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Abstract. In this research article Hermite wavelet based Galerkin method is de-
veloped for the numerical solution of Volterra integro-differential equations in one-
dimension with initial and boundary conditions. These equations include the partial
differential of an unknown function and the integral term containing the unknown
function which is the memory of the problem. Wavelet analysis is a recently devel-
oped mathematical tool in applied mathematics. For this purpose, Hermit wavelet
Galerkin method has proven a very powerful numerical technique for the stable and
accurate solution of giving boundary value problem. The theorem of convergence anal-
ysis and compare some numerical examples with the use of the proposed method and
the exact solutions shows the efficiency and high accuracy of the proposed method.
Several figures are plotted to establish the error analysis of the approach presented.

Keywords: Volterra partial integro-differential equation, Hermite wavelet, Galerkin

method.
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1 Introduction

The orthogonal basis functions can be truncated into series for the solutions of
the physical or mathematical problems. Mainly, there are three classes for or-
thogonal basis functions. Firstly, the piecewise constant functions including the
block pulse and Walsh functions and related ones. Secondly, the family of sine-
cosine functions. Lastly, the family of orthogonal polynomials like Hermite,
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Laguerre, and Chebyshev. The construction of wavelets based on orthogonal
polynomials is more recent. Since it is easy to generate an orthonormal basis
of L2(R) with help of orthogonal polynomials, so wavelets based on orthogo-
nal polynomial work well. There are a few orthogonal wavelet methods that
can provide a tangible level of accuracy which are considered by researchers.
The Hermite polynomial-based wavelet techniques can offer a better solution
because they reduce the computational cost at a tangible level and provide a
better rate of accuracy [22].

Wavelets have found their way into many different fields of science and en-
gineering. They have been used in a broad scope of technology disciplines;
particularly, signal analysis for waveform representation and segmentations,
time-frequency analysis and fast algorithm for easy execution [13, 14, 15]. In
general results in theoretical problems are as partial differential equations, in-
tegral and integro-differential equations. Partial differential equations provide
an important tool for modeling the numerous problems in various fields of
engineering and physics and systems included the space and time variables.
When we must consider the effects of the “memory” of the system, the mod-
eling leads to the integral term containing the unknown function.Therefore, a
partial integro-differential equation (PIDE) is obtained, which combined the
partial differentiations and integral terms.

Integro-differential equations are normally hard to solve analytically so it
is needed to get an efficient approximate solution. This necessitates either dis-
cretization of partial differential equations leading to numerical solutions or
their qualitative study which is concerned with a deduction of important prop-
erties of the solutions without actually solving them. Partial differential equa-
tions have many different types such as elliptic, hyperbolic and parabolic in one
or multi-dimension. The main purpose of this theme is to draw an approximate
solution for a parabolic Volterra partial integro-differential equation (VPIDE).
This paper deals with the following nonlinear partial integro-differential equa-
tions for the one-dimension (1D):

ut(x, t) = µ∇2u+

∫ t

0

k(x, t, s, u(x, s))ds+ f(x, t), x ∈ I ⊂ R, t ∈ J, (1.1)

where µ > 0, ut = ∂u/∂t, ∇2u = ∂2u/∂x2. The kernel k, function f and the
unknown real function u(x, t) are continuous on Ω = {(x, t) ∈ R2 : x ∈ I, t ∈ J}
and I ×S×R, respectively, with I = [a, b], J = [0, T ] and S = {(t, s) ∈ J ×J :
s ≤ t}. We assume that the function k is continuously differentiable and
therefore satisfies a Lipschitz condition with respect to its last variable, i.e.,
there exists a constant L ≥ 0 such that for all u, v ∈ R

|k(x, t, s, u)− k(x, t, s, v)| ≤ L |u− v|

along with the initial value (IV) condition

u(x, 0) = u0(x), x ∈ I, (1.2)

and the boundary value (BV) conditions

u(a, t) = h(t), u(b, t) = l(t), t ∈ J. (1.3)
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This class of equations is applied in many different field of engineering and
physics science, e.g. geophysics [27], reaction-diffusion problems [24], bioflu-
ids flow in fractured biomaterials [28], nuclear reactor dynamics [17], financial
modelling [1], pricing of derivatives in finance [19] and electricity swaptions [7].

Numerical solution of partial integro-differential equations has recently drawn
much attention of researchers. There are various methods for solving several
classes of PIDEs, finite element methods [26], finite difference methods [6],
spline collocation methods [25], wavelet collocation method [13].

The Galerkin method is very powerful tools for solving many kinds of differ-
ential and integral equations arising in several areas of scientific discipline [3,18].
Collocation method involves numerical operators acting on point values (col-
location points) in the physical space. Generally, wavelet collocation methods
are created by choosing a wavelet and some kind of grid structure which will
be computationally adapted. The treatment of nonlinearities in wavelet collo-
cation method is a straight forward task due to collocation nature of algorithm
as compared to wavelet-Galerkin method. Moreover, implementation are more
practical with Galerkin methods. The wavelet Galerkin method is one of the
best known methods for obtaining numerical solutions to integro-differential
equations [16]. The approximations of PIDE with wavelet basis are more at-
tentive, because the reality of orthogonality of compactly supported wavelets.
The concepts of multiresolution analysis based have given great momentum to
make wavelet best approximations of ODE’s and PDE’s [11,20].

The basis functions may be global polynomials, piecewise polynomials,
trigonometric polynomials or other functions. The basis functions used for the
spectral method are mutually orthogonal. Using orthogonal basis functions
tends to reduce the effects of rounding errors that occur when computing the
approximation. Hermite wavelets have been widely applied in numerical solu-
tion of differential equations [22], boundary value problems [2], singular initial
value problems [21], integral equations [12], integro-differential equations [9].

In this paper, we apply discrete Hermite wavelet Galerkin method (HWGM)
to solve VPIDE with IV and BV conditions using global wavelet basis functions.
The properties of Hermite wavelets together with the Galerkin method are
utilized to evaluate the unknown coefficients and then a numerical solution of
the partial integro-differential equations is obtained. This paper is organized
as follows. In Section 2, we give a brief introduction to the Hermite wavelets.
Based on Hermit wavelet, we develop the fully discrete scheme and numerical
algorithms with Galerkin method to solve PIDE in Section 3. In Section 4, we
discuss the convergence analysis of the proposed method. Finally, in Section 5,
numerical experiments are solved to verify the accuracy and efficiency of the
proposed approach. This paper ends with a conclusion.

2 Hermite wavelet

Wavelets constitute a family of functions constructed from dilation and trans-
lation of a single function called mother wavelet. When the dilation parameter
a and the translation parameter b vary continuously, we have the following

Math. Model. Anal., 28(1):163–179, 2023.



166 Y. Rostami

family of continuous wavelets as:

ψa,b(x) = |a|−
1
2ψ(

x− b
a

), a ̸= 0, a, b ∈ R.

If we restrict the parameters a and b to discrete values as a = a−j
0 , b =

kb0a
−j
0 , a0 > 1, b0 > 0 and j, k are positive integers, we have the following

family of discrete wavelets:

ψj,k(x) = |a0|−
j
2ψ(aj0x− kb0),

where ψj,k(x) forms a wavelet basis for L2(R). In particular, when a0 = 2 and
b0 = 1, then ψj,k(x) form an orthonormal basis. Hermit wavelets are defined
as [2, 21]:

ψk,m =

{
2

j
2 H̃m(2jx− 2k + 1), k−1

2j−1 ≤ x ≤ k
2j−1 ,

0, else,
(2.1)

H̃m =

√
2

π
Hm(x),

where m = 0, 1, ...,M − 1. In Equation (2.1), the coefficients are used for
orthonormality. Here Hm(x) are the second Hermite polynomials of degree

m with respect to weight function w(x) = (1− x)α(1 + x)
β
for α = β = 1

2

then w(x) =
√
1− x2 on the real line R and satisfies the following formula

H0(x) = 1, H1(x) = 2x,

Hm+2(x) = 2xHm+1(x)− 2(m+ 1)Hm(x).

For j = 1, k = 1 in Equation (2.1) the Hermite wavelets are given by

ψ1,0(x) =
2√
π
,

ψ1,1(x) =
2√
π
(4x− 2),

ψ1,2(x) =
2√
π
(16x2 − 16x+ 2),

ψ1,3(x) =
2√
π
(64x3 − 96x2 + 36x− 2),

ψ1,4(x) =
2√
π
(256x4 − 512x3 + 320x2 − 64x+ 2),

and so on.

2.1 Function approximation

Here we approximating the solution function u(x) of VPIDE by using Hermite
wavelet basis as follows:

u(x) =

∞∑
k=1

∞∑
m=0

ck,mψk,m(x), (2.2)
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where ψk,m are given in Equation (2.1) and

ck,m = ⟨u(x), ψk,m(x)⟩ .

We approximate u(x) by truncating the series represented, which is involv-
ing unknown parameter as follows:

un(x) =

2j−1∑
k=1

M−1∑
m=0

ck,mψk,m(x) = CTΨ(x), (2.3)

where C and Ψ(x) are 2j−1M × 1 matrix and ck,m are unknown coefficients to
be determined:

Ψ(x) = [ψ1,0, ..., ψ1,M−1, ψ2,0, ..., ψ2,M−1, ψ2j−1,0, ..., ψ2j−1,M−1]
T
,

C = [c1,0, ..., c1,M−1, c2,0, ..., c2,M−1, c2j−1,0, ..., c2j−1,M−1]
T
.

3 Numerical algorithms

3.1 Discretization in time

Now, the forward Euler method is applied for discretize time derivatives to the
θ-weighted scheme in Equation (1.1). Let tn = n∆t with ∆t being the time
step. If un(x) be the approximation to the value of un = u(x, tn) at the time
point t = tn and fn = f (x, tn) for n = 0, 1, ..., N , N =

[
T
k

]
, k ∈ N. We will

get:

ut(x, tn) ≈
un+1(x)− un(x)

∆t
, (3.1)

and
∇2u(x, t) ≈ [θ∇2un+1 + (1− θ)∇2un], (3.2)

substituting Equations (3.1) and (3.2) into Equation (1.1)

un+1 − un =∆tµθ∇2un+1 +∆tµ(1− θ)∇2un

+∆t

∫ tn

0

k(x, tn, s, u(x, s))ds+∆tfn. (3.3)

3.2 Discretization in space

We discretize the spatial-derivative in Equation (1.1) by the described HWGM
based numerical method in Section 2. We consider the uniform grid 0 ≤ xi ≤ 1,
let ∆x = 1/i denote the special step. We denote a grid point (xi, tn) by
tn = n∆t, xi = i∆x, uni is an approximation to the value of u(x, t) with
i = 0, ..., n, n ≥ 0.

According to the numerical integration composite trapezoidal rule we have:∫ tn

0

k(x, tn, s, u(x, s))ds ≈
tn
2n

[k(x, tn, s0, u(x, s0))

+ k(x, tn, sn, u(x, sn)) + 2

n−1∑
i=1

k(x, tn, si, u(x, si))]. (3.4)
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We emphasize that the chosen nodes si, i = 0, ..., n, in the integration
composite trapezoidal rule are coincided with tn in Equation (3.3). So, we
substitute Equation (3.4) into Equation (3.3) and obtain:

un+1 − un ≈∆tµθ∇2un+1 +∆tµ(1− θ)∇2un +∆t
tn
2n

[
k(x, tn, t0, u(x, t0))

+ k(x, tn, tn, u(x, tn)) + 2

n−1∑
i=1

k(x, tn, ti, u(x, ti))

]
+∆tfn,

where t0 = 0, u(x, t0) = u0(x). Now we approximate un(x) by HWGM as
follows:

ûn+1 ≈ûn +∆t
[
µθ∇2ûn+1 + µ(1− θ)∇2ûn + fn

]
+∆t

tn
2n

[
k(x, tn, û

0) + k(x, tn, û
n) + 2

n−1∑
i=1

k(x, ti, û
i)

]
, (3.5)

ûn+1 can be computed by the obtained recursive Equation (3.5) for n = 0, 1, ....
So, as the first step we can be obtained by the initial condition and

ûn(x) =

2j−1∑
k=1

M−1∑
m=0

ck,mψk,m(x) = CTΨ(x), (3.6)

fn(x) =Ψ
TF, k(x, t, s, u(x, s)) = ΨTKΨ. (3.7)

We discrete ∇2ûn as follows:

∇2ûn(x) =

2j−1∑
k=1

M−1∑
m=0

ck,m
∂2

∂x2
ψk,m(x), (3.8)

which can be rewritten as
[∇2ûn] = D[ck]

n
,

where
D = [ψ′′

1, ψ
′′
−3, ..., ψ

′′
2j−1]

T
. (3.9)

and the substitution of Equations (3.6)–(3.9) into the Equation (3.5) gives

ûn+1 ≈ ûn + µ1Dû
n+1 + µ2Dû

n + F + µ3K,

where µ1 = ∆tµθ, µ2 = ∆tµ(1− θ) and µ3 = ∆t tn2n .

3.3 Galerkin wavelet approximation

For numerical solving of Equation (1.1) we should choose a finite dimension
family of functions which the exact solution can be estimated by them. The
methods which apply this strategy are called projection methods, because the
exact solution of an equation is projected on the space with finite dimensions.
Consider the projection approximation un(x) is used to solve the PIDE problem
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of form L(u) = f with wavelet base function ψi(x), i = 0, 1, ,M − 1. The
Galerkin idea is to require the residual:

Rn(x) = L(un(x))− f(x),

since un(x) is not an exact solution of PIDE problem, Rn will never be exactly
zero. All the same, we can minimize it with regard to a set of weight functions.
The method minimizes the residual with respect to the set of approximating
functions by requiring ⟨Rn, ψi⟩ = 0 using the inner product definition∫ 1

−1

w(x)Rn(x)ψi(x)dx = 0, i = 0, 1, ..,M − 1

with w(x) is the weight function corresponds to the base functions ψi(x). The
Galerkin method deals with the solution of the approximate problem Equa-
tions (1.1)–(1.3) in the form of a finite series and substituting Equations (3.6)–
(3.8) in Equation (3.5) leads to:

ΨT (x)Cn+1 ≈ΨT (x)Cn +∆t(µθΨT (x)DCn+1

+ µ(1− θ)ΨT (x)DCn + ΨT (x)F ) +∆t
tn
2n

(ΨTKΨ). (3.10)

We can now give a computational procedure for computing Equation (3.10)
using wavelet compression

Algorithm 1. (i) c0 ← compute initial guess in wavelet basis

(ii) R0 ← trunc
〈
c0, ψ

〉
(iii) for i = 0 to n+ 1 do

(iv) R1 ←
〈
Dci, ψ

〉
(v) end for

(vi) R2 ← ⟨F,ψ⟩

(vii) R3 ← ⟨K,ψ⟩

(viii) for i = 0 to n+ 1 do

(ix) ci+1 ← R0 + µ1R1 + µ2R1 +R2 + µ3R3

(x) end for

(xi) cn+1 ← trunc
〈
cn+1, ψ

〉
(xii) ûn+1 ← assign

{
c1, c2, .., cn+1

}
In the wavelet Galerkin method, to determine the coefficients

{
c1, c2, .., cn+1

}
,

we replace the expansion Equation (3.6) with ûn+1 and taking the inner product
⟨., ψi⟩ on the domain Ω upon both sides.

Math. Model. Anal., 28(1):163–179, 2023.
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In general, this leads to implicit methods where a linear system has to be
solved for each time step. For the differential operator in one dimension, the
matrices to be inverted in each time-step are banded and can be factored in
O(N) operations. If the differential operator is nonlocal, however, standard
Galerkin discretizations of ûn with N degrees of freedom entail dense stiffness
matrices and hence at least O(N2) complexity per time step for the numerical
solution of Equation (1.1). We reduce this complexity by a wavelet-based
matrix compression. The basic idea behind this compression is to represent
the Galerkin approximation ûn of Equation (1.1) in a wavelet basis.

4 Convergence analysis

Let un(x, t) be the exact solution of VPIDE Equation (1.1), that is, the so-
lution of giving equations at the n-th time level. Also, we assume that uh is
the approximate solution in Sobolev space Hm(Ω) of m derivative order. For
existence and uniqueness of a weakly solution based on assumptions of mini-
mal regularity, see [10, 29]. The convergence of the expansion of the Hermite
wavelets in Equation (2.2) and the estimate of the error of the truncated series
in Equation (2.3) are analyzed by the following theorem.

Lemma 1. (see [23])Let v ∈ H1
0 (Ω) and projection operator Ph : L2(Ω)→ Vh

that Vh be set of wavelet polynomial functions. Then, there exists a constant
C > 0, independent of h, k, such that

∥Phv − v∥L2(Ω) + h∥Phv − v∥H1(Ω) ≤ Ch
2(∥v∥H2 + ∥v∥H2).

We get for basis function ψ ∈ Vh:

⟨Phv, ψ⟩ = ⟨v, ψ⟩ ,

or
∥Phv∥H1 ≤ C∥v∥H1 .

Theorem 1. Let uh be an approximate solution of VPIDE (1.1) with the initial
value condition u(x, 0) = u0(x) and u0 ∈ H1

0 , f ∈ H2(L2(Ω)), ∆x = h = 1
i ,

∆t = k = t
n . Then, there exists a constant C > 0, independent of h, k, such

that
∥un − uh∥L2 ≤ C(u0, f, u, ut, utt)(h+ k).

Proof.
If u(x, t) = un = u(tn) be exact solution and uh be an approximate solution

of VPIDE (1.1) by Galerkin method with basis function vh and Au = ∇2(u) =
∂
∂x (

∂u
∂x ) so:

⟨unt , vh⟩ ≈ A ⟨un, vh⟩+
∫ tn

0

⟨k(tn, s, u(s)), vh⟩ ds+ ⟨fn, vh⟩,

that vh = Phu
n so en = un − uh and En = un − Phuh,〈

∂uh
∂t

, vh

〉
≈ A ⟨uh, vh⟩+

∫ t

0

⟨k(t, s, uh), vh⟩ ds+ ⟨f, vh⟩.
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The integral term can be approximated by unusual quadrature approxima-
tion, that is, a kind of the product trapezoidal integration rule as follows:〈

∂uh
∂t

, vh

〉
≈ A ⟨uh, vh⟩+

t

n

n−1∑
i=1

⟨k(tn, si, u(si)), vh⟩+ ⟨f, vh⟩ .

Now, the forward Euler method is applied for the time derivatives in the
equation:

∆ku ≈ un+1 − un,

and
∥un − uh∥ = (un − uh)− (un − Phuh) = en − En,

so,

⟨∆ke
n, en⟩+A ⟨en, en⟩ = ⟨∆ke

n, En⟩+A ⟨en, En⟩+ ⟨∆ku
n − unt , Phu

n − uh⟩
+ [Ah ⟨uh, Phu

n − uh⟩ −A ⟨uh, Phu
n − uh⟩]

+

[∫ tn
0
⟨k(tn, s, u(s)), uh − Phu

n⟩ds− k
n−1∑
j=0

〈
k(tn, tj , u

j), uh − Phu
n
〉]

+k
n−1∑
j=0

〈
k(tn, tj , e

j), uh − Phu
n
〉
,

we put

I1 = ⟨∆ke
n, En⟩ , I2 = A ⟨en, En⟩ , I3 = ⟨∆ku

n − unt , Phu
n − uh⟩ ,

I4 = [Ah ⟨uh, Phu
n − uh⟩ −A ⟨uh, Phu

n − uh⟩] ,

I5 =

∫ tn

0

⟨k(tn, s, u(s)), uh − Phu
n⟩ds− k

n−1∑
j=0

〈
k(tn, tj , u

j), uh − Phu
n
〉 ,

I6 = k

n−1∑
j=0

〈
k(tn, tj , e

j), uh − Phu
n
〉
,

we have:

⟨∆ke
n, en⟩+A ⟨en, en⟩ ≤ I1 + I2 + I3 + I4 + I5 + I6,

with Holder unequal can write:

I1 ≤ Ch ∥un∥2H1(Ω) + C ∥∆ke
n∥2L2(Ω) ,

and
I2 ≤ Ch ∥un∥2H1(Ω) + C ∥∆ke

n∥2H1(Ω) ,

for I3 explain:

∆ku
n − ∂un

∂t
=
−1
k

∫ tn

tn−1

(s− tn−1)uss(s)ds,

Math. Model. Anal., 28(1):163–179, 2023.
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with use lemma have:

I3 ≤ Ck2 ∥utt∥2L2 + Ch2 ∥un∥2H1 + C ∥en∥2L2 ,

given that:
|Ah(uh, vh)−A(uh, vh)| ≤ Ch ∥∇uh∥ ∥∇vh∥ ,

with use lemma can be obtained:

I4 ≤ Ch∥uh∥H1∥Phu
n − uh∥H1 ≤ Ch ∥en∥2H1 + Ch3 ∥un∥2H1

+ Ch ∥fn∥2L2 + Chk

∫ T

0

∥ut∥2L2ds+ Chk

∫ T

0

∥u∥2L2ds+ Ch
∥∥u0∥∥2

L2 ,

for I5 by quadrature trapezoidal integration rule, that is:∫ tn

0

f(s)ds ≃
n−1∑
j=0

wnjf(jk) + O(k),

for weight function wnj = k can write:∫ tn

0

f(s)ds ≃ k
n−1∑
j=0

fj = In,

and ∣∣∣∣In − ∫ tn

0

f(s)ds

∣∣∣∣ ≤ k ∫ tn

0

|f ′(τ)| dτ,

so we will:

I5 ≤k
∫ tn

tn−1

[∥u∥H1 + ∥us∥L2 ]ds∥En∥H1 + k

∫ tn

tn−1

[∥u∥H1 + ∥us∥L2 ]ds∥en∥H1

≤Ck
∫ tn

tn−1

[∥u∥H1 + ∥us∥L2 ]
2
ds+ Ck

(
∥en∥2H1 + ∥En∥2H1

)
≤Ck[∥u∥L2 + ∥ut∥L2 ]

2
+ Ck

(
h2 ∥un∥2H1 + ∥en∥2H1

)
,

for I6 have :

∥en∥2H1 ≤Ch2
(∥∥u0∥∥2

H1 + ∥un∥
2
H1 + ∥u∥2L2 + ∥ut∥2L2 + ∥utt∥2L2 + ∥fn∥2L2

)
+ Ck

n−1∑
j=0

〈
k(tn, tj , e

j), uh − Phu
n
〉
,
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then:

∥en∥2H1 ≤ Ch2
(∥∥u0∥∥2

H1 + ∥un∥
2
H1 + ∥u∥2L2 + ∥ut∥2L2 + ∥utt∥2L2 + ∥fn∥2L2

)
.

So we will have the following boundaries:

∥un − uh∥L2 ≤ Ck∥ut∥L2 + C
(
∥en∥2H1

) 1
2

.

The proof is completed. ⊓⊔

5 Numerical experiments

The numerical experiments are implemented in Maple 2018 software. The
computer programmes are accomplished on a PC with Intel Core i7 central
processing unit 2.60 GHz with 8 GB RAM. In order to show the error, we
introduce the following notation

en(x, t) = |u(x, t)− un(x, t)| ,

where u(x, t) and un(x, t) are the exact solution and the approximation solution
obtained by the presented method, respectively. We are going to use the error
norms defined by

L2 =

 1

2j−1M

2j−1M∑
k=1

(u(x, t)− un(x, t))2
 1

2

,

With illustrative examples, to show the accuracy and efficiency of the described
method, we present numerical examples, then we tabulated the absolute error
and L2 error norm with HWGM in Tables 1–3 and also we compared the present
method results by radial basis functions [4], Legendre collocatiom method [5]
and Euler method [8] for VPID equations. Figures show a comparison of exact
and approximate solutions of the examples. We used θ = 1/2, x ∈ [0, 1],
t ∈ [0, 1], j = 1, M = 5 and M = 6.

Example 1. In this example, we investigate the VPIDE with k(x, t, s, u) = (2x−
1) exp(s− t)u2, µ = 1 and initial and boundary conditions u(x, 0) = x(1− x),
u(1, t) = u(0, t) = 0 and f(x, t) = (x2(x− 1))/2 be chosen such that the exact
solution in this example is u(x, t) = x(1− x) exp(−xt). In Figure 1, the exact
solution, numerical solution are plotted by using HWGM with ∆t = 0.01 and
M = 5. The graph of exact and approximated solutions for t = 1 is illustrated
in Figure 2. The comparison among the present method besides the solutions
of radial basis functions [4] and Euler method [8] are shown in Table 1.

Example 2. Consider the kernel k(x, t, s, u) = −u with the initial and boundary
conditions u(x, 0) = (1−x6) sinx, u(0, t) = u(1, t) = 0, and µ = 1, and f(x, t) =
(1−x6) cos(x)+12x5) cos(x+ t)+(1+30x4−x6) sin(x+ t) be chosen such that
the exact solution in this example is u(x, t) = (1−x6) sin(x+t). In Figure 3, the
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Table 1. Absolute errors and L2 error norm by HWGM with other method at ∆t =
0.01,∆t = 0.001 for Example 1.

(M=5) (M=6) Method [4] Method [8]

x,t ∆t = 0.01 ∆t = 0.001 ∆t = 0.01 ∆t = 0.001 N = 40 N = M = 40

0.1 3.1(−6) 4.4(−7) 3.2(−9) 4.7(−9) 7.3(−6)
0.2 2.2(−6) 6.0(−7) 5.1(−9) 3.6(−9) 1.2(−5)
0.3 2.9(−7) 2.9(−7) 1.3(−9) 4.9(−11) 1.6(−5)
0.4 5.7(−7) 4.2(−7) 4.2(−9) 7.7(−11) 1.9(−5)
0.5 4.2(−7) 4.0(−8) 7.7(−11) 2.8(−13) 2.1(−5)
0.6 3.9(−9) 2.1(−8) 6.4(−11) 2.9(−11) 2.2(−5)
0.7 2.7(−7) 3.2(−9) 3.7(−11) 6.1(−13) 2.3(−5)
0.8 5.6(−9) 7.1(−9) 3.7(−11) 5.4(−11) 2.4(−5)
0.9 3.2(−9) 4.6(−9) 4.3(−9) 8.5(−11) 2.4(−5)

L2 3.3(−6) 4.5(−8) 6.3(−9) 2.8(−11) 5.8(−5) 3.5(−4)

CPU time 4.29 7.12 10.11 15.23 98.52

a) b)

Figure 1. Comparison of exact solution (a) with HWGM solution (b) at M = 5 and
∆t = 0.01 for Example 1.

Figure 2. Exact and HWGM solutions at t = 1, M = 5 and ∆t = 0.01 for Example 1.

exact solution, numerical solution are plotted by using HWGM with ∆t = 0.01
and M = 5. The graph of exact and approximated solutions for t = 1 is
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illustrated in Figure 4. The comparison among the present method besides the
solutions of radial basis functions [4] and Legendre collocation method [5] are
shown in Table 2.

Table 2. Absolute errors and L2 error norm by HWGM with other method at ∆t =
0.01,∆t = 0.001 for Example 2.

(M=5) (M=6) Method [4] Method [5]

x,t ∆t = 0.01 ∆t = 0.001 ∆t = 0.01 ∆t = 0.001 N = 40 N = M = 14

0.1 2.5(−7) 5.7(−7) 6.2(−9) 1.1(−11) 2.1(−9)
0.2 3.2(−7) 2.4(−7) 7.1(−9) 1.6(−9) 2.1(−9)
0.3 2.6(−7) 2.5(−9) 1.6(−9) 2.4(−11) 2.3(−9)
0.4 2.5(−7) 8.3(−7) 8.8(−11) 2.7(−12) 2.3(−9)
0.5 4.7(−8) 4.8(−8) 5.2(−11) 5.8(−12) 2.3(−9)
0.6 7.4(−8) 4.7(−9) 4.6(−11) 2.7(−13) 2.3(−9)
0.7 5.7(−9) 3.4(−9) 4.1(−9) 3.1(−13) 2.4(−9)
0.8 7.9(−9) 8.1(−9) 3.0(−11) 5.7(−11) 2.4(−9)
0.9 4.4(−9) 3.0(−9) 4.1(−9) 2.2(−11) 2.5(−9)

L2 4.4(−7) 6.2(−8) 1.1(−9) 5.5(−12) 4.2(−9) 6.0(−10)

CPU time 5.01 6.61 8.02 19.01 79.35

a) b)

Figure 3. Comparison of exact solution (a) with HWGM solution (b) at M = 5 and
∆t = 0.01 for Example 2.

Example 3. As a last example, we consider µ = 1, k(x, t, s, u) = 3tx2s2eu and
initial condition u(x, 0) = 0 and boundary conditions u(0, t) = 0, u(1, t) = t3/3
and f(x, t) be chosen such that the exact solution in this example is u(x, t) =
x3t3/3. In Figure 5, the exact solution, numerical solution are plotted by using
HWGM with ∆t = 0.01 and M = 5. The comparison among the present
method besides the solutions of radial basis functions [4] are shown in Table 3.
The graph of exact and approximated solutions for t = 1 is illustrated in
Figure 6.
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Figure 4. Exact and HWGM solutions at t = 1, M = 5 and ∆t = 0.01 for Example 2.

Table 3. Absolute errors and L2 error norm by HWGM with other method at ∆t =
0.01,∆t = 0.001 for Example 3.

(M=5) (M=6) Method [4]

x,t ∆t = 0.01 ∆t = 0.001 ∆t = 0.01 ∆t = 0.001 N = 40

0.1 6.4(−6) 2.4(−7) 5.2(−11) 1.2(−13) 2.7(−6)
0.2 2.4(−6) 6.4(−7) 5.8(−9) 8.6(−11) 9.6(−6)
0.3 8.9(−6) 8.9(−7) 1.6(−9) 4.3(−11) 2.0(−5)
0.4 3.7(−7) 4.8(−9) 1.2(−9) 3.7(−9) 3.5(−5)
0.5 6.6(−7) 1.0(−9) 7.0(−9) 2.3(−9) 5.3(−5)
0.6 3.2(−7) 4.1(−8) 6.3(−11) 9.9(−11) 7.6(−5)
0.7 2.0(−7) 3.6(−9) 1.7(−11) 3.1(−13) 1.0(−4)
0.8 5.2(−9) 3.1(−7) 3.6(−11) 5.8(−11) 1.3(−4)
0.9 1.2(−9) 4.1(−9) 4.7(−10) 2.5(−9) 1.6(−4)

L2 3.0(−7) 5.1(−8) 2.0(−11) 1.5(−13) 1.5(−4)

CPU time 5.12 8.43 11.46 17.50 92.06

a) b)

Figure 5. Comparison of exact solution (a) with HWGM solution (b) at M = 5 and
∆t = 0.01 for Example 3.
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Figure 6. Exact and HWGM solutions at t = 1, M = 5 and ∆t = 0.01 for Example 3.

6 Conclusions

In this paper, the Hermit wavelets based numerical method has been used
for solving the nonlinear parabolic Volterra integro-differential equations in
one-dimension. Hermit wavelet Galerkin method has proven a very powerful
numerical technique for the stable and accurate solution of giving boundary
value problem. Obviously, the Legendre collocation method [5] can only solve
linear problems. In fact, a nonlinear kernel with respect to u(x, t) leads to a
nonlinear system of equations, which needs Newton’s method or other efficient
methods to solve the obtained heavy nonlinear systems. Clearly, the mentioned
Legendre collocation method described in [5] is not sufficiently flexible to solve
Examples 1–3. Also, comparison between the finite difference method [8] with
the presented method signifies both methods are involved only with linear al-
gebraic techniques. To exemplify the potency of the method, some examples
were solved based on the suggested algorithm. Also, the convergence of the
method was given. The results show that the proposed method is practically
reliable and consistent in comparison with other mentioned methods, the rate
of convergence improved.
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