappings are a
general type that includes nonexpansive mappings and other classes of well-known
mappings. The two mappings are not assumed to be continuous or commutative.
The main theorems in this paper generate a variety of strong convergence theorems
including a type of “three-step iterative method”. An application to the variational
inequality problem is also given.
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1 Introduction

In this paper, the notation H represents a real Hilbert space with an inner
product ⟨·, ·⟩ and the induced norm ∥·∥. A set of all fixed points of a mapping
T : C → H is denoted by

F (T ) = {u ∈ C : Tu = u} ,

where C is a nonempty subset of H. The problem of approximating fixed
points of nonlinear mappings has attracted many researchers, and many itera-
tion methods have been proposed. The following iterative procedure is called

■
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Mann’s type [19]:
xn+1 = anxn + (1− an)Txn, (1.1)

for all n ∈ N. In (1.1), x1 ∈ C is arbitrary and an ∈ [0, 1] is a parameter that
satisfies certain conditions. It is well-known that this iteration yields weak
convergence; for instance, Reich [24] demonstrated weak convergence to a fixed
point under the iteration (1.1) in a Banach space setting. In 1974, Ishikawa [7]
introduced a more general iteration than Mann’s type (1.1):

zn = λnxn + (1− λn)Txn, (1.2)

xn+1 = anxn + (1− an)Tzn,

where x1 is provided and λn, an ∈ [0, 1]. If λn = 1 for all n ∈ N in (1.2),
then, Ishikawa iteration coincides with Mann’s iteration (1.1). Various conver-
gence theorems basing on the Ishikawa iteration have been studied by many
researchers; see [1, 11,13].

Following mean-valued iterations by Baillon [3] as well as Shimizu and Taka-
hashi [25], Atsushiba and Takahashi considered the following iteration in their
1998’s paper [2]:

xn+1 = anxn + (1− an)
1

n2

n−1∑
l=0

n−1∑
k=0

SlT kxn for all n ∈ N, (1.3)

where x1 ∈ C is provided and an ∈ [0, 1]. They demonstrated weak convergence
to a common fixed point of nonexpansive mappings S and T that satisfy ST =
TS. A mapping T is nonexpansive if ∥Tx− Ty∥ ≤ ∥x− y∥ for all x, y ∈ C. For
successive studies of the mean-valued iterative method, see [1,6,13,14,16,17,18].

For a nonempty, closed, and convex subset D of H, we use PD to repre-
sent a metric projection from H onto D. In 2003, Nakajo and Takahashi [21]
proved a strong convergence theorem for finding a fixed point of a nonexpansive
mapping:

Theorem 1 ( [21]). Let C be a nonempty, closed, and convex subset of H.
Let T be a nonexpansive mapping from C into itself such that F (T ) ̸= ∅. Let
a ∈ [0, 1) and let {an} be a sequence of real numbers such that 0 ≤ an ≤ a < 1
for all n ∈ N. Define a sequence {xn} in C as follows:

x1 = x ∈ C given, (1.4)

yn = anxn + (1− an)Txn ∈ C,

Cn = {h ∈ C : ∥yn − h∥ ≤ ∥xn − h∥} ,
Qn = {h ∈ C : ⟨x− xn, xn − h⟩ ≥ 0} ,
xn+1 = PCn∩Qn

x ∀n ∈ N.

Then, {xn} converges strongly to a point x̂ of F (T ), where x̂ = PF (T )x.

In 2008, Takahashi, Takeuchi, and Kubota [28] established an approxima-
tion method to find a fixed point of a nonexpansive mapping by employing
metric projections on shrinking sets {Cn}. A simple version of their result is
shown as follows:
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Theorem 2 ( [28]). Let C be a nonempty, closed, and convex subset of H.
Let T be a nonexpansive mapping from C into itself such that F (T ) ̸= ∅. Let
a ∈ [0, 1) and let {an} be a sequence of real numbers such that 0 ≤ an ≤ a < 1
for all n ∈ N. Define a sequence {xn} in C as follows:

x1 = x ∈ C given, (1.5)

C1 = C, (1.6)

yn = anxn + (1− an)Txn ∈ C,

Cn+1 = {h ∈ Cn : ∥yn − h∥ ≤ ∥xn − h∥} ,
xn+1 = PCn+1

x ∀n ∈ N.

Then, {xn} converges strongly to a point x̂ of F (T ), where x̂ = PF (T )x.

Following (1.3), Kondo and Takahashi [18] introduced the following mean-
valued iterative procedure

xn+1 = anxn + bn
1

n

n−1∑
l=0

Slxn + cn
1

n

n−1∑
l=0

T lxn, (1.7)

where x1 ∈ C is provided and an, bn, cn ∈ [0, 1] are the coefficients of a convex
combination. In (1.7), S and T : C → C are nonlinear mappings of a more
general type than nonexpansive mappings, and ST = TS is not assumed.
Kondo and Takahashi established weak convergence to a common fixed point
of S and T . Strong convergence theorems using Halpern’s iteration together
with the mean-valued iteration was presented in another paper [17]. Very
recently, Kondo [14] combined the mean-valued iteration (1.7) with the hybrid
method (1.4) and the shrinking projection method (1.6), and he obtained strong
convergence theorems; see Corollaries 1 and 2 in this paper. Furthermore,
Kondo [13] used an Ishikawa iteration (1.2) with the mean iteration (1.7) and
derived a variety of weak convergence results.

In this paper, we comprehensively use an Ishikawa iteration (1.2), a hy-
brid method (1.4), and a mean-valued iteration (1.7) and establish a strong
convergence theorem that approximates a common fixed point of two nonlin-
ear mappings. The shrinking projection method (1.6) is also developed. The
mappings are of a general type that includes nonexpansive mappings as spe-
cial cases. Similar to Kondo [13], which derived a variety of weak convergence
results, the approach used in this paper generates many types of strong conver-
gence results. At the outset, we prepare prerequisite information in Section 2.
In Section 3, Nakajo and Takahashi’s strong convergence theorem is obtained
whereas in Section 4, Takahashi, Takeuchi and Kubota’s type strong conver-
gence is demonstrated. Our proofs do not require that the two mappings be
continuous or commutative. In Section 5, various types of strong convergence
results are derived from the main theorems presented in the previous two sec-
tions. In Section 6, an application to the variational inequality problem is
demonstrated. Section 7 provides a concise conclusion. The possibility of ex-
tension from the class of nonexpansive mappings to include more general classes
is discussed in Appendix A.
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2 Preliminaries

In this section, preliminary information and results are briefly presented.
Strong convergence of a sequence {xn} in a real Hilbert space H to a point

x (∈ H) is denoted by xn → x, whereas weak convergence is represented by
xn ⇀ x. Strong convergence xn → x is characterized by the following condition:
for any subsequence {xni

} of {xn}, there exists a subsequence
{
xnj

}
of {xni

}
such that xnj

→ x. A closed and convex set C in H is weakly closed, that is,
{xn} ⊂ C and xn ⇀ x imply x ∈ C. Maruyama et al. [20] showed that for
x, y, z ∈ H and a, b, c ∈ R such that a+ b+ c = 1, the following holds:

∥ax+ by + cz∥2 (2.1)

= a ∥x∥2 + b ∥y∥2 + c ∥z∥2 − ab ∥x− y∥2 − bc ∥y − z∥2 − ca ∥z − x∥2 .

Let C be a nonempty, closed, and convex subset ofH. Following convention,
we use PC to denote the metric projection fromH onto C, that is, ∥x− PCx∥ ≤
∥x− h∥ for all x ∈ H and h ∈ C. The metric projection is nonexpansive. The
metric projection PC from H onto C has the following properties:

⟨x− PCx, PCx− h⟩ ≥ 0 and (2.2)

∥x− PCx∥2 + ∥PCx− h∥2 ≤ ∥x− h∥2 (2.3)

for all x ∈ H and h ∈ C.
A mapping S : C → H with F (S) ̸= ∅ is said to be quasi-nonexpansive if

∥Sx− q∥ ≤ ∥x− q∥ (2.4)

for all x ∈ C and q ∈ F (S), where C is a nonempty subset of H. According to
Itoh and Takahashi [8], the set of all fixed points of a quasi-nonexpansive map-
ping S is closed and convex. Consequently, for a quasi-nonexpansive mapping
S, the metric projection PF (S) from H onto F (S) can be considered.

Let S be a self-mapping defined on C such that F (S) ̸= ∅, where C is a
nonempty, closed, and convex subset of H. Let {zn} be a bounded sequence

in C, and define Zn ≡ 1
n

∑n−1
l=0 Slzn (∈ C) for each n ∈ N. Kondo [14] called a

mapping S : C → C mean-demiclosed if

Zni
⇀ v =⇒ v ∈ F (S) , (2.5)

where {Zni
} is a subsequence of {Zn}. The class of mappings that we address

in this paper comprises quasi-nonexpansive and mean-demiclosed mappings.
As we prove next, that class of mappings contains nonexpansive mappings.
Therefore, the results in this paper have broad applicability. For an application
to the variational inequality problem, see Section 6 in this paper.

Claim 1. A nonexpansive mapping that has a fixed point is quasi-nonexpansive
and mean-demiclosed.

Proof. Let S : C → C be a nonexpansive mapping with F (S) ̸= ∅. Let x ∈ C
and q ∈ F (S). Using q = Sq and the hypothesis that S is nonexpansive, we
obtain

∥Sx− q∥ = ∥Sx− Sq∥ ≤ ∥x− q∥ .



Strong Convergence Using Ishikawa and Hybrid Methods 289

This result shows that S is quasi-nonexpansive (2.4).
Next, we prove that S : C → C is mean-demiclosed, where C is nonempty,

closed, and convex subset of H. Let Zn ≡ 1
n

∑n−1
l=0 Slzn (∈ C), where {zn} is

a bounded sequence in C, and let {Zni} be a subsequence of {Zn} such that
Zni

⇀ v for some v ∈ H. As {Zni
} is a sequence in C and C is weakly closed,

we have v ∈ C. Therefore, Sv (∈ C) is defined. Our goal is to prove that
Sv = v. As S is nonexpansive,∥∥Sl+1zn − Sv

∥∥2 ≤
∥∥Slzn − v

∥∥2
for all n ∈ N and l ∈ N∪{0}. Then, it follows that∥∥Sl+1zn − Sv

∥∥2 ≤
∥∥Slzn − Sv

∥∥2 + 2
〈
Slzn − Sv, Sv − v

〉
+ ∥Sv − v∥2 .

Summing these inequalities with respect to l from 0 to n − 1 and dividing by
n, we obtain

1

n
∥Snzn − Sv∥2 ≤ 1

n
∥zn − Sv∥2 + 2 ⟨Zn − Sv, Sv − v⟩+ ∥Sv − v∥2 .

As 1
n ∥Snzn − Sv∥2 ≥ 0, it follows that

0 ≤ 1

n
∥zn − Sv∥2 + 2 ⟨Zn − Sv, Sv − v⟩+ ∥Sv − v∥2 .

Note that {zn} is bounded and that Zni
⇀ v is assumed. Replacing n with ni

and taking the limit as i → ∞, we obtain

0 ≤ 2 ⟨v − Sv, Sv − v⟩+ ∥Sv − v∥2 ,

and hence, 0 ≤ −∥Sv − v∥2. This result indicates that Sv = v. Therefore, a
nonexpansive mapping S with a fixed point is mean-demiclosed (2.5). ⊓⊔

The main theorems in this paper highlight quasi-nonexpansive and mean-
demiclosed mappings. Note that this class of mappings contains more general
classes of mappings than nonexpansive mappings. We refer to this point in
Appendix A.

In the following sections, we assume that two nonlinear mappings have a
common fixed point. It is known that if nonexpansive mappings are commuta-
tive and the domain of the mappings is closed, convex, and bounded, a common
fixed point exists; see Browder [4]. For more broad classes of mappings includ-
ing nonexpansive mappings, see Kondo [12] and papers cited therein.

3 Strong convergence by the hybrid method

In this section, we prove a strong convergence theorem for finding a common
fixed point of two nonlinear mappings. The mappings are assumed to be quasi-
nonexpansive and mean-demiclosed, but they are not required to be continuous
or commutative. One important example of this class of mappings is a nonex-
pansive mapping with a fixed point. The basic element of the proof has been
polished by many researchers [1, 6, 14,21].

Math. Model. Anal., 28(2):285–307, 2023.
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Theorem 3. Let C be a nonempty, closed, and convex subset of a real Hilbert
space H. Let S and T : C → C be quasi-nonexpansive and mean-demiclosed
mappings such that F (S) ∩ F (T ) ̸= ∅. Let {zn} and {wn} be sequences in C.
Let {an}, {bn}, and {cn} be sequences of nonnegative real numbers such that
an + bn + cn = 1 for all n ∈ N,

lim
n→∞

anbn > 0, and lim
n→∞

ancn > 0. (3.1)

Define a sequence {xn} in C as follows:

x1 = x ∈ C given,

yn = anxn + bn
1

n

n−1∑
l=0

Slzn + cn
1

n

n−1∑
l=0

T lwn ∈ C,

Cn = {h ∈ C : ∥yn − h∥ ≤ ∥xn − h∥} ,
Qn = {h ∈ C : ⟨x− xn, xn − h⟩ ≥ 0} ,
xn+1 = PCn∩Qn

x ∀n ∈ N.

Assume that

∥zn − q∥ ≤ ∥xn − q∥ and ∥wn − q∥ ≤ ∥xn − q∥ (3.2)

for all q ∈ F (S) ∩ F (T ) and n ∈ N. Then, {xn} converges strongly to a point
x̂ of F (S) ∩ F (T ), where x̂ = PF (S)∩F (T )x.

Proof. Define

Zn =
1

n

n−1∑
l=0

Slzn and Wn =
1

n

n−1∑
l=0

T lwn

for all n ∈ N. The sequences {Zn} and {Wn} are in C since C is convex. Using
these notations, we can simply write as yn = anxn + bnZn + cnWn. It can be
verified that

∥Zn − q∥ ≤ ∥zn − q∥ and ∥Wn − q∥ ≤ ∥wn − q∥ (3.3)

for all n ∈ N and q ∈ F (S) ∩ F (T ). In fact, as S is quasi-nonexpansive and
q ∈ F (S), it holds that

∥Zn − q∥ =

∥∥∥∥ 1n
n−1∑
l=0

Slzn − q

∥∥∥∥ =
1

n

∥∥∥∥ n−1∑
l=0

Slzn − nq

∥∥∥∥ =
1

n

∥∥∥ n−1∑
l=0

(
Slzn − q

) ∥∥∥
≤ 1

n

n−1∑
l=0

∥∥Slzn − q
∥∥ ≤ 1

n

n−1∑
l=0

∥zn − q∥ = ∥zn − q∥ . (3.4)

Similarly, ∥Wn − q∥ ≤ ∥wn − q∥ can be demonstrated since T is quasi-nonex-
pansive and q ∈ F (T ). Thus, (3.3) follows as claimed.
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Note that once xn and y n ∈ C are provided, the sets Cn and Qn are defined
and are closed and convex in C. We prove that

F (S) ∩ F (T ) ⊂ Cn ∩Qn for all n ∈ N

using mathematical induction. (i) As Q1 = C, it is obvious that F (S)∩F (T ) ⊂
Q1. Choose q ∈ F (S) ∩ F (T ) arbitrarily. It follows from (3.3) and (3.2) that

∥y1 − q∥ = ∥a1x1 + b1Z1 + c1W1 − q∥ (3.5)

= ∥a1 (x1 − q) + b1 (Z1 − q) + c1 (W1 − q)∥
≤ a1 ∥x1 − q∥+ b1 ∥Z1 − q∥+ c1 ∥W1 − q∥
≤ a1 ∥x1 − q∥+ b1 ∥z1 − q∥+ c1 ∥w1 − q∥
≤ a1 ∥x1 − q∥+ b1 ∥x1 − q∥+ c1 ∥x1 − q∥ = ∥x1 − q∥ .

This result shows that F (S)∩F (T ) ⊂ C1 and hence, F (S)∩F (T ) ⊂ C1∩Q1.
(ii) Assume that F (S) ∩ F (T ) ⊂ Ck ∩Qk, where k ∈ N. From the hypothesis
F (S)∩F (T ) ̸= ∅, we have Ck∩Qk ̸= ∅. As Ck∩Qk is a nonempty, closed, and
convex subset of C (⊂ H), the metric projection PCk∩Qk

from H onto Ck ∩Qk

is defined. Thus, xk+1 = PCk∩Qk
x is also defined. Furthermore, Zk+1, Wk+1,

yk+1 (∈ C), Ck+1, and Qk+1 (⊂ C) are defined as follows:

Zk+1 =
1

k + 1

k∑
l=0

Slzk+1, Wk+1 =
1

k + 1

k∑
l=0

T lwk+1,

yk+1 = ak+1xk+1 + bk+1Zk+1 + ck+1Wk+1,

Ck+1 = {h ∈ C : ∥yk+1 − h∥ ≤ ∥xk+1 − h∥} , and

Qk+1 = {h ∈ C : ⟨x− xk+1, xk+1 − h⟩ ≥ 0} .

We demonstrate that F (S) ∩ F (T ) ⊂ Ck+1 ∩ Qk+1. Let q ∈ F (S) ∩ F (T ).
From (3.3) and (3.2), it follows that

∥yk+1 − q∥ = ∥ak+1xk+1 + bk+1Zk+1 + ck+1Wk+1 − q∥ (3.6)

= ∥ak+1 (xk+1 − q) + bk+1 (Zk+1 − q) + ck+1 (Wk+1 − q)∥
≤ ak+1 ∥xk+1 − q∥+ bk+1 ∥Zk+1 − q∥+ ck+1 ∥Wk+1 − q∥
≤ ak+1 ∥xk+1 − q∥+ bk+1 ∥zk+1 − q∥+ ck+1 ∥wk+1 − q∥
≤ ak+1 ∥xk+1 − q∥+ bk+1 ∥xk+1 − q∥+ ck+1 ∥xk+1 − q∥
= ∥xk+1 − q∥ .

This result implies that q ∈ Ck+1, and thus, we obtain F (S) ∩ F (T ) ⊂ Ck+1.
Note that xk+1 = PCk∩Qk

x and q ∈ F (S)∩ F (T ) ⊂ Ck ∩Qk. Therefore, from
(2.2), it follows that ⟨x− xk+1, xk+1 − q⟩ ≥ 0. This relationship implies that
q ∈ Qk+1. Thus, we obtain F (S)∩ F (T ) ⊂ Ck+1 ∩Qk+1 as claimed. We have
established that F (S)∩F (T ) ⊂ Cn∩Qn for all n ∈ N. Since F (S)∩F (T ) ̸= ∅
is assumed, Cn ∩ Qn ̸= ∅ for all n ∈ N. Hence, the sequence {xn} is defined
inductively. Note that letting zn = wn = xn for all n ∈ N demonstrates that
the sequences {zn} and {wn}, which satisfy (3.2), exist.

Math. Model. Anal., 28(2):285–307, 2023.
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From the definition of Qn, it holds that xn = PQn
x for all n ∈ N. Then,

∥x− xn∥ ≤ ∥x− q∥ (3.7)

for all q ∈ F (S) ∩ F (T ) and n ∈ N. Indeed, since xn = PQn
x and q ∈

F (S)∩F (T ) ⊂ Cn ∩Qn ⊂ Qn, the inequality (3.7) holds. From (3.7), {xn} is
bounded. From the assumption (3.2), {zn} and {wn} are also bounded.

As xn = PQn
x and xn+1 = PCn∩Qn

x ∈ Qn, it holds true that

∥x− xn∥ ≤ ∥x− xn+1∥ (3.8)

for all n ∈ N. This result indicates that the sequence {∥x− xn∥} in R is
monotone increasing. As {xn} is bounded, so is {∥x− xn∥}. Consequently,
{∥x− xn∥} is convergent.

Next, we verify that
xn − yn → 0. (3.9)

As xn = PQn
x and xn+1 = PCn∩Qn

x ∈ Qn, we have from (2.3) that

∥x− xn∥2 + ∥xn − xn+1∥2 ≤ ∥x− xn+1∥2 (3.10)

for all n ∈ N. As {∥x− xn∥} is convergent, it follows that

xn − xn+1 → 0. (3.11)

Furthermore, since xn+1 = PCn∩Qn
x ∈ Cn, it holds that ∥yn − xn+1∥ ≤

∥xn − xn+1∥ . From (3.11), yn − xn+1 → 0. This information, together with
(3.11), implies that xn − yn → 0 as claimed.

Next, observe that

xn − Zn → 0 and xn −Wn → 0. (3.12)

Indeed, for q ∈ F (S) ∩ F (T ), it follows from (2.1), (3.3), and (3.2) that

∥yn − q∥2 = ∥anxn + bnZn + cnWn − q∥2

= ∥an (xn − q) + bn (Zn − q) + cn (Wn − q)∥2

= an ∥xn − q∥2 + bn ∥Zn − q∥2 + cn ∥Wn − q∥2

− anbn ∥xn − Zn∥2 − bncn ∥Zn −Wn∥2 − cnan ∥Wn − xn∥2

≤ an ∥xn − q∥2 + bn ∥zn − q∥2 + cn ∥wn − q∥2

− anbn ∥xn − Zn∥2 − bncn ∥Zn −Wn∥2 − cnan ∥Wn − xn∥2

≤ an ∥xn − q∥2 + bn ∥xn − q∥2 + cn ∥xn − q∥2

− anbn ∥xn − Zn∥2 − bncn ∥Zn −Wn∥2 − cnan ∥Wn − xn∥2

= ∥xn − q∥2 − anbn ∥xn − Zn∥2 − bncn ∥Zn −Wn∥2 − cnan ∥Wn − xn∥2 .
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Using bncn ∥Zn −Wn∥2 ≥ 0, we have

anbn ∥xn − Zn∥2 + ancn ∥xn −Wn∥2

≤ ∥xn − q∥2 − ∥yn − q∥2

≤
(
∥xn − q∥+ ∥yn − q∥

)
|∥xn − q∥ − ∥yn − q∥|

≤ (∥xn − q∥+ ∥yn − q∥) ∥xn − yn∥ .

As {xn} is bounded, according to (3.9), {yn} is also bounded. Hence, we obtain
from (3.9) and the assumption (3.1) regarding the coefficients an, bn, and cn
that xn − Zn → 0 and xn −Wn → 0 as claimed.

Our goal is to prove that xn → x̂
(
= PF (S)∩F (T )x

)
. Equivalently, for any

subsequence {xni
} of {xn}, there exists a subsequence

{
xnj

}
of {xni

} such
that xnj

→ x̂. Let {xni
} be a subsequence of {xn}. As {xni

} is bounded,
there exists a subsequence

{
xnj

}
of {xni

} such that xnj
⇀ v for some v ∈ H.

From (3.12), Znj ⇀ v and Wnj ⇀ v. As S and T are mean-demiclosed (2.5),
it follows that v ∈ F (S) ∩ F (T ).

We show that xnj → v. Using (3.7) for q = v ∈ F (S) ∩ F (T ), we have

∥∥xnj − v
∥∥2 =

∥∥xnj − x
∥∥2 + 2

〈
xnj − x, x− v

〉
+ ∥x− v∥2

≤ ∥x− v∥2 + 2
〈
xnj − x, x− v

〉
+ ∥x− v∥2

= 2 ∥x− v∥2 + 2
〈
xnj − x, x− v

〉
.

From xnj ⇀ v, the right-most term tends to 0 as j → ∞, that is,

2 ∥x− v∥2 + 2
〈
xnj

− x, x− v
〉
→ 2 ∥x− v∥2 + 2 ⟨v − x, x− v⟩ = 0.

Hence, we obtain xnj
→ v as claimed. Finally, we prove v

(
= limj→∞ xnj

)
=

x̂
(
= PF (S)∩F (T )x

)
. As x̂ = PF (S)∩F (T )x and v ∈ F (S) ∩ F (T ), it suffices

to show that ∥x− v∥ ≤ ∥x− x̂∥. From (3.7) for q = x̂ ∈ F (S) ∩ F (T ), it
holds true that

∥∥x− xnj

∥∥ ≤ ∥x− x̂∥ for all j ∈ N. As xnj
→ v, we obtain

∥x− v∥ ≤ ∥x− x̂∥. This result indicates that v = x̂. We have proved that for
any subsequence {xni

} of {xn}, there is a subsequence
{
xnj

}
of {xni} such

that xnj → x̂ (= v). This completes the proof. ⊓⊔

From Theorem 3, the following result is obtained as a direct corollary:

Corollary 1 ( [14]). Let C be a nonempty, closed, and convex subset of a real
Hilbert space H. Let S and T : C → C be quasi-nonexpansive and mean-
demiclosed mappings such that F (S) ∩ F (T ) ̸= ∅. Let a, b ∈ (0, 1) with a ≤ b
and let {an}, {bn}, and {cn} be sequences of real numbers such that 0 < a ≤ an,
bn, cn ≤ b < 1 and an + bn + cn = 1 for all n ∈ N. Define a sequence {xn} in
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C as follows:

x1 = x ∈ C given,

yn = anxn + bn
1

n

n−1∑
l=0

Slxn + cn
1

n

n−1∑
l=0

T lxn ∈ C,

Cn = {h ∈ C : ∥yn − h∥ ≤ ∥xn − h∥} ,
Qn = {h ∈ C : ⟨x− xn, xn − h⟩ ≥ 0} ,
xn+1 = PCn∩Qn

x

for all n ∈ N. Then, {xn} converges strongly to a point x̂ of F (S) ∩ F (T ),
where x̂ = PF (S)∩F (T )x.

Proof. From the assumption that 0 < a ≤ an, bn, cn ≤ b < 1, it holds that
limn→∞anbn ≥ a2 > 0 and limn→∞ancn ≥ a2 > 0. Letting zn = wn = xn for
all n ∈ N in Theorem 3, we obtain the desired result. ⊓⊔

4 Strong convergence by the shrinking projection method

In this section, we prove a strong convergence theorem for finding common
fixed points for two nonlinear mappings using the shrinking projection method
[28] together with the mean-valued iteration and the Ishikawa iteration. The
basic element of the proof has been developed by many researchers; see, for
instance, [6, 14].

To prove the main theorem in this section, the condition imposed on the
mappings can be more relaxed than in the previous section. Let S be a self-
mapping defined on C such that F (S) ̸= ∅, where C is a nonempty, closed, and
convex subset of a real Hilbert space H. Let {zn} be a bounded sequence in

C and define Zn ≡ 1
n

∑n−1
l=0 Slzn (∈ C) for each n ∈ N. Consider the following

property with respect to S:

Zni
→ v =⇒ v ∈ F (S) , (4.1)

where {Zni} is a subsequence of {Zn}. Mean-demiclosed mappings (2.5) suf-
ficiently satisfy the property (4.1). According to Claim 1, nonexpansive map-
pings satisfy (4.1). It is known that more general types of mappings satisfy
(4.1); see Appendix A in this paper or Kondo [14]. In this section, we focus on
quasi-nonexpansive mappings that satisfy the property (4.1).

Theorem 4. Let C be a nonempty, closed, and convex subset of a real Hilbert
space H. Let S and T : C → C be quasi-nonexpansive mappings that satisfy
F (S) ∩ F (T ) ̸= ∅ and the property (4.1). Let {zn} and {wn} be sequences in
C. Let {an}, {bn}, and {cn} be sequences of nonnegative real numbers such
that an + bn + cn = 1 for all n ∈ N,

lim
n→∞

anbn > 0, and lim
n→∞

ancn > 0. (4.2)
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Let {un} be a sequence in H such that un → u (∈ H). Define a sequence {xn}
in C as follows:

x1 = x ∈ C given,

C1 = C,

yn = anxn + bn
1

n

n−1∑
l=0

Slzn + cn
1

n

n−1∑
l=0

T lwn ∈ C,

Cn+1 = {h ∈ Cn : ∥yn − h∥ ≤ ∥xn − h∥} ,
xn+1 = PCn+1un+1

for all n ∈ N. Assume that

∥zn − q∥ ≤ ∥xn − q∥ and ∥wn − q∥ ≤ ∥xn − q∥ (4.3)

for all q ∈ F (S) ∩ F (T ) and n ∈ N. Then, {xn} converges strongly to a point
û of F (S) ∩ F (T ), where û = PF (S)∩F (T )u.

Proof. We again use notations Zn = 1
n

∑n−1
l=0 Slzn and Wn = 1

n

∑n−1
l=0 T lwn.

From the convexity of C, {Zn} and {Wn} are in C. We have yn = anxn +
bnZn + cnWn (∈ C). It holds that

∥Zn − q∥ ≤ ∥zn − q∥ and ∥Wn − q∥ ≤ ∥wn − q∥ (4.4)

for all n ∈ N and q ∈ F (S)∩F (T ). This statement (4.4) can be proved in a sim-
ilar manner to that used to prove (3.3) since S and T are quasi-nonexpansive.

Using mathematical induction, we can show that Cn is closed and convex as
well as that F (S)∩F (T ) ⊂ Cn for all n ∈ N. (i) For n = 1, the results hold true
since C1 = C. (ii) Assume that Ck is closed and convex and F (S)∩F (T ) ⊂ Ck,
where k ∈ N. As F (S)∩F (T ) ̸= ∅ and F (S)∩F (T ) ⊂ Ck, it holds that Ck ̸= ∅.
Consequently, the metric projection PCk

exists, and xk, Zk, Wk, yk, and Ck+1

are defined as follows:

xk = PCk
uk ∈ Ck ⊂ C,

Zk =
1

k

k−1∑
l=0

Slzk, Wk =
1

k

k−1∑
l=0

T lwk,

yk = akxk + bkZk + ckWk ∈ C, and

Ck+1 = {h ∈ Ck : ∥yk − h∥ ≤ ∥xk − h∥} ⊂ Ck ⊂ C.

It can be easily ascertained that Ck+1 is closed and convex since Ck is closed
and convex. Let q ∈ F (S)∩F (T ). We demonstrate that q ∈ Ck+1. From (4.4)
and (4.3), it follows that

∥yk − q∥ = ∥akxk + bkZk + ckWk − q∥
=

∥∥ak (xk − q) + bk (Zk − q) + ck (Wk − q)
∥∥

≤ ak ∥xk − q∥+ bk ∥Zk − q∥+ ck ∥Wk − q∥
≤ ak ∥xk − q∥+ bk ∥zk − q∥+ ck ∥wk − q∥
≤ ak ∥xk − q∥+ bk ∥xk − q∥+ ck ∥xk − q∥ = ∥xk − q∥ .
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Thus, we obtain q ∈ Ck+1 as claimed. We have shown that Cn is a closed
and convex subset of C and that F (S) ∩ F (T ) ⊂ Cn for all n ∈ N. From the
assumption that F (S) ∩ F (T ) ̸= ∅, we have Cn ̸= ∅ for all n ∈ N. Thus, the
sequence {xn} in C is inductively defined. Note that letting zn = wn = xn for
all n ∈ N shows that sequences {zn} and {wn} with the condition (4.3) exist.

Define un = PCn
u (∈ Cn). As Cn ⊂ Cn−1 ⊂ · · · ⊂ C1 = C, {un} is a

sequence in C. Since un = PCnu and F (S) ∩ F (T ) ⊂ Cn, it holds true that

∥u− un∥ ≤ ∥u− q∥ (4.5)

for all q ∈ F (S) ∩ F (T ) and n ∈ N. This result shows that {un} is bounded.
Furthermore, since un = PCn

u and un+1 = PCn+1
u ∈ Cn+1 ⊂ Cn, it holds that

∥u− un∥ ≤ ∥u− un+1∥

for all n ∈ N. This result demonstrates that {∥u− un∥} is monotone increasing.
As {un} is bounded, so is {∥u− un∥}. Thus, the sequence {∥u− un∥} of real
numbers is convergent.

Observe that {un} is convergent in C; in other words, there exists u ∈ C
such that

un → u. (4.6)

Let m,n ∈ N with m ≥ n. Since un = PCn
u and um = PCm

u ∈ Cm ⊂ Cn, we
have from (2.3) that

∥u− un∥2 + ∥un − um∥2 ≤ ∥u− um∥2 .

As {∥u− un∥} is convergent, it follows that un − um → 0 as m and n tend to
infinity. Equivalently, {un} is a Cauchy sequence in C. As C is closed in a real
Hilbert space H, it is complete. Thus, there exists u ∈ C such that un → u as
claimed. Next, we claim that {xn} has the same limit, namely,

xn → u. (4.7)

Indeed, since the metric projection PCn
is nonexpansive and un → u is assumed,

it holds from (4.6) that

∥xn − u∥ ≤ ∥xn − un∥+ ∥un − u∥ = ∥PCnun − PCnu∥+ ∥un − u∥
≤ ∥un − u∥+ ∥un − u∥ → 0

as claimed. Consequently, {xn} is bounded. Our goal is to demonstrate that
u = û

(
= PF (S)∩F (T )u

)
since xn → u is already proved.

We show that

xn − yn → 0. (4.8)

Indeed, as {xn} is convergent, xn − xn+1 → 0. From xn+1 = PCn+1un+1 ∈
Cn+1, it follows that ∥yn − xn+1∥ ≤ ∥xn − xn+1∥. Thus, we obtain

∥xn − yn∥ ≤ ∥xn − xn+1∥+ ∥xn+1 − yn∥ ≤ 2 ∥xn − xn+1∥ → 0
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as claimed. Since {xn} is bounded, xn − yn → 0 implies that {yn} is also
bounded. Next, we claim that

xn − Zn → 0 and xn −Wn → 0. (4.9)

Choose q ∈ F (S) ∩ F (T ) arbitrarily. From (2.1), (4.4), and (4.3), it follows
that

∥yn − q∥2 = ∥anxn + bnZn + cnWn − q∥2

=
∥∥an (xn − q) + bn (Zn − q) + cn (Wn − q)

∥∥2
= an ∥xn − q∥2 + bn ∥Zn − q∥2 + cn ∥Wn − q∥2

− anbn ∥xn − Zn∥2 − bncn ∥Zn −Wn∥2 − cnan ∥Wn − xn∥2

≤ an ∥xn − q∥2 + bn ∥zn − q∥2 + cn ∥wn − q∥2

− anbn ∥xn − Zn∥2 − bncn ∥Zn −Wn∥2 − cnan ∥Wn − xn∥2

≤ an ∥xn − q∥2 + bn ∥xn − q∥2 + cn ∥xn − q∥2

− anbn ∥xn − Zn∥2 − bncn ∥Zn −Wn∥2 − cnan ∥Wn − xn∥2

= ∥xn − q∥2 − anbn ∥xn − Zn∥2 − bncn ∥Zn −Wn∥2 − cnan ∥Wn − xn∥2 .

As bncn ∥Zn −Wn∥2 ≥ 0, we have

anbn ∥xn − Zn∥2 + ancn ∥xn −Wn∥2

≤ ∥xn − q∥2 − ∥yn − q∥2

≤ (∥xn − q∥+ ∥yn − q∥) |∥xn − q∥ − ∥yn − q∥|
≤ (∥xn − q∥+ ∥yn − q∥) ∥xn − yn∥ .

As {xn} and {yn} are bounded, we obtain (4.9) from (4.8) and the assumption
(4.2) regarding the coefficients an, bn, and cn. From (4.7) and (4.9), we have
Zn → u and Wn → u. Since the mappings S and T satisfy the property (4.1),
we obtain u ∈ F (S) ∩ F (T ).

Finally, we prove that u (= limn→∞ un = limn→∞ xn) = û
(
= PF (S)∩F (T )u

)
.

As u ∈ F (S) ∩ F (T ) and û = PF (S)∩F (T )u, it suffices to show that ∥u− u∥ ≤
∥u− û∥. As û ∈ F (S) ∩ F (T ), from (4.5), it holds that ∥u− un∥ ≤ ∥u− û∥.
From (4.6), we obtain ∥u− u∥ ≤ ∥u− û∥. This result implies that u = û. From
(4.7), we obtain xn → û (= u), which completes the proof. ⊓⊔

As in the previous section, the following result is derived:

Corollary 2 ( [14]). Let C be a nonempty, closed, and convex subset of a real
Hilbert space H. Let S and T : C → C be quasi-nonexpansive mappings that
satisfy F (S)∩F (T ) ̸= ∅ and the property (4.1). Let a, b ∈ (0, 1) with a ≤ b and
let {an}, {bn}, and {cn} be sequences of real numbers such that 0 < a ≤ an,
bn, cn ≤ b < 1 and an + bn + cn = 1 for all n ∈ N. Let {un} be a sequence in

Math. Model. Anal., 28(2):285–307, 2023.



298 A. Kondo

H such that un → u (∈ H). Define a sequence {xn} in C as follows:

x1 = x ∈ C given,

C1 = C,

yn = anxn + bn
1

n

n−1∑
l=0

Slxn + cn
1

n

n−1∑
l=0

T lxn ∈ C,

Cn+1 = {h ∈ Cn : ∥yn − h∥ ≤ ∥xn − h∥} , and

xn+1 = PCn+1
un+1

for all n ∈ N. Then, {xn} converges strongly to a point û of F (S) ∩ F (T ),
where û = PF (S)∩F (T )u.

Proof. The conditions limn→∞anbn > 0 and limn→∞ancn > 0 are satisfied
from the hypothesis that 0 < a ≤ an, bn, cn ≤ b < 1. Letting zn = wn = xn

for all n ∈ N in Theorem 4, we obtain the desired result. ⊓⊔

5 Derivative results

In this section, we present a variety of strong convergence results that are
derived from Theorems 3 and 4. To save space, we only refer to Theorem 3.
First, the following result is obtained:

Theorem 5. Let C be a nonempty, closed, and convex subset of a real Hilbert
space H. Let S and T : C → C be quasi-nonexpansive and mean-demiclosed
mappings such that F (S)∩F (T ) ̸= ∅. Let {λn}, {µn}, and {νn} be sequences
of nonnegative real numbers such that λn+µn+νn = 1 for all n ∈ N. Let {an},
{bn}, and {cn} be sequences of nonnegative real numbers such that an+bn+cn =
1 for all n ∈ N, limn→∞anbn > 0, and limn→∞ancn > 0. Define a sequence
{xn} in C as follows:

x1 = x ∈ C given,

zn = wn = λnxn + µnSxn + νnTxn,

yn = anxn + bn
1

n

n−1∑
l=0

Slzn + cn
1

n

n−1∑
l=0

T lwn ∈ C,

Cn = {h ∈ C : ∥yn − h∥ ≤ ∥xn − h∥} ,
Qn = {h ∈ C : ⟨x− xn, xn − h⟩ ≥ 0} , and

xn+1 = PCn∩Qn
x

for all n ∈ N. Then, {xn} converges strongly to a point x̂ of F (S) ∩ F (T ),
where x̂ = PF (S)∩F (T )x.

Proof. Given that zn = wn is assumed, it suffices to demonstrate that

∥zn − q∥ ≤ ∥xn − q∥ , ∀q ∈ F (S) ∩ F (T ) , n ∈ N.
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As S and T are quasi-nonexpansive, it holds true that

∥zn − q∥ = ∥λnxn + µnSxn + νnTxn − q∥
= ∥λn (xn − q) + µn (Sxn − q) + νn (Txn − q)∥
≤ λn ∥xn − q∥+ µn ∥Sxn − q∥+ νn ∥Txn − q∥
≤ λn ∥xn − q∥+ µn ∥xn − q∥+ νn ∥xn − q∥ = ∥xn − q∥ .

Therefore, the desired result follows from Theorem 3. ⊓⊔

Note that there are no required conditions on the nonnegative parameters
{λn}, {µn}, and {νn} except for λn + µn + νn = 1. This theorem is based
on Ishikawa iteration (1.2), Nakajo and Takahashi’s hybrid method (1.4), and
the mean-valued iteration (1.7). Clearly, the construction of zn and wn can
be varied fairly freely. For example, the following iteration scheme sufficiently
functions to derive a strong convergence:

zn = λnxn + µnTxn + νn
1

n

n−1∑
l=0

T lxn, (5.1)

wn = λ′
nxn + µ′

nSxn + ν′n
1

n

n−1∑
l=0

Slxn,

yn = anxn + bn
1

n

n−1∑
l=0

Slzn + cn
1

n

n−1∑
l=0

T lwn ∈ C ∀n ∈ N.

In fact, we know that if ∥zn − q∥ ≤ ∥xn − q∥ and ∥wn − q∥ ≤ ∥xn − q∥ for all
q ∈ F (S)∩F (T ) and n ∈ N, then a strong convergence follows from Theorem 3.
It is easy to check that the iteration (5.1) meets these conditions. Note that
in (5.1), zn (resp. wn) is affected only by the mapping T (resp. S) at least
directly. Furthermore, the following “three-step iterative method”is obtained:

Theorem 6. Let C be a nonempty, closed, and convex subset of a real Hilbert
space H. Let S and T : C → C be quasi-nonexpansive and mean-demiclosed
mappings such that F (S) ∩ F (T ) ̸= ∅. Let {λn} and {νn} be sequences of real
numbers in the interval [0, 1]. Let {an}, {bn}, and {cn} be sequences of nonneg-
ative real numbers such that an + bn + cn = 1 for all n ∈ N, limn→∞anbn > 0,
and limn→∞ancn > 0. Define a sequence {xn} in C as follows:

x1 = x ∈ C given,

wn = λnxn + (1− λn)Sxn,

zn = νnwn + (1− νn)Twn,

yn = anxn + bn
1

n

n−1∑
l=0

Slzn + cn
1

n

n−1∑
l=0

T lzn ∈ C,

Cn = {h ∈ C : ∥yn − h∥ ≤ ∥xn − h∥} ,
Qn = {h ∈ C : ⟨x− xn, xn − h⟩ ≥ 0} ,
xn+1 = PCn∩Qn

x
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for all n∈N. Then, {xn} converges strongly to a point x̂ of F (S)∩F (T ), where
x̂ = PF (S)∩F (T )x.

Proof. It suffices to demonstrate that ∥zn − q∥ ≤ ∥xn − q∥ for all q ∈ F (S)∩
F (T ) and n ∈ N. To that aim, first, we verify that ∥wn − q∥ ≤ ∥xn − q∥. In
fact, as S is quasi-nonexpansive, it follows that

∥wn − q∥ ≤ λn ∥xn − q∥+ (1− λn) ∥Sxn − q∥
≤ λn ∥xn − q∥+ (1− λn) ∥xn − q∥ = ∥xn − q∥ .

Using this, we obtain

∥zn − q∥ = ∥νnwn + (1− νn)Twn − q∥
≤ νn ∥wn − q∥+ (1− νn) ∥Twn − q∥
≤ νn ∥wn − q∥+ (1− νn) ∥wn − q∥
= ∥wn − q∥ ≤ ∥xn − q∥

since T is quasi-nonexpansive and q ∈ F (T ). This completes the proof. ⊓⊔

For the “three-step iterative method”, see Noor [22], Phuengrattana and
Suantai [23], and Chugh et al. [5]. Clearly, the “four-step iterative method”and
other more general iterations are derived from Theorems 3 and 4. For other
types of variations, see Kondo [13].

6 Application to the variational inequality problem

In this section, we present an application of a main result of this paper to
the variational inequality problem. For detailed discussion about the following
concepts and preliminary results, see Takahashi [26]. Let C be a nonempty,
closed, and convex subset of a real Hilbert space H. A mapping A : C → H
is called K-Lipschitz continuous if there exists K > 0 such that ∥Ax−Ay∥ ≤
K ∥x− y∥ for all x, y ∈ C. A mapping A : C → H is called monotone if

0 ≤ ⟨x− y, Ax−Ay⟩ (6.1)

for all x, y ∈ C. A mapping A : C → H is called strongly monotone if

0 < ⟨x− y, Ax−Ay⟩ (6.2)

for x, y ∈ C such that x ̸= y. A mapping A : C → H is called α-inverse
strongly monotone if there exists α > 0 such that

α ∥Ax−Ay∥2 ≤ ⟨x− y, Ax−Ay⟩ (6.3)

for all x, y ∈ C. A mapping A : C → H is called η-strongly monotone if there
exists η > 0 such that

η ∥x− y∥2 ≤ ⟨x− y, Ax−Ay⟩ (6.4)



Strong Convergence Using Ishikawa and Hybrid Methods 301

for all x, y ∈ C. Concerning these classes of mappings, the following hold:

(A) An α-inverse strongly monotone mapping A : C → H is monotone and
(1/α)-Lipschitz continuous,

(B) An η-strongly monotone mapping A : C → H is strongly monotone,

(C) If a mapping A is K-Lipschitz continuous and η-strongly monotone,
then A is

(
η/K2

)
-inverse strongly monotone.

From (C), the class of α-inverse strongly monotone mappings is more general
than Lipschitz continuous and strongly monotone mappings. In the following
theorem (Theorem 7), we assume that a mapping A is an α-inverse strongly
monotone.

A set of solutions to the variational inequality problem is denoted by

V I (C,A) = {x ∈ C : ⟨y − x, Ax⟩ ≥ 0 for all y ∈ C} . (6.5)

It is well-known that the variational inequality directly connects with optimiza-
tion problems. For an illustration, suppose that the domain of the mapping A
is the whole space H. Then, it is easy to verify that the set (6.5) of solution
to the variational inequality problem coincides with the null point set of A,
that is, V I (H,A) = A−10. If H = R and we interpret A as a derivative f ′

of a real-valued function f defined on R, then V I (R, f ′) is the set of points
x ∈ R that satisfies f ′(x) = 0. In such a case, the assumption that A (= f ′) is
strongly monotone seems to be a bit strong.

The following facts are crucial to apply the fixed point theory to variational
inequality problems:

(a) Let A : C → H be an α-inverse strongly monotone mapping. Then, for
λ ∈ [0, 2α], I − λA is a nonexpansive mapping from C into H, where I is the
identity mapping defined on C,

(b) Let A : C → H be an η-strongly monotone and K-Lipschitz continuous
mapping. Then, for λ ∈

(
0, 2η

K2

)
, I − λA is a contraction mapping from C into

H, in other words, there exists r ∈ (0, 1) such that ∥(I − λA)x− (I − λA) y∥ ≤
r ∥x− y∥ for all x, y ∈ C.

(c) It holds true that V I (C,A) = F (PC (I − λA)) for all λ > 0, where PC

is the metric projection from H onto C.

From (a) and (c), if C is nonempty, closed, convex, and bounded subset
of H, then the set V I (C,A) is nonempty, closed, and convex in C. In the
case of (b), the set V I (C,A) has only one element and well-known Picard
iteration is effective to approximate the unique element of V I (C,A). For case
(b), see Yamada [32] and a recent contribution by Truong et al. [31]. In the
next theorem, following Takahashi and Toyoda [29], we deal with the case (a).

Theorem 7. Let C be a nonempty, closed, and convex subset of a real Hilbert
space H. Let S : C → C be a nonexpansive mapping and let A : C → H be
an α-inverse strongly monotone mapping. Suppose that F (S)∩ V I (C,A) ̸= ∅.
Let λ ∈ (0, 2α] and define T = PC (I − λA). Let {λn}, {µn}, and {νn} be
sequences of nonnegative real numbers such that λn+µn+νn = 1 for all n ∈ N.
Let {an}, {bn}, and {cn} be sequences of nonnegative real numbers such that
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an+bn+cn = 1 for all n ∈ N, limn→∞anbn > 0, and limn→∞ancn > 0. Define
a sequence {xn} in C as follows:

x1 = x ∈ C given,

zn = wn = λnxn + µnSxn + νnTxn,

yn = anxn + bn
1

n

n−1∑
l=0

Slzn + cn
1

n

n−1∑
l=0

T lwn ∈ C,

Cn= {h ∈ C : ∥yn − h∥ ≤ ∥xn − h∥} ,
Qn= {h ∈ C : ⟨x− xn, xn−h⟩ ≥ 0} ,
xn+1 = PCn∩Qn

x

for all n ∈ N. Then, {xn} converges strongly to a point x̂ of F (S)∩V I (C,A),
where x̂ = PF (S)∩V I(C,A)x.

Proof. From Claim 1, a nonexpansive mapping with a fixed point is quasi-
nonexpansive and mean-demiclosed. From (a), T : C → C is nonexpansive.
From (c), F (T ) = V I (C,A). Thus, we can apply Theorem 5 and obtain the
desired result. ⊓⊔

This theorem demonstrates how to approximate a common element of a
fixed point problem and a variational inequality problem.

7 Concluding remarks

In this paper, strong convergence theorems for finding common fixed points
of two nonlinear mappings are proved. The methods are based on the itera-
tive procedures introduced by Ishikawa, Nakajo and Takahashi, and Takahashi,
Takeuchi, and Kubota, as well as the mean-valued method. Although two map-
pings are not assumed to be continuous nor commutative, they are required to
be quasi-nonexpansive and mean-demiclosed. In addition to the nonexpansive
mappings, the broad classes of mappings introduced in Appendix A are spe-
cial cases of this class of mappings. Thus, the main theorems in this paper
are applicable to those classes of mappings. As shown in Section 5, the main
theorems in this paper can potentially yield many iteration procedures for ap-
proximating common fixed points of nonlinear mappings, which is one of the
highlights of this paper. An application to the variational inequality problem
is provided in Section 6. As a final remark, all results in this paper can be
extended to any finite number of mappings.
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Appendix A

Quasi-nonexpansive and mean-demiclosed mappings

As mentioned in Sections 2 and 4, the class of quasi-nonexpansive and mean-
demiclosed mappings includes more general types of mappings beyond nonex-
pansive mappings when they have fixed points. In this section, such classes of
general types of mappings are introduced to show the wide range of applicabil-
ity of the theorems demonstrated in this paper.

Let C be a nonempty subset of a real Hilbert space H. A mapping S : C →
H is called

(i) nonexpansive if ∥Sx− Sy∥ ≤ ∥x− y∥ for all x, y ∈ C,
(ii) nonspreading [10] if

2 ∥Sx− Sy∥2 ≤ ∥x− Sy∥2 + ∥Sx− y∥2

for all x, y ∈ C.
It is well-known that nonexpansive mappings have a direct link with opti-

mization problems; see Section 6. In Section 2, we have already shown that
a nonexpansive mapping with a fixed point is quasi-nonexpansive and mean-
demiclosed (Claim 1). Nonspreading mappings were also introduced because
they are required by optimization problems; see Kohsaka and Takahashi [10].
Summing the inequalities in (i) and (ii), a concept of the following class of
mappings is obtained. A mapping S : C → H is called

(iii) hybrid [27] if

3 ∥Sx− Sy∥2 ≤ ∥x− y∥2 + ∥x− Sy∥2 + ∥Sx− y∥2

for all x, y ∈ C.
It is also known that the class of firmly nonexpansive mappings is a spe-

cial case of (i)–(iii). These types of mappings are unified by the concept of
generalized hybrid mappings. A mapping S : C → H is

(iv) generalized hybrid [9] if there exist α, β ∈ R such that

α ∥Sx− Sy∥2 + (1− α) ∥x− Sy∥2 ≤ β ∥Sx− y∥2 + (1− β) ∥x− y∥2

for all x, y ∈ C. If α = 1 and β = 0, then a generalized hybrid mapping is
nonexpansive, and therefore, the class of generalized hybrid mappings includes
nonexpansive mappings. If α = 2 and β = 1, a generalized hybrid mapping
is nonspreading. A generalized hybrid mapping with α = 3/2 and β = 1/2 is
hybrid. Here, generalized hybrid mappings are further extended. A mapping
S : C → H is said to be

Math. Model. Anal., 28(2):285–307, 2023.
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(v) normally generalized hybrid [30] if there exist α, β, γ, δ ∈ R such that
α+ β + γ + δ ≥ 0 and

α ∥Sx− Sy∥2 + β ∥x− Sy∥2 + γ ∥Sx− y∥2 + δ ∥x− y∥2 ≤ 0

for all x, y ∈ C, where α+ β > 0, or α+ γ > 0. A normally generalized hybrid
mapping with α+ β = 1 and γ + δ = −1 is generalized hybrid, and hence, the
class of normally generalized hybrid mappings contains all types of mappings
(i)–(iv) as special cases.

The following types of mappings are generalizations of generalized and nor-
mally generalized hybrid mappings. A mapping S : C → C is called

(vi) 2-generalized hybrid [20] if there exist α1, α2, β1, β2 ∈ R such that

α1

∥∥S2x− Sy
∥∥2 + α2 ∥Sx− Sy∥2 + (1− α1 − α2) ∥x− Sy∥2 (A.1)

≤ β1

∥∥S2x− y
∥∥2 + β2 ∥Sx− y∥2 + (1− β1 − β2) ∥x− y∥2

for all x, y ∈ C,
(vii) normally 2-generalized hybrid [15] if there exist α0, β0, α1, β1, α2, β2 ∈

R such that
∑2

l=0 (αl + βl) ≥ 0, α2 + α1 + α0 > 0, and

α2

∥∥S2x− Sy
∥∥2 + α1 ∥Sx− Sy∥2 + α0 ∥x− Sy∥2 (A.2)

+ β2

∥∥S2x− y
∥∥2 + β1 ∥Sx− y∥2 + β0 ∥x− y∥2 ≤ 0

for all x, y ∈ C. Clearly, if α1 = β1 = 0 in (A.1), the mapping S is generalized
hybrid. The class of normally 2-generalized hybrid mappings contains all types
of mappings introduced here. Indeed, if α2 + α1 + α0 = 1 and β2 + β1 + β0 =
−1, then a normally 2-generalized hybrid mapping is 2-generalized hybrid. If
α2 = β2 = 0, then it is normally generalized hybrid. It is known that normally
2-generalized hybrid mappings are quasi-nonexpansive and mean-demiclosed if
they have fixed points.

Claim 2 ( [15]). Let S : C → C be a normally 2-generalized hybrid map-
ping with F (S) ̸= ∅, where C is a nonempty subset of H. Then, S is quasi-
nonexpansive.

Claim 3 ( [16]). Let S : C → C be a normally 2-generalized hybrid mapping
with F (S) ̸= ∅, where C is a nonempty, closed, and convex subset of H. Then,
S is mean-demiclosed.

For proofs of Claims 2 and 3, see also Kondo [11] and [14], respectively. As
a normally 2-generalized hybrid mapping is mean-demiclosed, it satisfies the
property (4.1), which is required for Theorem 4. As all classes of mappings
(i)–(vi) are special cases of normally 2-generalized hybrid mappings, they are
within the class of mappings targeted in this paper.

To provide an illustration, two examples of normally 2-generalized hybrid
mappings are presented below; these examples are also provided in Kondo [11].
Let α2 = α, β2 = −β with 0 < β < α and let all the other coefficients be 0 in
(A.2). Then, we have

α
∥∥S2x− Sy

∥∥2 ≤ β
∥∥S2x− y

∥∥2 . (A.3)
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Example 1. [11]. Let H = C = R, and define S : R → R as follows:

Sx =

{
0, if x ≤

√
α,√

β, if x >
√
α.

We verify that the mapping S satisfies (A.3). In fact, from the hypothesis
β < α, it holds that S2x = 0 for all x ∈ R. Thus,

(A.3) ⇐⇒ α (Sy)
2 ≤ βy2 ⇐⇒ |Sy| ≤

√
β

α
|y| . (A.4)

(i) If y ≤
√
α, then |Sy| = 0. Consequently, (A.4) holds. (ii) Assume that

y >
√
α. Then, the LHS of (A.4) is |Sy| =

√
β. The RHS is greater than√

β
α

√
α =

√
β. Therefore, (A.4) holds true. This result indicates that S is

normally 2-generalized hybrid. □

Example 2. [11]. Set C = H and let PU be the metric projection from H onto
the unit sphere U . Define S : H → H as follows:

Sx =

 PUx, if
√

α
β < ∥x∥ ,

0, if ∥x∥ ≤
√

α
β .

Since β < α, S2x = 0 for all x ∈ H. Consequently,

(A.3) ⇐⇒ ∥Sy∥ ≤
√

β

α
∥y∥ . (A.5)

If ∥y∥ ≤
√

α/β, then ∥Sy∥ = 0, which means that (A.5) holds. If ∥y∥ >
√

α/β,
then the LHS of (A.5) is LHS = ∥PUy∥ = 1. The RHS is greater than√

β
α

√
α
β = 1. Thus, (A.5) holds true. □

As the mappings in Examples 1 and 2 are normally 2-generalized hybrid with
fixed points, they are quasi-nonexpansive and mean-demiclosed. Hence, they
are in the class of mappings addressed in this paper although they are not
continuous.
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