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Abstract. The integral model with finite memory is employed to analyze the time-
line of COVID-19 epidemic in the United Kingdom and government actions to miti-
gate it. The model uses a realistic infection distribution. The time-varying transmis-
sion rate is determined from Volterra integral equation of the first kind. The authors
construct and justify an efficient regularization algorithm for finding the transmission
rate. The model and algorithm are approbated on the UK data with several waves
of COVID-19 and demonstrate a remarkable resemblance between real and simulated
dynamics. The timing of government preventive measures and their impact on the
epidemic dynamics are discussed.
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1 Introduction

The COVID-19 pandemic triggered a flood of research attempts to simulate
the dynamics and control of COVID-19 epidemics in various countries. Most
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of them use well-known SIR and SEIR epidemic models to describe the impact
of government actions and changing social practices on the epidemic spread.
However, specifics of COVID-19 require more accurate models and data pro-
cessing methods to describe and control it. Indeed, it is well known [4] that
the standard SIR and SEIR models do not adequately describe transmission
patterns of real diseases, including COVID-19. A variety of advanced epidemi-
ologic models has been developed to address this deficiency [9,12,14,15,25,26].
Most of them have not been applied to COVID control yet.

Detailed data about COVID-19 pandemic in different countries are publicly
available from many reliable web-based sources. However, the major challenge
is that all those data are reported with errors. It necessitates the development of
special algorithms for COVID-19 epidemic simulation and control. The present
paper develops such algorithms for a new flexible model of epidemic control
successfully tested on the COVID-19 dynamics in the US over one-year period
[16]. The model is described by Volterra integral equations [3,11,17,18,19] and
contains SIR, SEIR, and some other epidemic models [15] as special cases. It
accurately depicts the COVID-19 infectivity pattern from clinical data. The
present paper provides a systematic analysis of available data, develops a new
identification algorithm for model identification and applies it to the COVID-19
dynamics in the United Kingdom.

Integral equations are more general and natural in mathematical modeling
of epidemics as compared to the ODEs [9, 10, 15, 21, 22]. They represent an
alternative way to develop realistic descriptions of epidemic propagation and
control. The integral equations appeared early in mathematical modeling of
populations in the groundbreaking works [30] of Volterra and [22] of Kermack
and McKendrick. First attempts to model real populations using ODEs demon-
strated that the population growth rates did not respond instantaneously to
changes in population sizes. To address this fact, Vito Volterra added integral
delay terms to differential models of population dynamics. More details about
classic and comprehensive integral models of populations can be found in the
monographs [3,9,11,19,21]. Despite this early interest, the analysis and appli-
cations of integral models with delays have lagged behind ODE-based models
that do not incorporate delays. On the other hand, the importance of time de-
lays is recognized in mathematical epidemiology [26]. Integral dynamic models
with distributed delays [11,19,20] have been known for almost a hundred years
and successfully used in many applications. Such models are more natural
and flexible for the control of COVID-19 [15]. They open new possibilities to
describe and optimize the economic control of epidemics.

An imperative goal of COVID-19 research is to assess the effectiveness of
the government actions and preventive measures in mitigating the epidemic
spread. Related models use changes of the transmission rate to capture public
measures to control COVID-19. In the integral model [16], finding the time-
varying transmission rate requires solving the Volterra integral equation (VIE)
of the first kind. Such equations belong to the ill-posed problems, in which small
variations of given data can lead to large changes in unknown variables [23].
There exist many regularization methods suitable for solving this identification
problem. However, specialized nature of the COVID-19 epidemic suggests their
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particularly effective modifications. Specifically, the latent period of COVID-19
pandemic requires some adjustments though allows more accurate modeling.

The novel theoretic contribution of this paper is the data analysis and ef-
fective regularization algorithm for identification of the time-varying transmis-
sion rate of COVID-19 epidemics. The used methodology combines direct dis-
cretization techniques and a continuous regularization method that preserves
the Volterra structure of the original model and takes advantage of its for-
mulation as an integral model with finite lags. The developed algorithm is
successfully applied to simulate and analyze the COVID-19 spread and control
in the UK in 2020-21, which determines the applied significance of the paper.

The paper is as follows. Section 2 presents the model. Section 3 describes
the identification algorithm for time-varying transmission rate. Section 4 ap-
plies the model and algorithm to the COVID-19 epidemic in the UK and
compares the simulated dynamics and timing of related government actions.
Section 5 concludes and provides directions of future research.

2 Integral model for epidemic control: formulation and
properties

Let us consider the following integral model of epidemics:

I(t) =

∫ t

t−T

b(u, t− u)I(u)
S(u)

N
f(t− u)du, (2.1)

S(t) = N −
∫ t

−T

b(u, t− u)I(u)
S(u)

N
du, (2.2)

R(t) = N − I(t)− S(t), 0 ≤ t < ∞, (2.3)

first introduced in [16]. The model describes the dynamics of three groups of
individuals: S (susceptible), I (infectious), and R (recovered or dead). Here,
N is the constant population size and T > 9 is the maximal duration of the
infectiousness period. In real life, the time T is finite.

The key model function b (u, s) ≥ 0, 0 < u < T , describes the infectiousness
intensity (transmission rate) that depends on the contact time u and the time s
passed after the infection occurs, b(u, s) = 0 for s > T . The dependence of the
infection intensity b on the time-since-infection s is a major concern in modern
epidemic models [3, 9]. The model (2.1)–(2.3) is flexible and can describe any
realistic distribution of infectious periods [25].

The given f(s) ≥ 0 is the fraction of population that still remain infectious
at time s, f(0) = 1, f(s) = 0 for s > T . All recovered individuals are assumed
to become immune, so, the only susceptible fraction S/N of the population can
become infected. The fraction 0 < δ < 1 of ”recovered or dead” dies, so, the
total number of deaths is

D(t) = δR(t).

As proven in [16], assuming continuous functions b and f , the nonlinear Volterra
integral equations of the second kind (2.1)–(2.3) have a unique non-negative
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solution I(t), S(t), R(t), 0 < T < ∞, at the given initial conditions

I(t) = Ĩ0(t), S(t) = S̃0(t), t ∈ (−T, 0]. (2.4)

The most important feature of the integral model (2.1)–(2.3) is that it can
describe any pattern b(u, s) of infectivity and latency, which is not possible in
ODE-based models.

2.1 Infectiousness distribution, transmission rate, and survivor
distribution

Following [16], we assume that the infectiousness intensity b(u, s) is the product
of two functions

b(u, s) = β(u)β̃(s), 0 ≤ t < ∞, 0 ≤ s ≤ T, (2.5)

to emphasize fundamental differences in its dependence on the infection time
u and time-since-infection s. Then, the Equation (2.1) becomes

I(t) =

∫ t

t−T

β(u)I(u)
S(u)

N
β̃(t− u)f(t− u)du, 0 ≤ t < ∞. (2.6)

Solving the integral Equation (2.6) with respect to the unknown β(s) under
noisy data is the major subject of this paper.

The infectiousness distribution β̃(s) of infection intensity over the period
[0, T ] is critical in mathematical epidemiology. All contemporary epidemic
models have been designed to describe more accurate infectiousness period
distributions of real epidemics. In theory, β̃(s) may be of any distribution,
from exponential to uniform distribution [25]. In practice, it is determined
from detailed clinical data over a certain period [0, T ] (see Section 3).

The dependence of b(u, s) on the infection time u determines the time-
dependent transmission rate β(u), that attracts an increasing interest during
COVID-19 time. Starting 2020, numerous epidemic-economic models attempt
to simulate of COVID-19 epidemic and government attempts to mitigate it.
Thus, [1, 2, 5, 13], and others use the time-dependent transmission rate β(t) in
SIR and SEIR models to capture how government decisions to lockdown and
re-open the economy affect the epidemic spread.

However, it is well known in contemporary epidemiologic research that the
standard SIR and SEIR models do not adequately describe real transmission
delays for many diseases [25]. In particular, the infectiousness distributions

β̃(s) in those models have too fat right tail and are unrealistic. Following such
exponential distributions, some individuals will remain infectious at any dis-
tant future time. Importance of COVID-19 pandemic requires more advanced
models to describe and control it.

The integral model (2.1)–(2.3) with finite memory accurately portrays de-
lays in the variable transmission rate β(t) to capture government control of
COVID-19. It depicts real patterns of infectivity and latency, obtained in clin-
ical data.
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The survivor distribution f(s), s ∈ [0, T ], in (2.1)–(2.3) describes the frac-
tion of individuals that remain infectious s days after becoming infected. In
practice, it decreases from f(0) = 1 at the beginning to f(T ) = 0 at the end of
the finite infectiousness period [0, T ]. It should be also based on detailed clini-
cal data, if available. As demonstrated in [16], the shape of f affects simulation

outcomes less seriously compared to the infectiousness period distribution β̃.

2.2 Reproduction number

The most publicly known epidemiological parameter is the reproduction number
Rt that defines the expected number of new infections generated by one infected
individual. Its distinguished feature is that the number I of infected increases
when Rt > 1 and decreases when Rt < 1 [14,21]. The UK govenmert regularly
refers to the reproduction number to describe COVID-related goals and actions
of UK government to control epidemic [7].

The number Rt is related to the transmission coefficient β and is calcu-
lated differently in different epidemic models. Following [16], the reproduction
number in the integral model (2.1)–(2.3) is

Rt =

∫ t

t−T

b(u, t− u)
S(u)

N
f(t− u)du. (2.7)

The basic reproduction number

R0 =

∫ t

t−T

b(u, t− u)f(t− u)du

describes the expected number of new infections generated by one infected in
a totally susceptible large population at the beginning of epidemic, i.e., when
I(t) << N and S(t) ∼ N .

3 Identification of integral model on COVID-19 data

This section determines the unknown time-dependent transmission rate β(t)
from the integral model (2.1)–(2.3),(2.6), assuming that the variables S(t),
I(t), and R(t) are known over a long enough interval [T0, Tmax].

3.1 Data set description

Following recent clinical research [29], the infectiousness period distribution

β̃(s) for COVID-19 is described by the solid black curve in Figure 1 taken

from [16]. This shape of β̃(s) is common for influenza-like diseases, see Fig-
ure 13.1 in [26]. For comparison, Figure 1 also shows the theoretic infectious-
ness distributions (2.5)–(2.7) for the SIR, SEIR, and the multi-compartment

Erlang SIR model at n = 2 and n = 5. As seen in Figure 1, β̃(s) is very
small at s > 14 days. So, we choose the COVID-19 infectiousness interval of
T = 14 days, that includes both latent (four days) and infectious periods of
the COVID-19 infected individuals.

Math. Model. Anal., 27(4):573–589, 2022.
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Figure 1. Dependence of infectivity on the time-since-infection for COVID-19 clinical
data (bold black line), SEIR distribution, and Erlang distribution [19].

The COVID-19 data for the UK over the time horizon of April 2020 – May
2021 is taken from the reliable web-based source [27]. The given function I(t)
corresponds to the column “Daily new confirmed COVID-19 cases per million
people” and is shown in Figure 2.

Figure 2. The dynamics of new infected individuals in the UK for April 2020 – May
2021, taken from (Our World in Data 2020).

So, N = 106 in (2.1)–(2.3). One can see that it has frequent sharp fluctua-
tions apparently caused by data reporting errors. This is a well-known common
problem for COVID-19 data [8]. For this reason, we use “Daily new confirmed
COVID-19 cases per million people (the rolling 7-day average)” in our simula-
tion. Preliminary smoothing and filtering data is a common approach before
using discretization methods, especially for ill-posed problems [24].

Several special cases of the survivor distribution f with a finite T > 0 are
provided in [16]. We choose the uniform survivor distribution

f(s) =

{
1, 0 ≤ s < T,
0, s ≥ T
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in accordance with which infected individuals remain infectious exactly T days
after becoming infected and then they immediately move to the stage R. Then,
two-week delayed “Total confirmed COVID-19 cases (per 1 M)” minus “Daily
confirmed COVID-19 deaths (per 1 M)” can be used as a proxy for R(t). Our
numeric experiments show that the survivor distribution f(s) appears to be

less essential than β̃(s). Choosing a different f(s) leads to similar simulation
results.

3.2 Challenges in solving identification problem

Because of the COVID-19 latent period, the given β̃(s) = 0 at 0 ≤ s ≤ τ ,
where τ = 3 days (see Figure 1). To highlight this fact, we rewrite the Volterra
integral equation of the first kind (VIE-I ) (2.6) for the unknown β(t) as

I(t) =

∫ t−τ

t−T

β(u)I(u)β̃(t− u)
S(u)

N
f(t− u)du, t0 ≤ t ≤ Tmax. (3.1)

If we have known exact functions I, f , and β̃ in the Equation (3.1), then its
numeric solution would have been trivial. The challenge is that all COVID-19
data are reported and known with errors [23]. Such errors are clearly visible
in the graph of I in Figure 2 even after the seven-day smoothing. This is the
only real data available.

The linear VIE (3.1) belongs to the category of ill-posed (ill-conditioned)
problems, in which small variations of given data can lead to large changes in
unknown variables. It can be solved using various regularization algorithms, see
[6,23] and the references therein. The regularization theory for linear ill-posed
problems is well-developed. To better discuss the nature of regularization, let
us convert (3.1) to a more standard VIE-I form. Introducing the new unknown
variable x and given convolution kernel K as

x(t) = I(t)S(t)β(t)/N, K(u) = β̃(u+ τ)f(u+ τ), (3.2)

and replacing the independent variable t → t+ τ , the Equation (3.1) becomes
a convolution VIE-I with finite distributed delay∫ t

t−T̂

K(t− u)x(u)du = I(t+ τ), t0 − τ ≤ t ≤ Tmax − τ, (3.3)

with respect to x, where T̂ = T − τ > 0 is the delay duration [19,20]. To find a

unique solution x (t) of the delay Equation (3.3) for t0− τ + T̂ < t ≤ Tmax− τ ,
we need to know or approximate the initial function

x(t) = x0(t), t ∈ [t0 − τ, t0 − τ + T̂ ]

on the process prehistory.
Solving the ill-posed Equation (3.3) has serious challenges in the situation

when we know only an approximation Iδ of the given function I. This is exactly
what happens with COVID-19 data. As in [23], we assume here and thereafter
that K ∈ C [0, T ] and the given function I is such that there exists a unique

Math. Model. Anal., 27(4):573–589, 2022.
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solution x ∈ U = L2 (0, T ) of the integral equation (3.3). Let Iδ ∈ U satisfy∥∥I − Iδ
∥∥
U
< δ for some δ > 0. Formally, the ill-posedness of the Equation (3.3)

means that its solution xδ with a perturbed Iδ (if such a solution exists) may
be arbitrarily far from the solution x of the unperturbed problem (3.3).

The aim of regularization algorithms is to find an approximate solution
of the Equation (3.3) that is stable under small changes in given functions.
Namely, the regularization algorithm defines a regularized approximate solu-
tion xδ of the Equation (3.3) in such a way that the solution xδ approaches the
desired exact solution x (in the metric of U), when the initial data error δ → 0.
The regularization algorithm usually includes finding appropriate regulariza-
tion parameters from supplementary information about the problem, such as
the accuracy of initial data.

Following [23], we focus on the regularization methods of Volterra type
that retain the causal nature of Volterra operator in (3.3). Specifically, we
choose a simple and effective regularization technique, the singular perturbation
approach, first offered in [28]. This technique adds the regularizing term αβ(t),
α > 0, to the LHS of the Equation (3.3), which makes it the VIE-II:

αx(t) +

∫ t

t−T̂

K(t− u)x(u)du = I(t+ τ), t0 − τ ≤ t ≤ T( max)− τ. (3.4)

The role of the regularizing term and the choice of the regularizing parameter α
are discussed below, but here we shall note that adding it directly to the original
delayed equation (3.1) would make the regularization much less effective.

3.3 The degree of Ill-posedness of VIE-I

A classic technique to solve VIEs of the first kind is to differentiate them,
which frequently leads to well-posed VIEs of the second kind [11]. However,
the Equation (3.3) after differentiation becomes

K(0)x(t)−K(T )x(t− T ) +

∫ t

t−T

K ′(t− u)x(u)du = I ′(t+ τ) (3.5)

and remains the VIE-I because K(0) = f(τ)β̃(τ) = 0 by (3.2). The equation of
the first kind (3.3) is worse for numeric solution than (3.5) because it contains
the derivatives of K and I. To discuss the ”degree of ill-posedness” of vari-
ous first-kind equations, Lamm [23] introduced the concept of a v-smoothing
problem. Applied to the VIE-I (3.3), this concept is described by the following
definition.

Definition 1. The Volterra equation (3.3) is a v-smoothing problem with an
integer v ≥ 1 if I ∈ Cv [t0, tmax], K ∈ Cv [0, T ], K(l) (0) = 0 at l = 0, . . . v − 2,
and K(v−1) (0) ̸= 0 for t ∈ [0, T ].

Following this definition, the Equation (3.3) on our COVID-19 dataset is
a v-smoothing problem with v ≥ 2 since K (0) = 0. As noted in [23], the
vast amount of theoretical analysis for regularization methods is restricted to
one-smoothing Volterra problems, which are the least ill-posed.
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Common results of the regularization theory are the convergency theorems
that provide conditions on the selection of the regularization parameter α =
α (δ) so that xδ → x in U as δ → 0. The convergency theorem for the single
perturbation regularization of the standard VIE-I is well known at v = 1 but
is still an open issue if v > 1 [23]. We do not pursue the convergency theory
for the (3.3) → (3.4) regularization for two reasons:

� The convergence theorems state how to select α = α(δ) asymptotically as
δ → 0, but do not provide a rule for selecting α when only one particular
perturbation Iδ of I is known.

� Because the COVID-19 data is discrete, we must combine a continuous
regularization method of Volterra-type with an effective discretization
technique using a proper numeric integration rule.

Instead, we develop a numeric algorithm based on the direct discretization
of the regularized Equation (3.4) and approbate it on the real COVID data.

3.4 Regularizing algorithm

Our regularizing algorithm for the Equation (3.4) includes iterations through
two linked stages:

� Discretization of the regularized equation (3.4) at a chosen value α.

� Verification of the obtained solution using correspondence to original
data.

At the end of Stage 2, we select a new corrected value α of regularizing
parameter and repeat Stage 1 if needed. Several successive iterations allow
reaching the best possible visual correspondence between calculated and origi-
nal data.

Stage 1. Discretization of the regularized integral equation (3.4).

In the COVID-19 dataset described in Section 3.1, the discrete functions (vec-
tors) S(t), I(t), and R(t) are known over the interval [t0, Tmax] with the given
discretization step h = 1 (day). So, we can assume the independent variable t
and parameters τ, T, Tmax to be integer. The discrete function K(i) is given
for i = 0, 1, . . . , T − τ .

Typical numerical discretization of the VIE-I leads to the system of linear al-
gebraic equations with a lower-triangular matrix with small diagonal elements,
that remains ill-posed. Consequently, our first attempts to solve the original
VIE-I (3.3) using various numeric integration rules produced solutions β alter-
nating between large negative and positive values because of fluctuations in the
given I. In accordance with the epidemic meaning of the model, we restricted
the calculated values β(t) to an interval [Bmin, Bmax] : 0 < Bmin ≤ β (t) ≤
Bmax, but it was of a little help. Preliminary smoothing of the given function
I(t) was not enough either. The discretization of the regularized VIE-II (3.4)
appears to be more successful and is described below.

Math. Model. Anal., 27(4):573–589, 2022.
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Assuming that t is an integer and approximating the regularized VIE-II
(3.4) with the rectangular integration rule, we obtain the system of linear al-
gebraic equations

αx(t) +

t−1∑
j=t−T̂

K(t− j)x(j) = I(t+ τ), t = t0 − τ + 1, ..., Tmax − τ. (3.6)

From (3.6), we obtain the explicit formula for calculating the unknown x (t):

x(t) =
1

α

(
I(t+ τ)−

t−1∑
j=t−T̂

K(t− j)x(j)

)
(3.7)

for t = t0 − τ + T̂ + 1, . . . , tmax − τ . In the recurrent formula (3.7), x(t)

depends on T̂ previous values x(j), j = t− 1, . . . , t− T̂ . To start calculations
with (3.7), we use linear interpolation to determine the initial function

x(j) = x0(j), j = t0 − τ, . . . , t0 − τ + T̂ ,

that satisfies the Equation (3.6) at j = t0 − τ .
For each t, we calculate β (t) = I (t)S (t)x (t)/N and use the discretized

equations (2.2) and (2.3) to find R(t) and S(t).
Without regularization parameter α > 0, the discretized formula (3.7) is

undefined because of the chosen discretization scheme for (3.4). Finding ef-
ficient values of the regularization parameter is the key challenge in solving
ill-posed problems [6, 23]. Usually, accuracy of the data is not known, which
makes theoretic approaches (convergency theorems) not applicable. An effec-
tive practical criterion for choosing regularization parameters is a visual control
of the obtained solution when it is possible. Employing this idea, we can find
the regularization parameter α* that delivers the best correspondence between
I(t) recalculated below in Stage 2, and the original dataset vector for I.

Stage 2. Verification of solution and choice of regularization parameter.

This step verifies how accurately the solution β, obtained at a specific value
α, satisfies the original model (2.1)–(2.3). Namely, we substitute the function
β(t), t = t0 − τ, . . . , Tmax − τ , obtained in Stage 1 to the discretized equations

(2.1)–(2.3) and calculate the discrete functions S̃(t), R̃(t), and Ĩ(t) for t =
t0 + T + 1, . . . , Tmax. In doing so, we use the known values of S(t), I(t), and
R(t) at t = t0, . . . , t0 + T from Stage 1 as given initial conditions (2.4) on the
prehistory of the process.

Next, we visually compare the calculated S̃, Ĩ, and R̃ with the given S, I, and
R from the original dataset over the period [t0 + T, . . . , Tmax]. Starting with a
small value α = 0.1, we gradually increase it and repeat Stage 2, until we reach
the best visual correspondence between the calculated I(t), t = t0+T, . . . , Tmax,
and the original dataset curve I.

Calculations at Stage 2 can be unstable at the offset of epidemic when the
given initial I(t) is much smaller. We originally chose t0 = March 1, 2020, and
Tmax = May 1, 2021 for the UK data. In the UK case, the number I(t) of new
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infected increases 40 times from 2.5 to 95 (per 1M) during 20 days from March
4 to March 20, 2020. As a result, we cannot reach an acceptable match (at any
value α) if t0 = March 20. Then, Stage 2 is repeated with a new later date t0.

Solving the verification problem with the delayed t0 = May 1, 2020, demon-
strates a much better agreement of I(t) with original data over the period
May 1, 2020–May 1, 2021, shown in Figure 3, with the average difference of
3-5% between the original and calculated values of I.

Figure 3. The observed and simulated dynamics of the new infected number in
COVID-19 epidemic in the UK. The reproduction number (dotted curve) is found from the

identification problem (3.1).

The best solution β(t) of the identification problem on UK data is reached
at α∗ = 1.36 and shown with solid black line in Figure 4. The corresponding
reproduction number Rt is calculated using (2.7) and shown in Figure 4 with
a dashed line.

Figure 4. The identified transmission rate β(t) and reproduction number Rt for
COVID-19 epidemic in the UK in 2020-21. Three major lockdowns are indicated by arrows.

In summary, varying the value of regularization parameter α in (3.6), we
have obtained an acceptable solution for the varying transmission coefficient
β(t) over the period of one year with several waves of COVID-19 in the UK.

Math. Model. Anal., 27(4):573–589, 2022.
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4 Mitigation of COVID-19 epidemic in the UK:
simulation and analysis

This section indicates how preventive actions instituted by the federal and
local governments have affected the dynamics of the COVID-19 pandemic in
the United Kingdom and its reproduction number Rt. The related information
is obtained from online BBS News [7] and similar public sources.

The first wave and lockdown: March 2020–May 2020

The United Kingdom saw its first confirmed cases of COVID-19 in January
2020. In two weeks of March 8–22, the number of total cases in the UK in-
creased 21 times from 7 to 153 cases (per million). On March 23, Prime Min-
ister Boris Johnson issued the first stay-at-home order across the United King-
dom that closed non-essential businesses like restaurants and pubs, schools,
churches, and prohibited gatherings of more than two unrelated individuals.

After the first lockdown, the number I(t) of daily new cases continued to
increase. In April 2020, the Prime Minister reported that the UK’s lockdown
measures had effectively “flattened the peak” of its COVID-19 outbreak, as
I(t) stabilized around 4500–5000 cases (per million) between April 6 and April
20, 2020. The maximum number of new cases on a single day during the first
wave was 5505 per million on April 22. The UK saw I(t) increased 100 times
in less than two months during March 8–April 22.

The number of new cases began to decline in late April, but COVID-19
restrictions largely remained in place through May. A new COVID-19 alert
system was announced to offer guidance based on the threat of the pandemic
within individual sub-populations. The number I(t) of new cases steadily de-
creased each week from April 22 to May 31 and was 1070 per million on May 31.
Lockdown measures and testing were effective, so UK officials began planning
for the country’s reopening.

Lockdown lifting, slow reopening: June 2020–August 2020

As the number of COVID-19 cases continued to decline, the UK began to lift
some of its COVID-19 restrictions. In June, children were able to return to
school with continued social-distancing, churches and retail stores were able to
open with capacity limits, and public recreational areas were reopened. The
reproduction number was Rt < 1 from mid-May to July 6. The seven-day
average I(t) decreased from 22.7 in May 24–31 to 5.2 daily new cases (per
million) in June 30–July 7. Local governments were responsible for enforcing
mask mandates, social distancing measures, and capacity limitations.

Government preventative measures in the UK effectively reduced I(t) in
May and June, so the federal government began advocating for further reopen-
ing of the country. On July 4, the government reopened restaurants, pubs,
cinemas, theme parks, beauty salons, and tattoo shops for the first time since
March 2020. Although easing COVID-19 restrictions caused minor spikes in
certain locations, the UK collectively saw a reduction in the number of new
cases each day during June and July, with less than 1000 cases each day from
June 19 to August 8 with only one exception, July 14. In late July, England
mandates that masks must be worn in enclosed public spaces. Scotland began
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requiring that masks be worn in shops.
In August, children returned to school without classroom capacity limita-

tions. The federal government launched the “Eat Out to Help Out” campaign
to encourage citizens to begin eating out again. July 7 was the first day that
Rt > 1 in over two months. The reproduction number remained Rt > 1 for
the most of July and August and the number of new cases per day began to
increase faster in August.

The second wave and lockdown: September 2020–November 2020

The second wave of COVID-19 in the UK came as people began returning to
their workplaces, children went back to school, and businesses began to reopen.
The number I(t) increased more than five times in two months: from 5 in June
30–July 7 to 27 new cases (per million people) in August 31–September 7.

The increase of I(t) became more severe in September. In an attempt to
curb the spike in the number of cases, the UK again limited social gather-
ings to six or fewer people. On September 22, Prime Minister ordered curfew
for restaurants and pubs after 10 pm, a mask mandate in retail stores, and
a 15-person limit on weddings. The number I(t) continued to increase until
November. Individual nations implemented further restrictions. Scotland in-
stated a ban on visiting of multiple households indoors. On September 24,
the NHS COVID-19 contact tracing app was released. Prime Minister Boris
Johnson introduces a three-tiered system of restrictions.

From August to early November, Rt was larger than 1 across the UK. In
early October, Rt was 1.3–1.6. On October 31, Prime Minister Boris Johnson
declares the second lockdown for four weeks for England. It included mostly
the same restrictions as the first lockdown in March: closing non-essential
businesses, a stay-at-home order, and travel limitations. Schools remained
open with after-school activities being suspended.

The number I(t) reached the peak of its second wave the week of Novem-
ber 10–November 17, which averaged 373 daily new cases (per million). On
November 27, Rt < 1 for the first time since August. Daily new cases decreased
to 210 (per million) for the week of November 27–December 4. On December 2,
the second lockdown was lifted and Pfizer/BioNTech vaccine rollout begins.

The third wave and lockdown: December 2020–March 2021

There was a little time between the second and third waves. On December
14, a new variant of COVID-19 was discovered in the UK and Rt rose above
1 again. On December 19, Prime Minister placed parts of England with high
numbers of cases under strict lockdown once again. It included Scotland, Wales,
Northern Ireland, and some cities in England. Still, many citizens traveled
during Christmas break, leading to increased transmission. The number I(t)
continued to rise. Rt was estimated to be 1.9 on January 1, 2021.

To mitigate the COVID-19 spread, the UK instated the third national lock-
down on January 4. This lockdown included a stay-at-home order, the closure
of non-essential businesses and schools, and travel limitations. The UK saw the
peak of its third wave in the week of January 3–January 10 with 881 average
daily new cases (per million people).

The third lockdown was lifted gradually, in a similar way as was done for
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the first lockdown. In late January, the UK has seen a reduction trend in the
number I(t) of new cases (except for some local areas). On January 22, Rt

< 1 for the first time since early December and Rt continued to decrease in
February as lockdowns persisted (and vaccines became available). On March
8, the UK opened schools once again, with regular testing for instructors and
students. On March 29, the stay-at-home order was removed, and outdoor
sports facilities reopened. Outdoor gatherings of at most six people or two
households were permitted. Although COVID-19 restrictions were eased, I(t)
stayed low in March–April 2021.

Table 1 summarizes the timeline of UK government measures to mitigate
three waves of COVID-19 epidemic over March 2020–March 2021. Times of
three major lockdowns are indicated in Figure 4 by arrows. The table reveals
relations between those measures and the dynamics of new cases and the cal-
culated reproduction number.

Table 1. Timeline of COVID-19 spread and mitigation activities in the UK

Dates Government measures New cases
Reproduction
Number

3/23/2020–
5/9/2020

First lockdown:
Stay-at-home order, School
closures, Non-essential
businesses closed

increases
>1, 3/23/20–5/3/20
<1, 5/4/20–7/5/20

5/10/2020–
7/6/2020

Lockdown easing: Stores,
schools, and other public
spaces reopened. Social
distancing. Mask mandates
on public transit and
in stores. Travel bans

decreases <1, 5/4/20–7/5/20

7/7/2020–
11/5/2020

Slow Reopening: Restaurants,
pubs, beauty salons, theme
parks, and schools reopened

increases >1, 7/6/20–11/18/20

11/5/2020–
12/2/2020

Second lockdown (in England):
Stay-at-home order,
Non-essential businesses closed

decreases
>1, 11/5/20–11/18/20
<1, 11/18/20–12/3/20

12/3/2020–
1/3/2021

Lockdown easing (except for
few hotspot cities).
Citizens travel on holidays

increases >1, 12/5/20–1/3/21

1/4/2021–
3/29/2021

Third lockdown: Stay-at-home
order, School closures,
Non-essential businesses closed)

decreases
>1, 12/5/20–1/14/21
<1, 1/15/21–4/10/21

5 Discussion and conclusions

Quantitative modeling of COVID-19 spread in different countries and regions
is critical for proper assessment and implementation of government and public
health actions to control COVID-19 pandemic. We contribute to this topic by
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computing and analyzing a detailed timeline of the COVID-19 transmission
rate and reproduction number in the UK over 2020–21. Among many related
papers and public sources, only few provide such detailed timeline on real data,
usually, without theoretical justification. Our analysis is based on the integral
epidemiologic model (2.1)–(2.3) offered in [16] to analyze COVID-19 dynam-
ics in the US. The time-varying transmission rate is found from the Volterra
integral equation (3.4) of the first kind. Solving this equation on available
COVID-19 data is challenging and requires special approaches. The present
paper extends [16] and justifies an effective regularization algorithm for the
identification of time-varying transmission rate in the model (2.1)–(2.3). The
algorithm preserves the Volterra structure of the Equation (3.3). Our approach
is close to the well-known discrete statistical technique [12] that estimates the
epidemic reproduction number using clinical infectivity distributions. However,
our formulation of the epidemic model in continuous time allows a deeper anal-
ysis using calculus tools and effective numeric solution using well-developed
regularization methods.

The developed algorithm is tested on COVID-19 epidemic data in the UK
in 2020–21. The calculated transmission rate is verified by substitution it
to back to the model. We obtain extremely close qualitative and quantitative
resemblance between the original and calculated numbers of infected individuals
(shown in Figure 3), which confirms the effectiveness of the offered technique.
Simulated dynamics of the reproduction number well matches the public data
about related UK government actions to mitigate the epidemic.

Future research directions include advancing both the model and methods
of its analysis.

� First, there exist other promising regularization approaches [23] to further
improve the developed identification algorithm.

� Second, the epidemic model (2.1)–(2.3) is limited by the assumption that
a population is a homogenous mix of individuals. A prospective exten-
sion would be to implement the metapopulation approach to COVID-19
epidemics. Structured metapopulation models [26] account for the char-
acteristics of specific sub-populations within the population. In particu-
lar, studies using such models [1] categorized individuals in different age
groups and revealed new effects of certain preventative measures such as
stay-at-home orders.

� Finally, extending the optimization analysis of epidemic control actions
in SIR models [1, 2, 5, 13] to the integral model (2.1)–(2.3) may lead to
new theoretic insight into the effectiveness of government controls in mit-
igating epidemics.
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