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Abstract. A new variational approach for a boundary value problem in mathema-
tical physics is proposed. By considering two-field Lagrange multipliers, we deliver a
variational formulation consisting of a mixed variational problem which is equivalent
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1 Introduction

In the present paper we draw the attention to a new approach to the weak
solvability of the following boundary value problem:
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Problem 1. Find u : Ω → R and D : Ω → RN such that

∇ ·D(x) = f0(x) in Ω,

−D(x) ∈ ∂φ(∇u(x)) + β∇u(x) in Ω, (1.1)

u(x) = 0 on Γ1,

D(x) · ν(x) = f2(x) on Γ2,

D(x) · ν(x) ∈ ∂ψ(u(x)) on Γ3, (1.2)

where Ω ⊂ RN (N > 1) is a bounded domain with smooth boundary Γ par-
titioned in three parts Γ1, Γ2, Γ3 of positive measure, f0, f2 φ, ψ are given
functions and β is a given parameter. As usual, by ν we denote the unit out-
ward normal vector defined almost everywhere on the boundary Γ and by · we
denote the inner product on RN .

If φ ≡ 0 and Γ3 ≡ 0 then we are driven to the classical boundary value
problem in the electrostatic theory,

∇ ·D(x) = f0(x) in Ω,

D(x) = −β∇u(x) in Ω,

u(x) = 0 on Γ1,

D(x) · ν(x) = f2(x) on Γ2;

herein, the scalar function u : Ω̄ → R is the electrostatic potential and the
vector function D : Ω̄ → R is the electric field; see, e.g., Section 26, Chapter
8 in [10]. Thus, Problem 1 has a physical significance in the electricity theory;
(1.1) is a generalized electric constitutive law and (1.2) describes a generalized
electrically contact condition.

On the other hand, if N = 2, φ ≡ 0 and ψ : R → [0,∞) ψ(r) = g|r| with
g > 0, then (1.2) is equivalent with the well known Tresca’s law∣∣∣∣β ∂ u∂ ν (x)

∣∣∣∣ ≤ g, β
∂ u

∂ ν
(x) = −g u(x)

|u(x)|
if u(x) ̸= 0 on Γ3.

As a result, Problem 1 reduces to the following boundary value problem:

−β△u(x) = f0(x) in Ω,

u(x) = 0 on Γ1,

−β ∂ u
∂ ν

(x) = f2(x) on Γ2,∣∣∣∣β ∂ u∂ ν (x)
∣∣∣∣ ≤ g, β

∂ u

∂ ν
(x) = −g u(x)

|u(x)|
if u(x) ̸= 0, on Γ3.

In this context, Problem 1 is a frictional contact antiplane model for elastic ma-
terials, the unknown u : Ω̄ → R being the third component of the displacement
field; see, e.g., Chapter 9 in [17] for a study in terms of variational inequalities
of second kind.

Problem 1 was recently investigated in [5]. In [5], the study was governed by
a single-field Lagrange multiplier. In contrast, in the present paper we weakly
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solve the boundary value problem Problem 1 by means of a two-field Lagrange
multiplier λ = (λΩ , λΓ3

), λΩ being related to D in Ω and λΓ3
being related to

D on Γ3. Thus, the new variational formulation we propose allows to compute
not only u in Ω but also D in Ω and D on Γ3 as well.

In the present study we admit the following working hypotheses.

(H1) The functionals φ : RN → R and ψ : R → R are seminorms. Moreover,
there exist Mφ,Mψ > 0 such that

� |φ(w)| ≤Mφ ∥w∥ for all w ∈ RN ,

� |ψ(s)| ≤Mψ |s| for all s ∈ R.

Here and everywhere below, ∥·∥ denotes the Euclidean norm on RN and | · |
denotes the absolute value of a real number.

(H2) f0 ∈ L2(Ω), f2 ∈ L2(Γ2), β > 0.

The functional setting we adopt is governed by Hilbert spaces as follows.

� X = {v ∈ H1 (Ω), γ v = 0 a.e. on Γ1}.
Remind that γ : H1 (Ω) → L2 (Γ ) is the trace operator; we send the
reader to, e.g., [13] for more details on its properties.

� S = {ṽ ∈ H
1
2 (Γ )| there exists v ∈ X such that ṽ = γ v a.e. on Γ}.

For details on fractional spaces on the boundary, see, e.g., [11, 14,16].

� S′ is the dual of S.

For details on the theory of Hilbert spaces the reader can consult, e.g., [2, 4,6,
15].

In the present work we focus on the weak solvability of Problem 1 via two-
field Lagrange multipliers, under the hypotheses (H1) and (H2). The approach
we propose leads us to variational systems which are mixed variational problems
equivalent with saddle point problems. The weak solvability of problems in
mathematical physics by using formulations with Lagrange multipliers allows to
apply modern algorithms in order to efficiently approximate the weak solution;
see, e.g., [9] where the primal-dual active strategy is applied.

The structure of this article is the following one. In Section 2 we provide
some preliminary material in the saddle point theory, making the paper self-
contained and easy to follow. In Section 3 we deliver a weak formulation of
Problem 1 in terms of two-field Lagrange multipliers. Then, we discuss the
weak solvability of Problem 1 via saddle point techniques. In Section 4 we
draw attention to alternative weak formulations and some of their connections.

2 Preliminaries

Let (X , (·, ·)X , ∥·∥X ), (Y, (·, ·)Y , ∥·∥Y) be two Hilbert spaces. We consider the
following variational system.

Math. Model. Anal., 27(4):561–572, 2022.
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Problem 2. Given f ∈ X , find u ∈ X and λ ∈ Λ ⊆ Y such that

â(u, v) + b̂(v, λ) = (f, v)X for all v ∈ X , (2.1)

b̂(u, µ− λ) ≤ 0 for all µ ∈ Λ. (2.2)

We assume that the following hypotheses hold true:
(â) â : X × X → R is a symmetric, bilinear form such that: (1) there

exists Mâ > 0 : |â(u, v)| ≤ Mâ ∥u∥X ∥v∥X for all u, v ∈ X ; (2) there exists

mâ > 0 : â(v, v) ≥ mâ ∥v∥2X for all v ∈ X .

(̂b) b̂ : X × Y → R is a bilinear form such that: there exists Mb̂ > 0:

|b̂(v, µ)| ≤Mb̂ ∥v∥X ∥µ∥Y for all v ∈ X , µ ∈ Y.

(Λ̂) Λ is a bounded, closed, convex subset of Y that contains 0Y .

According to the literature, see, e.g., [2], the bilinear form â is continuous

and X−elliptic and the bilinear form b̂ is continuous.
We recall now a few tools in the saddle point theory that will be helpful

in our study. The reader can consult, e.g., [1, 3, 7, 8] for details on the saddle
point theory and its applications.

To start, we remind the definition of the saddle point.

Definition 1. [see, e.g., [7], page 166] Let A and B be two non-empty sets. A
pair (u, λ) ∈ A×B is said to be a saddle point of a bifunctional L : A×B → R
if and only if

L(u, µ) ≤ L(u, λ) ≤ L(v, λ) for all v ∈ A, µ ∈ B.

Let L : A×B → R be a bifunctional fulfilling the following hypotheses:
(L1) v → L(v, µ) is convex and lower semi-continuous for all µ ∈ B,
(L2) µ→ L(v, µ) is concave and upper semi-continuous for all v ∈ A,
(A) A is bounded or lim∥v∥X→∞, v∈A L(v, µ0) = ∞ for some µ0 ∈ B,
(B) B is bounded or lim∥µ∥Y→∞, µ∈B infv∈A L(v, µ) = −∞.

The next theorem is an existence result.

Theorem 1. [see, e.g., [7], page 176] Let A ⊆ X , B ⊆ Y be non-empty, closed,
convex subsets. If the bifunctional L : A×B → R satisfies the hypotheses (L1),
(L2), (A) and (B), then L has at least one saddle point.

Proposition 1. [see, e.g., [7], page 169] Let A ⊆ X , B ⊆ Y be non-empty,
closed, convex subsets. If the bifunctional L : A×B → R satisfies the hypotheses
(L1), (L2), (A) and (B), then the set A0×B0 of the saddle points of L is convex,
where A0 ⊂ A and B0 ⊂ B. Moreover,

a) if v → L(v, µ) is strictly convex for all µ ∈ B, then A0 contains at most
one point;

b) if µ→ L(v, µ) is strictly concave for all v ∈ A, then B0 contains at most
one point.

The results that will be presented below are standard, but we expose here
for the convenience of the reader.
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Let us associate to Problem 2 the bifunctional L : X × Λ → R defined as
follows,

L(v, µ) = 1

2
â(v, v) + b̂(v, µ)− (f, v)X for all v ∈ X , µ ∈ Λ. (2.3)

Since â is a bilinear, symmetric, continuous and X−elliptic form (so, it is a
positive form), then v → â(v, v) is strictly convex and lower semi-continuous;
see, e.g., Proposition 1.30 in [18]. Using this result, we easily deduce that L is
strictly convex and lower semi-continuous in the first argument. On the other
hand, it is obvious that L is concave and upper semi-continuous in the second
argument.

Lemma 1. The pair (u, λ) ∈ X ×Λ is a solution of Problem 2 if and only if it
is a saddle point of the bifunctional L.

Proof. Let (u, λ) ∈ X ×Λ be a solution of Problem 2. After summing relation
(2.2) with 1

2 â(u, u)− (f, u)X , we deduce that

L(u, µ) ≤ L(u, λ) for all µ ∈ Λ.

By relations (2.3) and (2.1), due to the fact that â is a symmetric, bilinear and
X−elliptic form, we obtain

L(u, λ)− L(v, λ) = −1

2
â(u− v, u− v) ≤ 0.

Therefore, (u, λ) ∈ X × Λ is a saddle point of the bifunctional L.
We prove now the converse implication. Let (u, λ) ∈ X × Λ be a saddle

point of the bifunctional L. Since

L(u, µ) ≤ L(u, λ) for all µ ∈ Λ,

taking into account the definition of the bifunctional L, it immediately results
(2.2). Furthermore,

L(u, λ) ≤ L(w, λ) for all w ∈ X ,

drives us to

1

2
â(u, u)− 1

2
â(w,w) + b̂(u− w, λ) + (f, w − u)X ≤ 0 for all w ∈ X . (2.4)

Setting w = u+ t v with t > 0 in this last relation, we have

−tâ(u, v)− t2

2
â(v, v)− tb̂(v, λ) + t(f, v)X ≤ 0 for all v ∈ X .

Dividing by t > 0 and then passing to the limit as t→ 0, we get

â(u, v) + b̂(v, λ) ≥ (f, v)X for all v ∈ X . (2.5)

Math. Model. Anal., 27(4):561–572, 2022.
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Setting now w = u− t v with t > 0 in relation (2.4) and then dividing by t > 0,
we get

â(u, u)− t

2
â(v, v) + b̂(v, λ)− (f, v)X ≤ 0 for all v ∈ X .

Passing now to the limit when t→ 0, we obtain

â(u, v) + b̂(v, λ) ≤ (f, v)X for all v ∈ X . (2.6)

Combining relations (2.5) and (2.6), we get (2.1). So, (u, λ) ∈ X × Λ is a
solution of Problem 2. ⊓⊔

Consequently, Problem 2 is equivalent with

L(u, µ) ≤ L(u, λ) ≤ L(v, λ) for all v ∈ X , µ ∈ Λ.

This fact allows us to say that Problem 2 is a saddle point problem.
Next we discuss the existence of at least one solution (u, λ) ∈ X × Λ by

using Theorem 1. Also, the uniqueness of (u, λ) ∈ X × Λ will be investigated.

Theorem 2. Assume that hypotheses (â), (̂b) and (Λ̂) hold true. Then, Prob-
lem 2 has a solution which is unique in its first component, u ∈ X . If, in
addition, there exists α > 0 such that

(isp) inf
µ∈Y,µ̸=0Y

sup
v∈X ,v ̸=0X

b̂(v, µ)

∥v∥X ∥µ∥Y
≥ α,

then the solution is unique in the second component too, λ ∈ Λ.

Proof. Let L be the bifunctional defined in (2.3). Following a technique from
[8], we are going to apply Theorem 1 in order to conclude that the bifunctional
L has at least one saddle point. As we mentioned before, the bifunctional L
is strictly convex and lower semi-continuous in the first argument and concave
and upper semi-continuous in the second one. Thus, (L1) and (L2) in Theorem
1 are fulfilled. On the other hand, as Λ is a bounded subset of Y and so
condition (B) holds true, it remains to verify if

lim
∥v∥X→∞, v∈X

L(v, µ0) = ∞ for some µ0 ∈ Λ. (2.7)

Let µ0 = 0Y . We have

L(v, 0Y) =
1

2
â(v, v)− (f, v)X ≥ mâ

2
∥v∥2X − ∥f∥X ∥v∥X for all v ∈ X .

Passing to the limit as ∥v∥X → ∞ in this last relation, we obtain (2.7). There-
fore, Problem 2 has at least one solution (u, λ) ∈ X × Λ.

Let (u1, λ1), (u2, λ2) ∈ X × Λ be two solutions of Problem 2. Since v →
L(v, µ) is strictly convex for all µ ∈ Λ, according to Proposition 1, we deduce
that u1 = u2.
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We investigate now the uniqueness in the second argument of the pair so-
lution. We write

â(u1, v) + b̂(v, λ1) = (f, v)X for all v ∈ X , (2.8)

â(u2, v) + b̂(v, λ2) = (f, v)X for all v ∈ X . (2.9)

Combining relations (2.8) and (2.9), we obtain

b̂(v, λ1 − λ2) = −â(u1 − u2, v) for all v ∈ X .

By the inf-sup property of the form b̂, i.e. hypothesis (ips), we get

α ∥λ1 − λ2∥Y ≤ 0.

Therefore, λ1 = λ2. ⊓⊔

3 Weak solutions

Let u and D be regular enough functions verifying Problem 1. By using a
Green formula for Sobolev spaces, see, e.g., [18], page 90, the following relation
holds true.∫
Ω

β∇u(x) · ∇v(x) dx+

∫
Γ3

D(x) · ν(x) γ v(x) dΓ +

∫
Γ2

f2(x) γ v(x) dΓ

−
∫
Ω

(D(x) + β∇u(x)) · ∇v(x) dx =

∫
Ω

f0(x) v(x) dx for all v ∈ X.

To proceed, we consider the following bilinear forms,

a : X ×X → R, a(u, v) =

∫
Ω

β∇u(x) · ∇ v(x) dx,

b1 : X ×X → R, b1(v, µ) = (µ, v)X , (3.1)

b2 : X × S ′ → R, b2(v, ξ) = ⟨ξ, γv⟩. (3.2)

Here and everywhere below, ⟨ , ⟩ denotes the duality pairing between S ′ and S.
Subsequently, we define f ∈ X by means of the Riesz’s representation theorem,

(f, v)X =

∫
Ω

f0 (x) v(x) dx−
∫
Γ2

f2 (x)γv (x)dΓ for all v ∈ X.

Afterwards, we introduce a two-field Lagrange multiplier λ = (λΩ , λΓ3
) ∈

X × S ′ where λΩ and λΓ3
are defined as follows:

(λΩ , z)X = −
∫
Ω

(D(x) + β∇u(x)) · ∇ z(x) dx for all z ∈ X; (3.3)

⟨λΓ3
, ỹ⟩ =

∫
Γ3

D(x) · ν(x) ỹ(x) dΓ for all ỹ ∈ S. (3.4)

Therefore, we can write the following variational equation:

a(u, v) + b1(v, λΩ) + b2(v, λΓ3) = (f, v)X for all v ∈ X. (3.5)

Math. Model. Anal., 27(4):561–572, 2022.
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Let us define now a new form b̄, by taking into account the forms b1 and b2:

b̄ : X × (X × S ′) → R, b̄(v, λ̄) = b1(v, λΩ) + b2(v, λΓ3
), (3.6)

where λ̄ = (λΩ , λΓ3
) ∈ X × S ′. Consequently, we can write (3.5) as follows,

a(u, v) + b̄(v, λ̄) = (f, v)X for all v ∈ X. (3.7)

Next we introduce the set of Lagrange multipliers

Λ̄ = Λφ × Λψ, (3.8)

where

Λφ =

{
µΩ ∈ X : (µΩ , v)X ≤

∫
Ω

φ(∇v(x)) dx for all v ∈ X

}
, (3.9)

Λψ =

{
µΓ3

∈ S ′ : ⟨µΓ3
, w̃⟩ ≤

∫
Γ3

ψ(w̃(x)) dΓ for all w̃ ∈ S

}
. (3.10)

Let us prove that λΩ ∈ Λφ. Indeed, let x ∈ Ω. By (1.1) we can write for
all w ∈ RN ,

φ(w)− φ(∇u(x)) ≥ −(D(x) + β∇u(x)) · (w −∇u(x)). (3.11)

Next, we set w = ∇v(x) +∇u(x) in (3.11). Keeping in mind (3.3), the con-
clusion is immediately obtained.

Subsequently, we prove that λΓ3 ∈ Λψ. To this end in view, let us fix an
arbitrary x ∈ Γ3. Taking into account (1.2), we have,

ψ(r)− ψ(u(x)) ≥ D(x) · ν(x)(r − u(x)) for all r ∈ R. (3.12)

By setting r = w(x) + u(x) in (3.12), keeping in mind (3.4) we easily obtain
that λΓ3

∈ Λψ.
Furthermore, by (3.11) and the definitions of λΩ and Λφ we deduce that

b1(u, µΩ − λΩ) ≤ 0 for all µΩ ∈ Λφ. (3.13)

Also, according to (3.12) and the definitions of λΓ3
and Λψ, we have

b2(u, µΓ3 − λΓ3) ≤ 0 for all µΓ3 ∈ Λψ. (3.14)

Summing (3.13) and (3.14) we obtain

b̄(u, µ̄− λ̄) ≤ 0 for all µ̄ ∈ Λ̄, (3.15)

where µ̄ = (µΩ , µΓ3
) and λ̄ = (λΩ , λΓ3

).
Thus, we can write the following variational formulation for Problem 1.

Problem 3. Find u ∈ X and λ̄ ∈ Λ̄ ⊆ X × S ′ such that (3.7) and (3.15) hold
true.

Any solution of Problem 3 is called weak solution of Problem 1.
We are going to prove the following existence and uniqueness result.
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Theorem 3. Under the hypotheses (H1) and (H2), Problem 1 has a weak so-
lution (u, λ) ∈ X × Λ̄, unique in its first component.

Proof. We apply Theorem 2 by setting X = X, Y = X × S ′ Λ = Λ̄, â = a,
b̂ = b. Obviously, the hypotheses (â) and (b̂) are verified. On the other hand,
as Λφ defined in (3.9) and Λψ defined in (3.10) are nonempty, closed, convex
and bounded subsets, then the set Λ̄ = Λφ ×Λψ is a nonempty, closed, convex
and bounded subset of X × S ′. ⊓⊔

Remark 1. Notice that

∥µΩ∥X = sup
v1∈X, v1 ̸=0X

b1(v1, µΩ)

∥v1∥X
,

∥µΓ3
∥S ′ = sup

γ w∈S; γ w ̸=0S

⟨µΓ3
, γ w⟩

∥γ w∥
H

1
2 (Γ )

≤ cℓ sup
v2∈X, v2 ̸=0X

b2(v2, µΓ3
)

∥v2∥X
,

where cℓ > 0. So, the forms b1 and b2 fulfill the inf-sup property.
However, the form b doesn’t fulfill the inf-sup property. Indeed, let ζ0 ∈ S ′,

ζ0 ̸= 0S ′ . As X ∋ v → ⟨−ζ0, γv⟩ is a linear and continuous form, then there
exists a unique µ0 ∈ X such that

⟨−ζ0, γv⟩ = (µ0, v)X for all v ∈ X.

Let us define µ̄0 = (µ0, ζ0) ∈ X × S ′. Clearly, ∥µ̄0∥X×S ′ > 0 because
ζ0 ̸= 0S ′ . On the other hand,

b̄(v, µ̄0) = b1(v, µ0) + b2(v, ζ0) = (µ0, v)X + ⟨ζ0, γv⟩ = 0 for all v ∈ X.

Hence,

sup
v∈X, v ̸=0X

b̄(v, µ̄0)

∥v∥X
= 0.

Since ∥µ̄0∥X×S ′ > 0,

for all α > 0, sup
v∈X, v ̸=0X

b̄(v, µ̄0)

∥v∥X
< α ∥µ̄0∥X×S ′ .

Thus,

for all α > 0, sup
v∈X, v ̸=0X

b̄(v, µ̄0)

∥v∥X ∥µ̄0∥X×S ′
< α.

As a result,

for all α > 0, inf
µ̄∈X×S ′, µ̸̄=0X×S ′

sup
v∈X, v ̸=0X

b̄(v, µ̄)

∥v∥X∥µ̄∥X×S ′
< α.

Consequently, b doesn’t fulfill the inf-sup property. The uniqueness of the
solution of Problem 3 in its second component remains open.

Math. Model. Anal., 27(4):561–572, 2022.
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4 Alternative variational formulations and some of their
connections

By standard arguments in the calculus of variations, Problem 1 leads us to the
following primal variational formulation.

Problem 4. Find u0 ∈ X such that

a(u0, v − u0) + J(v)− J(u0) ≥ (f, v − u0)X for all v ∈ X, (4.1)

where

a : X ×X → R, a(u, v) =

∫
Ω

β∇u(x) · ∇v(x) dx, (4.2)

J : X → R, J(v) =
∫
Ω

φ(∇v(x)) dx+

∫
Γ3

ψ(γ v(x)) dΓ, (4.3)

(f, v)X =

∫
Ω

f0 (x) v(x) dx−
∫
Γ2

f2 (x)γv (x)dΓ for all v ∈ X. (4.4)

According to the theory of variational inequalities of the second kind, see,
e.g., [17, 18], as a is a bilinear, symmetric, continuous, X-elliptic form and J
is a proper, convex and lower semicontinuous functional, then Problem 4 has a
unique solution u0 ∈ X.

Proposition 2. If u0 ∈ X is the unique solution of Problem 4, then

a(u0, v) + J(v) ≥ (f, v)X for all v ∈ X. (4.5)

Proof. Let us set successively v = 0X and v = 2u0 in (4.1). As a result,

a(u0, u0) + J(u0) = (f, u0)X .

Using this last identity and (4.1) we are driven to (4.5). ⊓⊔

On the other hand, according to [5], we can introduce the single-field La-
grange multiplier

(λ1, z)X′,X = −
∫
Ω

(D(x) + β∇u(x)) · ∇ z(x) dx+

∫
Γ3

D(x) · ν(x) γz(x) dΓ ;

herein, by X ′ we denote the dual of the space X.

Thus, Problem 1 drives us to the following weak formulation,

Problem 5. Find u1 ∈ X and λ1 ∈ Λ1 ⊆ X ′ such that

a(u1, v) + b̃(v, λ1) = (f, v)X for all v ∈ X, (4.6)

b̃(u1, µ− λ1) ≤ 0 for all µ ∈ Λ1,
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where

b̃ : X ×X ′ → R, b̃(v, µ) = (µ, v)X′,X , (4.7)

Λ1 = {µ ∈ X ′ : (µ, v)X′,X ≤ J(v) for all v ∈ X} (4.8)

and a, f and J were defined in (4.2), (4.4) and (4.3), respectively. According
to Theorem 2 in [5], Problem 5 has a unique solution (u1, λ1) ∈ X ×X ′.

Proposition 3. If (u1, λ1) ∈ X ×Λ1 is the unique solution of Problem 5, then

a(u1, v) + J(v) ≥ (f, v)X for all v ∈ X. (4.9)

Proof. Keeping in mind (4.7) and (4.8), by (4.6) we immediately get (4.9).
⊓⊔

Finally, we pay attention to the following proposition.

Proposition 4. If (u, λ̄) ∈ X × Λ̄ is the unique solution of Problem 3 and a,
f and J are that defined in (4.2), (4.4) and (4.3), then

a(u, v) + J(v) ≥ (f, v)X for all v ∈ X. (4.10)

Proof. Keeping in mind (3.6), (3.1), (3.2) and (3.8), (3.9), (3.10), by (3.5) we
immediately get (4.10). ⊓⊔

According to Propositions 2, 3, 4, the unique solution of Problem 4, the first
component of the unique solution of Problem 5, as well as the first component
of each pair solution of Problem 3, verify a common inequality.

In the particular case N = 2, φ ≡ 0 and ψ : R → [0,∞), ψ(r) = g|r|, where
g is a positive constant, Problem 1 reduces to the following boundary value
problem.

−β△u(x) = f0(x) in Ω,

u(x) = 0 on Γ1,

−β ∂ u
∂ ν

(x) = f2(x) on Γ2,∣∣∣∣β ∂ u∂ ν (x)
∣∣∣∣ ≤ g, β

∂ u

∂ ν
(x) = −g u(x)

|u(x)|
if u(x) ̸= 0, on Γ3.

In this particular case, according to [12], the unique solution of Problem 4
coincides with the first component of the unique solution of Problem 5 as well
as with the first component of each solution of Problem 3.
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