

Multilinear Weighted Estimates and Quantum Zakharov System

Brian Choi

Department of Mathematics and Statistics, Boston University 02215 Boston MA, USA E-mail(corresp.): choigh@bu.edu

Received September 6, 2021; revised April 1, 2022; accepted April 2, 2022

Abstract. We consider the well-posedness theory of the compact case of one-dimensional quantum Zakharov system with the periodic boundary condition. The global well-posedness for sufficiently regular data is shown. The semi-classical limit as $\epsilon \to 0$ is obtained on a compact time interval whereas the quantum perturbation proves to be singular on an infinite time interval.

Keywords: quantum Zakharov system, well-posedness, higher order perturbation.

AMS Subject Classification: 35B30; 35Q40; 35Q55.

1 Introduction

Consider the quantum Zakharov system (QZS)

$$\begin{cases} (i\partial_t + \alpha \partial_{xx} - \epsilon^2 \partial_{xx}^2)u = un, \ (x,t) \in \mathbb{T} \times [0,T], \\ (\beta^{-2}\partial_{tt} - \partial_{xx} + \epsilon^2 \partial_{xx}^2)n = \partial_{xx}(|u|^2), \\ (u(x,0), n(x,0), \partial_t n(x,0)) = (u_0, n_0, n_1) \in H^{s,l} := H^s(\mathbb{T}) \times H^l(\mathbb{T}) \times H^{l-2}(\mathbb{T}), \end{cases}$$

$$(1.1)$$

where $u(x,t) \in \mathbb{C}$, $n(x,t) \in \mathbb{R}$, T > 0, $\alpha, \beta > 0$, $s, l \in \mathbb{R}$. The two conserved quantities that are of use in this paper are

$$M[u, n, \partial_t n](t) = \|u\|_{L^2}^2 = \|u_0\|_{L^2}^2, \quad H[u, n, \partial_t n](t) = \alpha \|\partial_x u\|_{L^2}^2 + \epsilon^2 \|\partial_{xx} u\|_{L^2}^2 + \frac{1}{2} \Big(\|n\|_{L^2}^2 + \frac{1}{\beta^2} \|\partial_t n\|_{\dot{H}^{-1}}^2 + \epsilon^2 \|\partial_x n\|_{L^2}^2 \Big) + \int n|u|^2.$$
(1.2)

When $\epsilon = 0$, QZS is well-known as the classical Zakharov system (ZS) that models the interaction of Langmuir turbulence waves and ion-acoustic waves.

Copyright © 2022 The Author(s). Published by Vilnius Gediminas Technical University This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Here u denotes the slowly-varying envelope of electric field, and n represents an ion-acoustic wave that models the density fluctuation of ions [17]. A thrust of interest in studying the quantum effects unexplained by ZS came from the physics community [6]. There the quantum effect is characterized by a fourthorder derivative perturbation with a quantum parameter $\epsilon > 0$ that is nonnegligible when either the ion-plasma frequency is high or the electrons' temperature is low; for more background in the physics of this model, see [9, 14].

Although the QZS model is relatively new, the Bourgain norm method has been used successfully by many including, but not limited to, [1, 7, 11, 12], in applications to various dispersive equations such as the KdV, nonlinear Schrödinger equation, and ZS. The task of proving boundedness for certain multilinear operators reduces to showing spacetime Lebesgue-type estimates in the Fourier space, which can be a challenge on bounded domains where satisfactory Strichartz estimates are not available. Despite this difficulty, see [2, 4, 13] for the well-posedness theory of ZS on periodic domains. For more recent work on QZS on \mathbb{R} , see [3, 5, 10].

Our goal is to understand the effect of quantum modification represented by the additional biharmonic operator on \mathbb{T} , thereby extending the results of [15]. We show that the biharmonic operator provides an extra degree of smoothing that nullifies the distinction between resonance $(\frac{\beta}{\alpha} \in \mathbb{Z})$ and non-resonance $(\frac{\beta}{\alpha} \notin \mathbb{Z})$, a phenomenon that played a central role in [15]. More precisely, we show that the region of Sobolev exponent pairs $(s, l) \in \mathbb{R}^2$ yielding wellposedness for $\epsilon = 0$ (which depend on $\frac{\beta}{\alpha} \in \mathbb{Z}$ or $\frac{\beta}{\alpha} \notin \mathbb{Z}$) are no longer different when $\epsilon > 0$. It is shown that if ZS is well-posed with data in certain Sobolev spaces, then so is QZS. Under the condition $s \geq 0$, it is shown that our method yields a region of Sobolev exponents for the local well-posedness that is sharp up to the boundary.

For $s, l \in \mathbb{R}, b \in \mathbb{R}$, define

$$\begin{aligned} \|f\|_{X^{s,b}_{S}} &= \|\langle k \rangle^{s} \langle \tau + \alpha k^{2} + \epsilon^{2} k^{4} \rangle^{b} \widehat{f}(k,\tau) \|_{L^{2}_{\tau} l^{2}_{k}}, \\ \|f\|_{X^{l,b}_{W}} &= \|\langle k \rangle^{l} \langle |\tau| - \beta |k| \langle \epsilon k \rangle \rangle^{b} \widehat{f}(k,\tau) \|_{L^{2}_{\tau} l^{2}_{k}}, \end{aligned}$$
(1.3)

and the augmented norm

$$\begin{split} \|f\|_{Y_{S}^{s}} &= \|f\|_{X_{S}^{s,\frac{1}{2}}} + \|\widehat{f}(k,\tau)\langle k\rangle^{s}\|_{l_{k}^{2}L_{\tau}^{1}}, \\ \|f\|_{Y_{W}^{l}} &= \|f\|_{X_{W}^{l,\frac{1}{2}}} + \|\widehat{f}(k,\tau)\langle k\rangle^{s}\|_{l_{k}^{2}L_{\tau}^{1}}, \end{split}$$
(1.4)

where k, τ denote the Fourier dual variables to the physical variables x, t, and \hat{f} (or $\mathcal{F}f$) denotes either the space or spacetime Fourier transform, depending on the context. Let the restricted space be

$$\|f\|_{X^{s,b}_{S,T}} = \inf_{\tilde{f}=f, t \in [0,T]} \|\tilde{f}\|_{X^{s,b}_{S}},$$

and similarly for norms defined in (1.3) and (1.4). Further define the region of well-posedness

$$\Omega_L = \{s \ge 0, \ -1 \le l < 2s+1, \ -2 < s-l \le 2\},\$$

$$\Omega_G = \{0 \le s-l \le 2, \ s+l \ge 4\} \cup \{(2,1)\}.$$

Theorem 1. If $(s,l) \in \Omega_L$, then (1.1) is locally well-posed; there exists $T = T(||(u_0, n_0, n_1)||_{H^{s,l}}) > 0$ and a unique $(u, n, \partial_t n) \in Y^s_{S,T} \times Y^l_{W,T} \times Y^{l-2}_{W,T}$ that satisfies (1.1). Further, if $T' \in (0,T)$, then there exists a neighborhood $B \subseteq H^{s,l}$ around (u_0, n_0, n_1) such that the data-to-solution map $(u_0, n_0, n_1) \mapsto (u, n, \partial_t n)$ is Lipschitz-continuous from B to $Y^s_{S,T} \times Y^l_{W,T} \times Y^{l-2}_{W,T}$.

In the Appendix, explicit examples are given that illustrate the necessity of

$$s \ge -1, -1 \le l \le 2s + 1, -2 \le s - l \le 2.$$

Theorem 2. If $(s, l) \in \Omega_G$, then the unique local solution obtained in Theorem 1 can be extended globally in time. More precisely, there exists $(u, n, \partial_t n) \in C_{loc}([0, \infty); H^{s,l})$ that satisfies (1.1) such that for all T > 0, $(u, n, \partial_t n)$ is a unique solution in $Y_{S,T}^s \times Y_{W,T}^l \times Y_{W,T}^{l-2}$.

Lastly the semi-classical limit of QZS to ZS as $\epsilon \to 0$ is considered. We extend the results of [8] to show that the solutions behave continuously as $\epsilon \to 0$ on a compact time interval. On the other hand, explicit examples are given to illustrate that the biharmonic operator $\epsilon^2 \Delta^2$, for any $\epsilon > 0$, is a singular perturbation on an infinite time interval. Here we address a subtlety that QZS generates flow on $H^{s,l}$ whereas the classical ZS does so on $H_0^{s,l} :=$ $H^s(\mathbb{T}) \times H^l(\mathbb{T}) \times H^{l-1}(\mathbb{T})$. To overcome this apparent gap of solution space, the growth of Sobolev norm of solutions is estimated in various function spaces with bounds independent of $\epsilon > 0$.

We outline the organization of the paper. In Section 2, notations are introduced. In Section 3, we summarize a set of linear estimates that are used throughout the paper. In Section 4, nonlinear estimates are proved and applied to yield local well-posedness of (1.1). In Section 5, the local solutions obtained in Section 4 are extended to global solutions for every $\epsilon > 0$, and the limit $\epsilon \to 0$ is considered.

2 Notation

Given A_{\pm} , denote $\sum_{\pm} A_{\pm} := A_{+} + A_{-}$. Let $\psi \in C_{c}^{\infty}(\mathbb{R})$ be a smooth cutoff function with a compact support in [-2, 2] and $\psi(t) = 1$ for all $t \in [-1, 1]$. For $b \in \mathbb{R}$, we write $b \pm$ to denote $b \pm \epsilon'$ for some universal $\epsilon' \ll 1$. Assume $\epsilon \leq 1$. Let $\langle k \rangle = (1 + k^2)^{\frac{1}{2}}$ and define $\langle \nabla \rangle$, $D := |\nabla|$ as multipliers.

Assume without loss of generality that n_0, n_1 have zero means. If $\int n_0 dx$, $\int n_1 dx \neq 0$, then consider the change of variable

$$u(x,t) \mapsto e^{i\left(\frac{t^2}{4\pi} \int n_1 + \frac{t}{2\pi} \int n_0\right)} u(x,t), \ n(x,t) \mapsto n(x,t) - \frac{t}{2\pi} \int n_1 - \frac{1}{2\pi} \int n_0,$$

which, by direct computation, satisfies (1.1) with zero means in the new variable. By integrating the second equation of (1.1) over space, one obtains $\frac{d^2}{dt^2} \int_{\mathbb{T}} n = 0$, and, therefore, the mean zero condition on n_0, n_1 allows us to make sense of $\|\partial_t n\|_{\dot{H}^{-1}}$ in (1.2).

The contraction mapping argument is developed to show

$$u(t) = \Gamma_1(u, n)(t) := U_{\epsilon}(t)u_0 - i \int_0^t U_{\epsilon}(t - t')(un)(t')dt',$$

$$n(t) = \Gamma_2(u)(t) := \partial_t V_{\epsilon}(t)n_0 + V_{\epsilon}(t)n_1 + \beta^2 \int_0^t V_{\epsilon}(t - t')\partial_{xx}(|u|^2)(t')dt', \quad (2.1)$$

where $U_{\epsilon}(t), V_{\epsilon}(t), \partial_t V_{\epsilon}(t)$ for $\epsilon \geq 0$ are defined via Fourier multipliers

$$e^{-it(\alpha k^2 + \epsilon^2 k^4)}, \quad \frac{\sin(\beta |k| \langle \epsilon k \rangle t)}{\beta |k| \langle \epsilon k \rangle}, \quad \cos(\beta |k| \langle \epsilon k \rangle t),$$

respectively on \mathbb{Z} .

To control the nonlinear contribution coming from the Duhamel term of (2.1), consider the companion spaces to Y_S^s, Y_W^l :

$$\begin{split} \|f\|_{Z_S^s} &= \|f\|_{X_S^{s,-\frac{1}{2}}} + \left\|\frac{\langle k \rangle^s}{\langle \tau + \alpha k^2 + \epsilon^2 k^4 \rangle} \widehat{f}(k,\tau)\right\|_{l_k^2 L_\tau^1},\\ \|f\|_{Z_W^l} &= \|f\|_{X_W^{l,-\frac{1}{2}}} + \left\|\frac{\langle k \rangle^l}{\langle |\tau| - \beta |k| \langle \epsilon k \rangle \rangle} \widehat{f}(k,\tau)\right\|_{l_k^2 L_\tau^1}. \end{split}$$

3 Linear estimates

Fix $\alpha, \beta, \epsilon \geq 0$ and $T \in (0, 1]$ for Sections 3 and 4.

Lemma 1 [Homogeneous estimates]. For $s, l \in \mathbb{R}$,

$$\begin{split} \|U_{\epsilon}(t)u_{0}\|_{H^{s}} &= \|u_{0}\|_{H^{s}}, \, \|\psi(t)U_{\epsilon}(t)u_{0}\|_{Y_{S}^{s}} \lesssim_{\psi} \|u_{0}\|_{H^{s}}, \forall \epsilon \geq 0. \\ \|\partial_{t}V_{\epsilon}(t)n_{0}\|_{H^{l}} &\leq \|n_{0}\|_{H^{l}}, \, \|\psi(t)\partial_{t}V_{\epsilon}(t)n_{0}\|_{Y_{W}^{l}} \lesssim_{\psi} \|n_{0}\|_{H^{l}}, \forall \epsilon \geq 0. \\ \|V_{\epsilon}(t)n_{1}\|_{H^{l}} &\lesssim (t+\frac{1}{\beta\epsilon})\|n_{1}\|_{H^{l-2}}, \, \|\psi(t)V_{\epsilon}(t)n_{1}\|_{Y_{W}^{l}} \lesssim_{\psi} (1+\frac{1}{\beta\epsilon})\|n_{1}\|_{H^{l-2}}, \\ \|V_{0}(t)n_{1}\|_{H^{l}} &\lesssim (t+\frac{1}{\beta})\|n_{1}\|_{H^{l-1}}, \, \|\psi(t)V_{0}(t)n_{1}\|_{Y_{W}^{l}} \lesssim_{\psi} (1+\frac{1}{\beta})\|n_{1}\|_{H^{l-1}}. \end{split}$$

Proof. The first line of inequalities follows from the unitarity of Schrödinger operator; see [16, Lemma 2.8]. A similar argument can be used to show the other inequalities. \Box

Lemma 2 [Inhomogeneous estimates]. For $s, l \in \mathbb{R}$ and $\rho \in [0, 1]$,

$$\begin{split} \left\|\psi(t)\int_0^t U_{\epsilon}(t-t')F(t')dt'\right\|_{Y^s_S} &\lesssim_{\psi} \|F\|_{Z^s_S}, \\ \left\|\psi(t)\int_0^t V_{\epsilon}(t-t')D^{2-\rho}F(t')dt'\right\|_{Y^l_W} &\lesssim_{\psi} c(\rho,\beta,\epsilon)\|F\|_{Z^l_W}, \\ \left\|\psi(t)\int_0^t \partial_t V_{\epsilon}(t-t')D^{2-\rho}F(t')dt'\right\|_{Y^{l-2}_W} &\lesssim_{\psi} \|F\|_{Z^l_W}. \end{split}$$

Proof. The first inequality is standard in literature; see [16, Proposition 2.12]. The second and third are proved similarly where $\frac{1-2}{2} = \frac{1-2}{2} = \frac{1}{2} + \frac{1}{2} \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2}$

 $c(\rho,\beta,\epsilon) = \left(\frac{1-\rho}{\rho\epsilon^2}\right)^{\frac{1-\rho}{2}}/\beta\rho^{-1/2}.$

Lemma 3. Let $T \leq 1$, $s, l \in \mathbb{R}$, and $-\frac{1}{2} < b \leq b' < \frac{1}{2}$. Then

$$\|\psi(t/T)u\|_{X^{s,b}_{S}} \lesssim_{\psi,b,b'} T^{b'-b} \|u\|_{X^{s,b'}_{S}}, \ \|\psi(t/T)u\|_{X^{l,b}_{W}} \lesssim_{\psi,b,b'} T^{b'-b} \|u\|_{X^{l,b'}_{W}}.$$

Proof. The first inequality follows from [16, Lemma 2.11]. The second inequality follows similarly. \Box

4 Nonlinear estimates

Proposition 1. For $0 < \rho \le 1$, suppose $s \ge 0$, $-1 \le l \le 2s + 1 - \rho$, $-2 + \rho \le s - l \le 2$ and $b \in (\frac{1}{6}, \frac{1}{2}]$. Then there exists $C = C(\alpha, \beta, \epsilon, \rho, s, l, b) > 0$ such that

$$\begin{split} \|un\|_{X_{S}^{s,-\frac{1}{2}}} &\leq C(\|u\|_{X_{S}^{s,b}}\|n\|_{X_{W}^{l,\frac{1}{2}}} + \|u\|_{X_{S}^{s,\frac{1}{2}}}\|n\|_{X_{W}^{l,b}}), \\ \|D^{\rho}(u\overline{v})\|_{X_{W}^{l,-\frac{1}{2}}} &\leq C(\|u\|_{X_{S}^{s,b}}\|v\|_{X_{S}^{s,\frac{1}{2}}} + \|u\|_{X_{S}^{s,\frac{1}{2}}}\|v\|_{X_{S}^{s,b}}). \end{split}$$

Proposition 2. Assuming the hypotheses of Proposition 1,

$$\begin{split} & \left\| \frac{\langle k \rangle^s}{\langle \tau + \alpha k^2 + \epsilon^2 k^4 \rangle} \widehat{un}(k,\tau) \right\|_{l_k^2 L_\tau^1} \lesssim \|u\|_{X_S^{s,b}} \|n\|_{X_W^{l,\frac{1}{2}}} + \|u\|_{X_S^{s,\frac{1}{2}}} \|n\|_{X_W^{l,b}}, \\ & \left\| \frac{\langle k \rangle^l}{\langle |\tau| - \beta |k| \langle \epsilon k \rangle \rangle} \widehat{D^{\rho}(uv)}(k,\tau) \right\|_{l_k^2 L_\tau^1} \lesssim \|u\|_{X_S^{s,b}} \|v\|_{X_S^{s,\frac{1}{2}}} + \|u\|_{X_S^{s,\frac{1}{2}}} \|v\|_{X_S^{s,b}}. \end{split}$$

The contraction mapping argument can be closed by combining Propositions 1 and 2 and Lemma 3.

Corollary 1. For some $\theta \in (0, \frac{1}{3})$,

$$||un||_{Z_S^s} \lesssim T^{\theta} ||u||_{Y_S^s} ||n||_{Y_W^l}, ||D^{\rho}(|u|^2)||_{Z_W^l} \lesssim T^{\theta} ||u||_{Y_S^s}^2.$$

Remark 1. The proof of Proposition 2 is similar to that of Proposition 1, and thus is omitted. See [15] for more details.

Remark 2. The method of direct estimation by the Cauchy-Schwarz inequality does not seem to work, at least directly, when $\rho = 0$. One can check that the τ_1 -integral in (4.7) is not justified. In fact if k = 0, then $IV = \infty$ by direct computation.

Assuming the aforementioned statements, we prove Theorem 1.

 $\begin{array}{ll} \textit{Proof.} & \text{For } T > 0, \, \text{define } X = Y_{S,T}^s \times Y_{W,T}^{l} \times Y_{W,T}^{l-2} \, \text{with } \|(u,n,\partial_t n)\| := \|u\|_{X_{S,T}^s} \\ + \|n\|_{Y_{W,T}^l} + \|\partial_t n\|_{Y_{W,T}^{l-2}}, \, X(R) = \{(u,n,\partial_t n) \in X : \|(u,n,\partial_t n)\| \le R\sigma\} \text{ for } \\ R > 0 \text{ to be determined and } \sigma = \|(u_0, n_0, n_1)\|_{H^{s,l}}. \end{array}$

Consider $\Gamma(u, n, \partial_t n) = (\Gamma_1(u, n), \Gamma_2(u), \Gamma_3(u))$ on X(R) where Γ_1, Γ_2 are defined in (2.1) and $\Gamma_3(u)(t) = \partial_t \Gamma_2(u)(t)$. If $(s, l) \in \Omega_L$, pick $\rho > 0$ sufficiently small such that the hypotheses of Proposition 1 are fulfilled. By Corollary 1, there exists $\theta > 0$ such that

$$\|\Gamma(u, n, \partial_t n)\| \lesssim \sigma + T^{\theta} \|u\|_{Y^s_{S, T}} \|n\|_{Y^l_{W, T}} + T^{\theta} \|u\|_{Y^s_{S, T}}^2 \le \sigma + 2T^{\theta} R^2 \sigma^2.$$

If R is chosen sufficiently big (depending on the given parameters), then by choosing $0 < T \lesssim \sigma^{-\frac{1}{\theta}}$, Γ maps into X(R). Similarly given $(u_1, n_1, \partial_t n_1), (u_2, n_2, \partial_t n_2) \in X$,

$$\|\Gamma(u_1, n_1, \partial_t n_1) - \Gamma(u_2, n_2, \partial_t n_2)\| \lesssim T^{\theta} R\sigma \|(u_1, n_1, \partial_t n_1) - (u_2, n_2, \partial_t n_2)\|,$$

and by choosing $0 < T \leq \sigma^{-\frac{1}{\theta}}$ sufficiently small, Γ is a contraction on X(R)and hence there exists a unique $(u, n, \partial_t n) \in X \hookrightarrow C([0, T]; H^{s,l})$ that satisfies (1.1). The local Lipschitz continuity of the solution map immediately follows from the contraction mapping argument. \Box

The goal is to show the boundedness of the multilinear operators corresponding to the nonlinear terms which, at a technical level, involves directly estimating a $L^{\infty}L^1$ -norm of a function defined on the spacetime Fourier space in different regions depending on which dispersive weight is most dominant. Observing that

$$(\tau + \alpha k^2 + \epsilon^2 k^4) - (\tau_1 + \alpha k_1^2 + \epsilon^2 k_1^4) - (\tau_2 \pm \beta k_2 \langle \epsilon k_2 \rangle)$$

= $(k - k_1) \Big((k + k_1) (\alpha + \epsilon^2 (k^2 + k_1^2)) \mp \beta \langle \epsilon (k - k_1) \rangle \Big),$

we obtain

$$\max\left(|\tau + \alpha k^{2} + \epsilon^{2} k^{4}|, |\tau_{1} + \alpha k_{1}^{2} + \epsilon^{2} k_{1}^{4}|, ||\tau_{2}| - \beta |k_{2}|\langle \epsilon k_{2} \rangle|\right)$$

$$\geq \frac{1}{3}|k - k_{1}| \left|(k + k_{1})(\alpha + \epsilon^{2}(k^{2} + k_{1}^{2})) \mp \beta \langle \epsilon(k - k_{1}) \rangle\right|,$$
(4.1)

where the sign on the RHS of (4.1) depends on τ_2, k_2 . Since this subtlety does not affect our subsequent analysis, we do not keep track of the sign. For the sake of notational convenience, define

$$h(k, k_1) = (k + k_1)(\alpha + \epsilon^2(k^2 + k_1^2)) \mp \beta \langle \epsilon(k - k_1) \rangle.$$

Lemma 4. [4, Lemma 3.3] If $\delta \ge \gamma \ge 0$ and $\delta + \gamma > 1$, then

$$\int \frac{d\tau}{\langle \tau - a_1 \rangle^{\delta} \langle \tau - a_2 \rangle^{\gamma}} \lesssim \langle a_1 - a_2 \rangle^{-\gamma} \phi_{\delta}(a_1 - a_2), \phi_{\delta}(a) \simeq \begin{cases} 1, & \delta > 1, \\ \log(1 + \langle a \rangle), & \delta = 1, \\ \langle a \rangle^{1-\delta}, & \delta < 1. \end{cases}$$

Lemma 5. For all $e_1 > \frac{1}{4}, e_2 > \frac{1}{3}$,

$$\sigma_1(k,\tau) := \sum_{k_1 \neq k; \pm} \frac{1}{\langle \epsilon^2 k_1^4 + \alpha k_1^2 + \tau \pm \beta (k - k_1) \langle \epsilon (k - k_1) \rangle \rangle^{e_1}}$$
$$\leq c_1(\alpha, \beta, \epsilon, e_1) < \infty,$$
$$\sigma_2(k,\tau) := \sum_{k_1} \frac{1}{\langle k_1^3 - \frac{3k}{2}k_1^2 + \left(\frac{\alpha + 2\epsilon^2 k^2}{2\epsilon^2}\right)k_1 + \frac{\tau - \alpha k^2 - \epsilon^2 k^4}{4\epsilon^2 k} \rangle^{e_2}}$$
$$\leq c_2(\alpha, \beta, \epsilon, e_2) < \infty, \ ifk \neq 0.$$

Proof. The second inequality can be proved similarly as [4, lemma 3(c)]. For the first inequality, there exists c > 0 independent of k, k_1 such that

$$\left| (k-k_1)\langle \epsilon(k-k_1) \rangle - (k-k_1) |\epsilon(k-k_1)| \right| \le c$$

Hence the term $\langle \epsilon(k-k_1) \rangle$ in the summation can be replaced with $|\epsilon(k-k_1)|$. Then

$$\sigma_1(k,\tau) \le \sum_{k_1 \neq k; \pm} \frac{1}{\langle \epsilon^2 k_1^4 + \alpha k_1^2 + \tau \pm \beta \epsilon (k-k_1)^2 \rangle^{e_1}} \le c'$$

where the constant is independent of k, τ by an argument similar to [4, lemma 3(c)]. \Box

Lemma 6. There exist $C(\alpha, \beta, \epsilon), c(\alpha, \beta, \epsilon) > 0$ such that for all $(k, k_1) \in \mathbb{Z}^2$ that satisfies $\{|k| \ge C(\alpha, \beta, \epsilon)\} \cup \{|k_1| \ge C(\alpha, \beta, \epsilon)\}$, the estimate, $|h(k, k_1)| \ge c(\alpha, \beta, \epsilon)|k - k_1|$, holds.

Proof. Assume $k \neq k_1$. For a fixed $k \in \mathbb{Z}$, let $r_{\mp}(k) \in \mathbb{R}$ be the unique real-root of $h(k, \cdot)$, where $r_{-}(k)$ corresponds to the minus sign in $h(k, \cdot)$, and similarly for $r_{+}(k)$; we drop the \mp -subscript. Noting that h is symmetric in both arguments, it suffices to assume $|k| \geq C(\alpha, \beta, \epsilon)$, where

$$C(\alpha, \beta, \epsilon) := \max\left(C_1(\alpha, \beta, \epsilon), \sqrt{\frac{3\sqrt{2}\beta}{\epsilon}}, \frac{1}{3\epsilon}\right), \tag{4.2}$$

where for all $|k| \ge C_1(\alpha, \beta, \epsilon) > 0$, we have $\beta \langle \epsilon k \rangle < |k|(\alpha + \epsilon^2 k^2)$.

We first show that for k sufficiently big, $r(k) \notin \mathbb{Z}$. For $k \in \mathbb{Z}$, consider the graphs of $k_1 \mapsto (k+k_1)(\alpha + \epsilon^2(k^2 + k_1^2))$ and $k_1 \mapsto \pm \beta \langle \epsilon(k-k_1) \rangle$. If the y-intercept of the cubic polynomial is greater (in magnitude) than that of the square-root term, i.e., $\beta \langle \epsilon k \rangle < |k|(\alpha + \epsilon^2 k^2)$, then $r(k) \in [-c_2 k, 0]$ for k > 0and $r(k) \in [0, -c_2 k]$ for k < 0, where $c_2 = c_2(\alpha, \beta, \epsilon) > 0$.

Now we claim $\lim_{|k|\to\infty} |r(k) + k| = 0$. From h(k, r(k)) = 0,

$$|r(k)+k| = \left|\frac{\beta\langle\epsilon(k-r(k)\rangle)}{\alpha+\epsilon^2(k^2+r(k)^2)}\right| \lesssim \frac{\beta\epsilon|k-r(k)|}{\alpha+\epsilon^2k^2} \le \frac{(1+c_2)\beta\epsilon|k|}{\alpha+\epsilon^2k^2} \xrightarrow[|k|\to\infty]{} 0.$$

Hence, if |k| is sufficiently big and $r(k) \in \mathbb{Z}$, then r(k) = -k, which cannot be since $|h(k, -k)| = \beta \langle 2\epsilon k \rangle \geq \beta$. For $k \in \mathbb{Z}$, to show $\inf_{k_1 \in \mathbb{Z}} |h(k, k_1)|$ is attained

at $k_1 = -k$, note that from standard calculus,

$$\partial_{k_1}h(k,k_1) = 3\epsilon^2 k_1^2 + 2\epsilon^2 k k_1 + \alpha + \epsilon^2 k^2 \pm \frac{\beta\epsilon^2(k-k_1)}{\langle\epsilon(k-k_1)\rangle} \ge \alpha + \frac{2}{3}\epsilon^2 k^2 \pm \frac{\beta\epsilon^2(k-k_1)}{\langle\epsilon(k-k_1)\rangle},$$

and since $\frac{\beta \epsilon^2 |k-k_1|}{\langle \epsilon(k-k_1) \rangle} \leq \beta \epsilon$, it follows that $\partial_{k_1} h \geq \alpha$ by (4.2), and hence

$$\inf_{|k| \ge C(\alpha,\beta,\epsilon), (k,k_1) \in \mathbb{Z}^2} |h(k,k_1)| \ge \beta.$$

If $|k - k_1| \leq 3|k|$, then $\inf_{|k| \geq C(\alpha,\beta,\epsilon), (k,k_1) \in \mathbb{Z}^2} |\frac{h(k,k_1)}{k-k_1}| \geq \frac{\beta}{3C(\alpha,\beta,\epsilon)}$. If $|k - k_1| \geq 3|k|$, then $|k_1| \geq 2|k|$, $|k + k_1| \geq \frac{|k_1|}{2}$, and $|k - k_1| \leq \frac{3|k_1|}{2}$. Furthermore, $\left|\frac{h(k,k_1)}{k-k_1}\right| \geq \frac{1}{3}(\alpha + \epsilon^2(k^2 + k_1^2)) - \left|\beta\frac{\langle\epsilon(k-k_1)\rangle}{k-k_1}\right| \geq \frac{1}{3}(\alpha + \epsilon^2(k^2 + k_1^2)) - \sqrt{2}\beta\epsilon \geq \frac{\alpha}{3}$,

where the last inequality is by (4.2). \Box

Lemma 7. There exists $C(\alpha, \beta, \epsilon) > 0$ such that if $\{0 \neq |k| \geq 2|k_1|\} \cap \{|k| \geq C(\alpha, \beta, \epsilon)\}$, then $|k - k_1||h(k, k_1)| \gtrsim |k|^4$. Similarly if $\left\{0 \neq \frac{|k_1|}{2} \geq |k|\right\} \cap \{|k_1| \geq C(\alpha, \beta, \epsilon)\}$, then $|k - k_1||h(k, k_1)| \gtrsim |k_1|^4$.

Proof. Since h is symmetric in k, k_1 , it suffices to prove the first statement. If $|k| \ge 2|k_1|$, then $|k \pm k_1| \ge \frac{|k|}{2}$. If we further assume $|k| \ge \frac{2}{\epsilon}$, then $\epsilon |k - k_1| \ge \frac{\epsilon}{2}|k| \ge 1$, and therefore,

$$\beta\langle\epsilon(k-k_1)\rangle \le \sqrt{2}\beta\epsilon|k-k_1| \le \sqrt{2}\beta\epsilon(|k|+|k_1|) \le \frac{3}{\sqrt{2}}\beta\epsilon|k|.$$

By the triangle inequality, if $|k| \ge 10 \max(1/\epsilon, \sqrt{\beta/\epsilon})$,

$$|k - k_1||h(k, k_1)| \ge \frac{|k|}{2} \left(\frac{\epsilon^2}{2}|k|^3 - \frac{3}{\sqrt{2}}\beta\epsilon|k|\right) \ge \frac{\epsilon^2}{8}|k|^4.$$

The proof of Proposition 1 is given below.

Proof. Though the main idea of this proof follows closely that of [15], we include a full proof here to address any subtleties that rise from the fourth-order perturbation. To use the duality argument, let $w \in L^2_{k,\tau}$, $||w||_{L^2} = 1$ and $w \ge 0$. Since

$$\|un\|_{X_{S}^{s,-\frac{1}{2}}} = \left\|\frac{\langle k \rangle^{s}}{\langle \tau + \alpha k^{2} + \epsilon^{2} k^{4} \rangle^{1/2}} \sum_{k_{1}+k_{2}=k} \int_{\tau_{1}+\tau_{2}=\tau} \hat{u}(\tau_{1},k_{1})\hat{n}(\tau_{2},k_{2})\right\|_{l_{k}^{2}L_{\tau}^{2}}$$

it suffices to estimate

$$\sum_{k_1+k_2-k=0} \int \frac{\langle k \rangle^s \langle k_1 \rangle^{-s} \langle k_2 \rangle^{-l} f(\tau_1,k_1) g(\tau_2,k_2) w(\tau,k)}{\langle \tau+\alpha k^2+\epsilon^2 k^4 \rangle^{1/2} \langle \tau_1+\alpha k_1^2+\epsilon^2 k_1^4 \rangle^{b_1} \langle |\tau_2|-\beta |k_2| \langle \epsilon k_2 \rangle \rangle^{b_2}} =:E,$$

where

$$f(\tau,k) = |\hat{u}(\tau,k)| \langle k \rangle^s \langle \tau + \alpha k^2 + \epsilon^2 k^4 \rangle^{b_1}, \ g(\tau,k) = |\hat{n}(\tau,k)| \langle k \rangle^l \langle |\tau| - \beta |k| \langle \epsilon k \rangle \rangle^{b_2},$$

and $b_1, b_2 \leq \frac{1}{2}$. By direct computation, one can rule out $k_2 = 0$, and hence we assume the sum is over $k_2 \neq 0$, or equivalently, $k_1 \neq k$.

$$\mathbf{I.} \max\left(|\tau + \alpha k^2 + \epsilon^2 k^4|, |\tau_1 + \alpha k_1^2 + \epsilon^2 k_1^4|, ||\tau_2| - \beta |k_2| \langle \epsilon k_2 \rangle|\right) = |\tau + \alpha k^2 + \epsilon^2 k^4|.$$

Let $b_1 = b_2 = b = \frac{1}{2}$. Applying the Cauchy-Schwarz inequality in variables (k_1, τ_1) and (k_2, τ_2) , followed by the Young's inequality, it suffices to show

$$\sup_{\tau,k} \frac{\langle k \rangle^{2s}}{\langle \tau + \alpha k^2 + \epsilon^2 k^4 \rangle} \sum_{k_1 \neq k} \int \frac{\langle k_1 \rangle^{-2s} \langle k - k_1 \rangle^{-2l} d\tau_1}{\langle \tau_1 + \alpha k_1^2 + \epsilon^2 k_1^4 \rangle^{2b} \langle |\tau - \tau_1| - \beta |k - k_1| \langle \epsilon(k - k_1) \rangle \rangle^{2b}} =: \sup_{\tau,k} I < \infty,$$

$$(4.3)$$

since

$$E \lesssim \left(\sup_{\tau,k} I\right)^{1/2} \|u\|_{X_S^{s,b}} \|n\|_{X_W^{l,b}} \|w\|_{L^2_{k,\tau}}$$

Let $|k|/2 \leq |k_1| \leq 2|k|$. Integrating in τ_1 via Lemma 4 and noting that $\langle k \rangle^{2s} \langle k_1 \rangle^{-2s} \simeq 1$, we have

$$I \lesssim \sum_{k_1 \neq k; \pm} \frac{1}{\langle \tau + \alpha k^2 + \epsilon^2 k^4 \rangle \langle k - k_1 \rangle^{2l} \langle \epsilon^2 k_1^4 + \alpha k_1^2 + \tau \pm \beta (k - k_1) \langle \epsilon (k - k_1) \rangle \rangle^{4b - 1}}.$$

$$(4.4)$$

If $|k| \leq 1$, then $\langle k - k_1 \rangle \simeq 1$, and, therefore, the sum above is finite by Lemma 5. On the other hand, by Lemma 6, if $|k| \geq C(\alpha, \beta, \epsilon)$,

$$I \lesssim \sum_{k_1 \neq k; \pm} \frac{1}{\langle k - k_1 \rangle^{2l+2} \langle \epsilon^2 k_1^4 + \alpha k_1^2 + \tau \pm \beta (k - k_1) \langle \epsilon (k - k_1) \rangle \rangle^{4b-1}} \le c_1,$$

since $l \ge -1$. Now let $|k| \ge 2|k_1|$. In this region, we have $\frac{|k|}{2} \le |k - k_1| \le \frac{3|k|}{2}$ and by Lemma 7, if $|k| \ge C(\alpha, \beta, \epsilon)$, then $\langle \tau + \alpha k^2 + \epsilon^2 k^4 \rangle \gtrsim \langle k \rangle^4$ and

$$I \lesssim \sum_{k_1 \neq k; \pm} \frac{\langle k_1 \rangle^{-2s}}{\langle k \rangle^{2l-2s+4} \langle \epsilon^2 k_1^4 + \alpha k_1^2 + \tau \pm \beta (k-k_1) \langle \epsilon (k-k_1) \rangle \rangle^{4b-1}} \le c_1,$$

since $s-l \leq 2$ and $s \geq 0$. If $|k| \leq 1$, then by Lemma 5, $I \leq \sigma_1 \leq c_1$. Lastly if $\frac{|k_1|}{2} \geq |k|$, then $\frac{|k_1|}{2} \leq |k-k_1| \leq \frac{3|k_1|}{2}$ and by treating $|k_1| \geq C(\alpha, \beta, \epsilon)$ and $|k_1| \leq C(\alpha, \beta, \epsilon)$ separately as above, (4.3) has been shown.

II. max $\left(|\tau + \alpha k^2 + \epsilon^2 k^4|, |\tau_1 + \alpha k_1^2 + \epsilon^2 k_1^4|, ||\tau_2| - \beta |k_2| \langle \epsilon k_2 \rangle|\right) = |\tau_1 + \alpha k_1^2 + \epsilon^2 k_1^4|.$ Arguing as above, it suffices to show

$$\begin{split} \sup_{\tau_1,k_1} II &:= \sup_{\tau_1,k_1} \frac{\langle k_1 \rangle^{-2s}}{\langle \tau_1 + \alpha k_1^2 + \epsilon^2 k_1^4 \rangle} \\ &\times \sum_{k \neq k_1} \int \frac{\langle k \rangle^{2s} \langle k - k_1 \rangle^{-2l} d\tau}{\langle \tau + \alpha k^2 + \epsilon^2 k^4 \rangle \langle |\tau - \tau_1| - \beta |k - k_1| \langle \epsilon(k - k_1) \rangle \rangle^{2b_2}} \\ &\lesssim \sup_{\tau_1,k_1} \frac{\langle k_1 \rangle^{-2s}}{\langle \tau_1 + \alpha k_1^2 + \epsilon^2 k_1^4 \rangle} \sum_{k \neq k_1;\pm} \frac{\langle k \rangle^{2s} \langle k - k_1 \rangle^{-2l}}{\langle \epsilon^2 k^4 + \alpha k^2 + \tau_1 \pm \beta (k_1 - k) \langle \epsilon(k - k_1) \rangle \rangle^{2b_2 -}}, \end{split}$$

where we set $b_1 = \frac{1}{2}$. By Lemma 7, if $|k| \ge 2|k_1|$ and $|k| \ge C(\alpha, \beta, \epsilon)$, then $\langle \tau_1 + \alpha k_1^2 + \epsilon^2 k_1^4 \rangle \gtrsim \langle k \rangle^4$, and we have

$$II \lesssim \sum_{k \neq k_1; \pm} \frac{\max(1, \langle k \rangle^{-2s})}{\langle k \rangle^{2l-2s+4} \langle \epsilon^2 k^4 + \alpha k^2 + \tau_1 \pm \beta (k_1 - k) \langle \epsilon (k - k_1) \rangle \rangle^{2b_2 -}} \le c_1,$$

and similarly, the desired uniform bound of II follows if $|k| \ge 2|k_1|$ and $|k| \le 1$; by applying Lemma 7 again, we can show that II is uniformly bounded for $\frac{|k_1|}{2} \ge |k|$ by treating $|k| \le C(\alpha, \beta, \epsilon)$ and $|k| \ge C(\alpha, \beta, \epsilon)$ separately. For $\frac{|k|}{2} \le |k_1| \le 2|k|$, we can argue as (4.4).

III. max
$$(|\tau + \alpha k^2 + \epsilon^2 k^4|, |\tau_1 + \alpha k_1^2 + \epsilon^2 k_1^4|, ||\tau_2| - \beta |k_2| \langle \epsilon k_2 \rangle|) = ||\tau_2| - \beta |k_2| \langle \epsilon k_2 \rangle|.$$

From (4.1), it follows that

$$\left|\left|\tau_{2}\right| - \beta \left|k_{2}\right| \left\langle\epsilon k_{2}\right\rangle\right| \gtrsim \left|k_{2}\right| \left|(2k - k_{2})(\alpha + \epsilon^{2}(k^{2} + (k - k_{2})^{2})) \mp \beta \left\langle\epsilon k_{2}\right\rangle\right|.$$
(4.5)

If suffices to show sup $III < \infty$ where $b_2 = \frac{1}{2}$ and III :=

$$\begin{aligned} &\frac{\langle k_2 \rangle^{-2l}}{\langle |\tau_2| -\beta |k_2| \langle \epsilon k_2 \rangle \rangle} \sum_k \int \frac{\langle k \rangle^{2s} \langle k-k_2 \rangle^{-2s} d\tau}{\langle \tau + \alpha k^2 + \epsilon^2 k^4 \rangle \langle \tau - \tau_2 + \alpha (k-k_2)^2 + \epsilon^2 (k-k_2)^4 \rangle^{2b_1}} \\ &\lesssim \sum_k \frac{\langle k \rangle^{2s}}{\langle k_2 \rangle^{2l} \langle k-k_2 \rangle^{2s} \langle |\tau_2| - \beta |k_2| \langle \epsilon k_2 \rangle \rangle \langle 4\epsilon^2 k_2 p(k) \rangle^{2b_1 -}}, \end{aligned}$$

where

$$p(k) = k^3 - \frac{3k_2}{2}k^2 + \left(\frac{\alpha + 2\epsilon^2 k_2^2}{2\epsilon^2}\right)k + \frac{\tau_2 - \alpha k_2^2 - \epsilon^2 k_2^4}{4\epsilon^2 k_2}.$$
 (4.6)

If $\frac{2}{3}|k_2| \leq |k| \leq 2|k_2|$, then $\frac{\langle k \rangle^{2s}}{\langle k_2 \rangle^{2l} \langle k-k_2 \rangle^{2s}} \lesssim \frac{1}{\langle k \rangle^{2l-2s} \langle k-k_2 \rangle^{2s}}$. If $|k| \lesssim 1$, $III \lesssim \sigma_2 \leq c_2$ by Lemma 5. If $|k| \gg 1$, we argue as in Lemma 7 to obtain

$$\left| (2k - k_2)(\alpha + \epsilon^2 (k^2 + (k - k_2)^2)) \mp \beta \langle \epsilon k_2 \rangle \right| \gtrsim |k|^3,$$

from which, we estimate

$$III \lesssim \sum_{k} \frac{\max(1, \langle k \rangle^{-2s})}{\langle k \rangle^{2l-2s+4} \langle k_2 p(k) \rangle^{2b_1 -}} \lesssim \sigma_2 \le c_2,$$

by Lemma 5 and $l \geq -2$. If $|k| \leq \frac{2}{3}|k_2|$ or $|k| \geq 2|k_2|$, then $\frac{\langle k \rangle^{2s}}{\langle k_2 \rangle^{2l} \langle k-k_2 \rangle^{2s}} \lesssim \frac{1}{\langle k_2 \rangle^{2l}}$ since $|k-k_2| \geq \frac{|k|}{2}$. As in Lemma 6, if $|k_2| \geq C(\alpha, \beta, \epsilon)$, we have

$$III \lesssim \sum_{k} \frac{1}{\langle k_2 \rangle^{2l+2} \langle k_2 p(k) \rangle^{2b_1 -}} \lesssim \sigma_2 \le c_2.$$

Lastly if $|k_2| \leq 1$ (for $|k| \leq \frac{2}{3}|k_2|$) or $|k| \leq 1$ (for $|k| \geq 2|k_2|$), then $\langle k_2 \rangle \simeq 1$ and we have $III \leq \sigma_2 \leq c_2$, which concludes the proof of the first inequality

of Proposition 1. To show the second inequality by the duality argument, it suffices to estimate

$$\sum_{k_1+k_2-k=0} \int_{\tau_1+\tau_2-\tau=0} \frac{\langle k \rangle^{l+\rho} \langle k_1 \rangle^{-s} \langle k_2 \rangle^{-s} f(\tau_1,k_1) g(-\tau_2,-k_2) w(\tau,k)}{\langle |\tau|-\beta|k| \langle \epsilon k \rangle \rangle^{1/2} \langle \tau_1+\alpha k_1^2+\epsilon^2 k_1^4 \rangle^{b_1} \langle \tau_2-\alpha k_2^2-\epsilon^2 k_2^4 \rangle^{b_2}},$$

where $f(\tau, k) = |\hat{u}(\tau, k)| \langle k \rangle^s \langle \tau + \alpha k^2 + \epsilon^2 k^4 \rangle^{b_1}$, $g(\tau, k) = |\hat{v}(\tau, k)| \langle k \rangle^s \langle \tau + \alpha k^2 + \epsilon^2 k^4 \rangle^{b_2}$ and $b_1, b_2 \leq \frac{1}{2}$. Since $\rho > 0$, we take $k \neq 0$ in the sum. **IV.** max $\left(||\tau| - \beta |k| \langle \epsilon k \rangle|, |\tau_1 + \alpha k_1^2 + \epsilon^2 k_1^4|, |\tau_2 - \alpha k_2^2 - \epsilon^2 k_2^4| \right) = ||\tau| - \beta |k| \langle \epsilon k \rangle|.$

In this region, the lower bound of the dispersive weight is similar to (4.5). For $b_1 = b_2 = b = \frac{1}{2}$, it suffices to show

$$\sup_{\tau,k} IV := \sup_{\tau,k} \frac{\langle k \rangle^{2l+2\rho}}{\langle |\tau| - \beta |k| \langle \epsilon k \rangle \rangle} \\
\times \sum_{k_1} \int \frac{\langle k_1 \rangle^{-2s} \langle k - k_1 \rangle^{-2s} d\tau_1}{\langle \tau_1 + \alpha k_1^2 + \epsilon^2 k_1^4 \rangle^{2b} \langle \tau - \tau_1 - \alpha (k - k_1)^2 - \epsilon^2 (k - k_1)^4 \rangle^{2b}} \\
\lesssim \sup_{\tau,k} \frac{\langle k \rangle^{2l+2\rho}}{\langle |\tau| - \beta |k| \langle \epsilon k \rangle \rangle} \sum_{k_1} \frac{1}{\langle k_1 \rangle^{2s} \langle k - k_1 \rangle^{2s} \langle \langle k \rangle p(k_1) \rangle^{4b-1}} < \infty, \quad (4.7)$$

where p is defined in (4.6). If $\frac{2}{5}|k| \leq |k_1| \leq \frac{2}{3}|k|$, then $\frac{|k|}{3} \leq |k-k_1| \leq \frac{5}{3}|k|$ and $\frac{\langle k \rangle^{2l+2\rho}}{\langle k_1 \rangle^{2s} \langle k-k_1 \rangle^{2s}} \lesssim \frac{1}{\langle k \rangle^{4s-2l-2\rho}}$. For $|k| \lesssim 1$, (4.7) reduces to Lemma 5. If $|k| \geq C(\alpha, \beta, \epsilon)$ as in Lemma 6,

$$IV \lesssim \sum_{k_1} \frac{1}{\langle k \rangle^{4s-2l-2\rho+2} \langle \langle k \rangle p(k_1) \rangle^{4b-1}} \lesssim \sigma_2,$$

since $4s - 2l - 2\rho + 2 \ge 0$. If $\frac{2}{3}|k| \le |k_1| \le \frac{3}{2}|k|$ and $|k| \le 1$, then again (4.7) reduces to Lemma 5. If $|k| \ge C(\alpha, \beta, \epsilon)$, then as in Lemma 7,

$$IV \lesssim \sum_{k_1} \frac{1}{\langle k \rangle^{2s-2l-2\rho+4} \langle \langle k \rangle p(k_1) \rangle^{4b-1}} \le \sigma_2, \tag{4.8}$$

since $s-l \ge -2+\rho$. Similarly for $|k_1| \le \frac{2}{5}|k|$ or $|k_1| \ge \frac{3}{2}|k|$, we treat $|k| \le 1$ and $|k| \ge C(\alpha, \beta, \epsilon)$ separately where for $|k| \ge C(\alpha, \beta, \epsilon)$, we have $\langle |\tau - \beta|k| \langle \epsilon k \rangle | \rangle \ge \langle k \rangle^4$, and therefore we can argue as (4.8).

V. max $(||\tau| - \beta |k| \langle \epsilon k \rangle|, |\tau_1 + \alpha k_1^2 + \epsilon^2 k_1^4|, |\tau_2 - \alpha k_2^2 - \epsilon^2 k_2^4|) = |\tau_1 + \alpha k_1^2 + \epsilon^2 k_1^4|.$

It suffices to show

$$\begin{split} \sup_{\tau_1,k_1} V &:= \sup_{\tau_1,k_1} \frac{\langle k_1 \rangle^{-2s}}{\langle \tau_1 + \alpha k_1^2 + \epsilon^2 k_1^4 \rangle} \\ &\times \sum_k \int \frac{\langle k \rangle^{2l+2\rho} \langle k - k_1 \rangle^{-2s} d\tau}{\langle |\tau| - \beta |k| \langle \epsilon k \rangle \rangle \langle \tau - \tau_1 - \alpha (k - k_1)^2 - \epsilon^2 (k - k_1)^4 \rangle^{2b_2}} \\ &\lesssim \sup_{\tau_1,k_1} \frac{\langle k_1 \rangle^{-2s}}{\langle \tau_1 + \alpha k_1^2 + \epsilon^2 k_1^4 \rangle} \sum_{k,\pm} \frac{\langle k \rangle^{2l+2\rho} \langle k - k_1 \rangle^{-2s}}{\langle \epsilon^2 (k - k_1)^4 + \alpha (k - k_1)^2 + \tau_1 \mp \beta k \langle \epsilon k \rangle \rangle^{2b_2 -}}, \end{split}$$

where $|\tau_1 + \alpha k_1^2 + \epsilon^2 k_1^4| \gtrsim |k| \cdot |\alpha(2k_1 - k)(\alpha + \epsilon^2(k_1^2 + (k - k_1)^2)) \mp \beta \langle \epsilon k \rangle|$ and $b_1 = \frac{1}{2}$. Note that for $\max\left(||\tau| - \beta |k| \langle \epsilon k \rangle|, |\tau_1 + \alpha k_1^2 + \epsilon^2 k_1^4|, |\tau_2 - \alpha k_2^2 - \epsilon^2 k_2^4|\right) = |\tau_2 - \alpha k_2^2 - \epsilon^2 k_2^4|$, the corresponding $L^{\infty} L^1$ estimate reduces to the current case by an appropriate change of variable.

If $|k| \leq \frac{|k_1|}{2}$ or $\frac{3|k_1|}{2} \leq |k| \leq \frac{5|k_1|}{2}$, then $|k - k_1| \gtrsim |k_1|$, and therefore $\langle k_1 \rangle^{-2s} \langle k \rangle^{2l+2\rho} \langle k - k_1 \rangle^{-2s} \lesssim \langle k_1 \rangle^{-4s} \langle k \rangle^{2l+2\rho}$. Hence $V \lesssim \sigma_1$ if $|k_1| \lesssim 1$, and by Lemma 6,

$$V \lesssim \sum_{k,\pm} \frac{\langle k_1 \rangle^{-4s} \max(1, \langle k_1 \rangle^{2l+2\rho-2})}{\langle \epsilon^2 (k-k_1)^4 + \alpha (k-k_1)^2 + \tau_1 \mp \beta k \langle \epsilon k \rangle \rangle^{2b_2 -}} \lesssim \sigma_1$$

 $\begin{array}{l} \text{if } |k_1| \geq C(\alpha,\beta,\epsilon). \ \text{ If } \frac{|k_1|}{2} \leq |k| \leq \frac{3|k_1|}{2}, \ \text{then } \langle k_1 \rangle^{-2s} \langle k \rangle^{2l+2\rho} \langle k-k_1 \rangle^{-2s} \lesssim \\ \frac{1}{\langle k \rangle^{2s-2l-2\rho}}. \ \text{ If } |k| \lesssim 1, \ \text{then } V \lesssim \sigma_1, \ \text{and by Lemma 7 if } |k| \geq C(\alpha,\beta,\epsilon), \ \text{then } \\ V \lesssim \sigma_1 \ \text{since } 2s - 2l - 2\rho + 4 \geq 0. \ \text{A similar statement follows for } \frac{5|k_1|}{2} \leq |k| \ \text{if } \\ s - l \geq -2 + \rho \ \text{since } |k-k_1| \gtrsim |k| \ \text{and } \langle \tau_1 + \alpha k_1^2 + \epsilon^2 k_1^4 \rangle \gtrsim \langle k \rangle^4 \ \text{for sufficiently } \\ \text{large } |k| \ \text{by Lemma 7. } \Box \end{array}$

In the Appendix, we give explicit examples to show the converse statement for Proposition 1 (see also [15]). Hence, Proposition 1 is sharp up to the boundary based on our method as long as $s \ge 0$.

 $\begin{array}{l} \textbf{Proposition 3. } Suppose \ \|un\|_{X^{s,b-1}_S} \lesssim \ \|u\|_{X^{s,b}_S} \|n\|_{X^{l,b}_W} \ holds \ for \ all \ u,n \in C^\infty_c(\mathbb{T}\times\mathbb{R}) \ for \ some \ s,l,b \in \mathbb{R}. \ Then \ l \ge \max(2(b-1),-2b) \ge -1 \ and \ s-l \le \min(-4(b-1),4b) \le 2. \ Furthermore, \ suppose \ \|D^\rho(u\overline{v})\|_{X^{l,b-1}_W} \lesssim \|u\|_{X^{s,b}_S} \|v\|_{X^{s,b}_S} \ holds \ for \ all \ u,v \in C^\infty_c(\mathbb{T}\times\mathbb{R}) \ for \ some \ s,l,b \in \mathbb{R}, \ \rho \in (0,1]. \ Then \ 2s-l-\rho \ge \max(2(b-1),-2b) \ge -1 \ and \ s-l \ge \max(\rho+4(b-1),\rho-4b) \ge -2+\rho. \end{array}$

5 Global well-posedness and semi-classical limit

We adopt the argument of [8] to show that a (strict) subset of local solutions obtained in Theorem 1 can be extended globally; however it is suggested from the scaling-invariance perspectives in [7] that any local solution is global. Let $\alpha = \beta = 1$ for the sake of simplicity. To prove Theorem 2, the following Sobolev inequality is useful.

Lemma 8. Let $d \in \mathbb{N}$, $s \in \left[-\frac{d}{2}, \frac{d}{2}\right]$ and consider $H^{s}(M)$, where $M = \mathbb{R}^{d}, \mathbb{T}^{d}$. Then,

$$||fg||_{H^s} \lesssim_{d,s} ||f||_{H^{\frac{d}{2}+}} ||g||_{H^s}$$

Proof. If s = 0, the statement follows from the Hölder's inequality and the Sobolev embedding $H^{\frac{d}{2}+} \hookrightarrow L^{\infty}$. If s < 0, then

$$\|fg\|_{H^s} = \sup_{\|h\|_{H^{-s}} = 1} |\langle fg, h \rangle| \le \|g\|_{H^s} \sup_{\|h\|_{H^{-s}} = 1} \|fh\|_{H^{-s}},$$

and hence it suffices to show the statement for s > 0. By the Leibniz's rule,

$$\|fg\|_{H^s} \lesssim \|f\|_{W^{s,q}} \|g\|_{L^r} + \|f\|_{L^{\infty}} \|g\|_{H^s},$$

where $q \in [2, \infty), r \in (2, \infty]$ are to be determined. The second term is bounded above by $||f||_{H^{\frac{d}{2}+}}||g||_{H^s}$ again by the Sobolev embedding. To obtain $H^{\frac{d}{2}+} \hookrightarrow W^{s,q}$, $H^s \hookrightarrow L^r$, it suffices to have $\frac{1}{2} - \frac{1}{q} < \frac{(d/2+)-s}{d}, \frac{1}{2} - \frac{1}{r} < \frac{s}{d}$. By noting $\frac{1}{2} = \frac{1}{q} + \frac{1}{r}$, we can pick $r \in (2, \infty]$ such that $\frac{1}{2} - \frac{s}{d} < \frac{1}{r} < \frac{(d/2+)-s}{d}$, which uniquely determines $q \in [2, \infty)$, and therefore validates the desired Sobolev embedding. \Box

The proof of Theorem 2 makes use of Lemma 8 and the Gronwall's inequality.

Proof. Assume (s, l) = (2, 1). By the Gagliardo-Nirenberg inequality, (1.2), and the Young's inequality,

$$\left| \int n|u|^2 \right| \le \frac{1}{4} \|n\|_{L^2}^2 + \frac{\epsilon^2}{2} \|\partial_x u\|_{L^2}^2 + C(\|u_0\|_{L^2}, \epsilon),$$
(5.1)

and since

$$\|u(t)\|_{H^{2}}^{2} + \|n(t)\|_{H^{1}}^{2} + \|\partial_{t}n(t)\|_{H^{-1}}^{2} \lesssim \|u_{0}\|_{L^{2}}^{2} + \|\partial_{xx}u(t)\|_{L^{2}}^{2} + \|n(t)\|_{L^{2}}^{2} + \|\partial_{x}n\|_{L^{2}}^{2} + \|\partial_{t}n(t)\|_{H^{-1}}^{2} \lesssim \|u_{0}\|_{L^{2}}^{2} + (1+\epsilon^{-2})|H_{0}| + (1+\epsilon^{-2})\left|\int n|u|^{2}\right|,$$
 (5.2)

we obtain $||(u, n, \partial_t n)||_{H^{2,1}} \leq C(\epsilon)$ for all $t \in \mathbb{R}$ by using (5.1) to absorb $||n||_{L^2}, ||\partial_x u||_{L^2}$ to the LHS of (5.2).

Let $(s,l) \in \Omega_G \setminus \{(2,1)\}$ and denote $l = s - l_0$ for $0 \le l_0 \le 2$, where since $s + l \ge 4$, it follows that

$$s \ge 2 + \frac{l_0}{2} \ge 2, \ l \ge 2 - \frac{l_0}{2} \ge 1.$$

With a = l - 2, multiply $\langle \nabla \rangle^{2a} \partial_t n$ to the second equation of (1.1) and integrate by parts to obtain

$$\frac{1}{2}\frac{d}{dt}\Big(\|\partial_t n\|_{H^a}^2 + \|\partial_x n\|_{H^a}^2 + \epsilon^2 \|\partial_{xx} n\|_{H^a}^2\Big) = \int (\langle \nabla \rangle^a \partial_t n) (\langle \nabla \rangle^a \partial_{xx} |u|^2) \\ \lesssim_a \|\partial_t n\|_{H^a}^2 + \|u\|_{H^{a+2}}^2.$$
(5.3)

First, let $l_0 > 0$. For T > 0, assume the inductive hypothesis, $||u||_{H^l} \leq C(T, l_0, \epsilon) < \infty$, from which the Gronwall's inequality on (5.3) yields

$$\|\partial_t n\|_{H^a}^2 + \|\partial_x n\|_{H^a}^2 + \epsilon^2 \|\partial_{xx} n\|_{H^a}^2 \le C(T),$$

which, together with (1.2), controls $||n||_{H^l}$.

Now take ∂_t of the first equation of (1.1), multiply the resulting equation by $-i\langle \nabla \rangle^{2b} \overline{\partial_t u}$, integrate by parts, and take its real part to obtain

$$\frac{1}{2} \frac{d}{dt} \|\partial_t u\|_{H^b}^2 = Im \int \left(\langle \nabla \rangle^b \overline{\partial_t u} \right) \left(\langle \nabla \rangle^b (\partial_t u \cdot n + u \cdot \partial_t n) \right) \\
\leq \|\partial_t u\|_{H^b} (\|\partial_t u \cdot n\|_{H^b} + \|u \cdot \partial_t n\|_{H^b}).$$
(5.4)

The first equation of (1.1) is equivalent to

$$\Delta u = \langle \epsilon \nabla \rangle^{-2} (-i\partial_t u + un).$$

Let b = s - 4. Note that $\|\Delta u\|_{H^{s-2}}$ controls $\|u\|_{H^s}$ by (1.2). We claim

$$\|\partial_t u \cdot n\|_{H^b} \lesssim \|\partial_t u\|_{H^b} \|n\|_{H^l}$$

If $s > \frac{9}{2}$, then $b > \frac{1}{2}$ and $\|\partial_t u \cdot n\|_{H^b} \lesssim \|\partial_t u\|_{H^b} \|n\|_{H^b} \le \|\partial_t u\|_{H^b} \|n\|_{H^{s-4}}$. On the other hand, if $s < \frac{7}{2}$, then $-b > \frac{1}{2}$ and

$$\begin{aligned} \|\partial_t u \cdot n\|_{H^b} &= \sup_{\|\phi\|_{H^{-b}} = 1} |\langle \partial_t u \cdot n, \phi \rangle| \le \|\partial_t u\|_{H^b} \sup_{\|\phi\|_{H^{-b}} = 1} \|n\phi\|_{H^{-b}} \\ &\lesssim \|\partial_t u\|_{H^b} \|n\|_{H^{-b}} \le \|\partial_t u\|_{H^b} \|n\|_{H^1}, \end{aligned}$$

where the last inequality holds since $s \ge 2 + \frac{l_0}{2}$. If $\frac{7}{2} \le s \le \frac{9}{2}$, then $-\frac{1}{2} \le b \le \frac{1}{2}$ and by Lemma 8,

$$\|\partial_t u \cdot n\|_{H^b} \lesssim \|\partial_t u\|_{H^b} \|n\|_{H^l}.$$

Similarly $||u \cdot \partial_t n||_{H^b} \lesssim 1$, and hence $\frac{d}{dt} ||\partial_t u||_{H^b}^2 \lesssim (||\partial_t u||_{H^b}^2 + ||\partial_t u||_{H^b})$, from which the Gronwall's inequality yields $||\partial_t u||_{H^{s-4}} \leq C(T)$. Using similar arguments, we obtain $||un||_{H^b} \leq C(T)$, and from

$$\|\Delta u\|_{H^{s-2}} \le \|\langle \epsilon \nabla \rangle^{-2} \partial_t u\|_{H^{s-2}} + \|\langle \epsilon \nabla \rangle^{-2} (un)\|_{H^{s-2}}$$

follows $||u||_{H^s} \leq C(T)$. To show the inductive hypothesis, consider the base case $s_0 = 2 + \frac{l_0}{2}$. Then $||u||_{H^{2-\frac{l_0}{2}}} \leq C$ by (1.2). Then for all $s \in [s_0, s_1]$, where $s_1 = s_0 + l_0$, it follows that $||u||_{H^{s-l_0}} \leq ||u||_{H^{s_0}}$. This process is iterated by an increment of l_0 to cover the entire range of $s \geq 2 + \frac{l_0}{2}$. It remains to prove the $l_0 = 0$ case.

Let $s \ge 2 + \frac{\epsilon_0}{2}$, where $0 \le \epsilon_0 \le 1$. As before, consider the energy estimate

$$\frac{d}{dt} \left(\|\partial_t n\|_{H^{s-2}}^2 + \|\partial_x n\|_{H^{s-2}}^2 + \epsilon^2 \|\partial_{xx} n\|_{H^{s-2}}^2 \right) \lesssim \|\partial_t n\|_{H^{s-2}}^2 + \|u\|_{H^s}^2
\frac{d}{dt} \|\partial_t u\|_{H^{s-4}}^2 \lesssim \|\partial_t u\|_{H^{s-4}} (\|\partial_t u \cdot n\|_{H^{s-4}} + \|u \cdot \partial_t n\|_{H^{s-4}}),$$
(5.5)

where by a similar argument as before

 $\|\partial_t u \cdot n\|_{H^{s-4}} \lesssim \|\partial_t u\|_{H^{s-4}} \|n\|_{H^{s-\epsilon_0}}; \ \|u\partial_t n\|_{H^{s-4}} \lesssim \|u\|_{H^s} \|\partial_t n\|_{H^{s-4}}.$

Recall

$$\|\Delta u\|_{H^{s-2}} \lesssim \|\partial_t u\|_{H^{s-4}} + \|un\|_{H^{s-4}} \lesssim \|\partial_t u\|_{H^{s-4}} + \|u\|_{H^{s-\epsilon_0}} \|n\|_{H^{s-\epsilon_0}},$$

and hence

$$\begin{aligned} \frac{d}{dt} \Big(\|\partial_t n\|_{H^{s-2}}^2 + \|\partial_x n\|_{H^{s-2}}^2 + \epsilon^2 \|\partial_{xx} n\|_{H^{s-2}}^2 \Big) \\ \lesssim \|\partial_t n\|_{H^{s-2}}^2 + \|\partial_t u\|_{H^{s-4}}^2 + \|u_0\|_{L^2}^2 + (\|u\|_{H^{s-\epsilon_0}} \|n\|_{H^{s-\epsilon_0}})^2, \\ \frac{d}{dt} \|\partial_t u\|_{H^{s-4}}^2 \lesssim \|\partial_t u\|_{H^{s-4}}^2 \|n\|_{H^{s-\epsilon_0}} \\ + \|\partial_t u\|_{H^{s-4}} (\|u_0\|_{L^2} + \|\partial_t u\|_{H^{s-4}} + \|u\|_{H^{s-\epsilon_0}} \|n\|_{H^{s-\epsilon_0}}) \|\partial_t n\|_{H^{s-4}} \end{aligned}$$

If $\epsilon_0 = 0$, then integrate the first differential inequality of (5.5) to obtain an exponential growth bound on $||n||_{H^2} + ||\partial_t n||_{L^2}$, and then apply the Gronwall's inequality again to the second differential inequality of (5.5). If s > 2, use the exponential growth bound for s = 2 for the base case $s_0 = 2 + \frac{\epsilon_0}{2}$. Such exponential bound is obtained for all $s \ge 2 + \frac{\epsilon_0}{2}$ by iterating the Gronwall's inequality. Since $\epsilon_0 > 0$ is arbitrary, we have an exponential bound on the Sobolev norms of solutions for all $s \ge 2$. \Box

To discuss the semi-classical limit to ZS, denote $(u^{\epsilon}, n^{\epsilon}, \partial_t n^{\epsilon})$ by the QZS solution with data $(u_0^{\epsilon}, n_0^{\epsilon}, n_1^{\epsilon})$ for $\epsilon \geq 0$. Given a solution $(u^{\epsilon}, n^{\epsilon}, \partial_t n^{\epsilon})$, we denote H^{ϵ} by the corresponding energy and H_0^{ϵ} by H^{ϵ} at t = 0. Define $H_0^{s,l} = H^s(\mathbb{T}) \times H^l(\mathbb{T}) \times H^{l-1}(\mathbb{T})$.

$$\begin{split} & \textbf{Proposition 4. Let } s \geq 4. \ \textit{If } \sup_{\epsilon} \|(u_0^{\epsilon}, n_0^{\epsilon}, n_1^{\epsilon})\|_{H^{s,s-1}} \leq R < \infty \ \textit{and} \\ & (u_0^0, n_0^0, n_1^0) \in H_0^{s,s-1} \ \textit{where} \ (u_0^{\epsilon}, n_0^{\epsilon}, n_1^{\epsilon}) \xrightarrow[\epsilon \to 0]{\epsilon \to 0} (u_0^0, n_0^0, n_1^0), \ \textit{then} \\ & (u^{\epsilon}, n^{\epsilon}, \partial_t n^{\epsilon}) \xrightarrow[\epsilon \to 0]{\epsilon \to 0} (u^0, n^0, \partial_t n^0) \ \textit{in} \ C([0, T]; H_0^{s-2,s-3}). \end{split}$$

To show Proposition 4, two key hypotheses need to be verified, after which the proof proceeds as [8, theorem 1.3] and thus is omitted. First, a uniform bound on $(u^{\epsilon}, n^{\epsilon}, \partial_t n^{\epsilon})$ that depends only on R, T is needed. Second, the space of data needs to be regularized. In [8], this is done via a particular convolution kernel on \mathbb{R}^d . On a periodic domain, we define a family of mollifiers as follows: for h > 0, define $\widehat{J_h f}(k) = \eta(hk)\widehat{f}(k)$ for all $f \in L^1(\mathbb{T})$. Then $\|J_h f - f\|_{H^s} \xrightarrow[h \to 0]{} 0$ and for $\sigma > 0$

$$\|J_h f - f\|_{H^{s-\sigma}} \le C(\sigma) h^{\sigma} \|f\|_{H^s}, \ \|J_h f\|_{H^{s+\sigma}} \le \frac{C(\sigma)}{h^{\sigma}} \|f\|_{H^s}.$$

It suffices to obtain a uniform bound on $(u^{\epsilon}, n^{\epsilon}, \partial_t n^{\epsilon})$.

$$\begin{split} & \textbf{Lemma 9. If } (s,l) \in \Omega_G \ and \sup_{\epsilon > 0} \| (u_0^{\epsilon}, n_0^{\epsilon}, n_1^{\epsilon}) \|_{H^{s,l}} \leq R < \infty, \ then \\ & \sup_{\epsilon > 0} \sup_{t \in [0,\infty)} \| (u^{\epsilon}, n^{\epsilon}, \partial_t n^{\epsilon}) \|_{H^{1,0}_0} \leq C(R). \ If \ s \geq 4, \ then \ for \ all \ 1 \leq s' \leq s-2 \ and \\ & T > 0, \ \sup_{\epsilon > 0} \| (u^{\epsilon}, n^{\epsilon}, \partial_t n^{\epsilon}) \|_{C_T H^{s',s'-1}_0} \leq C(T, R). \end{split}$$

Proof. By inspection, $|H_0^{\epsilon}| \leq C(R)$ uniformly in ϵ . Since mass is conserved and

$$\begin{aligned} \|\partial_x u^{\epsilon}\|_{L^2}^2 &+ \frac{1}{2} \|n^{\epsilon}\|_{L^2}^2 + \frac{1}{2} \|\partial_t n^{\epsilon}\|_{H^{-1}} \le |H_0^{\epsilon}| + \left|\int n^{\epsilon} |u^{\epsilon}|^2\right| \\ &\le |H_0^{\epsilon}| + \frac{1}{4} \|n^{\epsilon}\|_{L^2}^2 + \frac{1}{2} \|\partial_x u^{\epsilon}\|_{L^2}^2 + C', \end{aligned}$$

where the last inequality is by the Gagliardo-Nirenberg inequality, and C' is independent of ϵ , we obtain the first uniform bound. Now assume $s \ge 4, T > 0$ and the following inductive hypotheses:

$$\|u^{\epsilon}\|_{H^{s'-2}}, \|n^{\epsilon}\|_{H^{s'-2}}, \|n^{\epsilon}\|_{H^1} \le C(T, R),$$
(5.6)

uniformly in $\epsilon > 0$ and $t \in [0, T]$. Then (1.2) and (5.6) yield $||u^{\epsilon}n^{\epsilon}||_{H^{s'-2}} \lesssim C(T, R)$ since

$$||u^{\epsilon}n^{\epsilon}||_{H^{s'-2}} \lesssim ||u^{\epsilon}||_{H^{s'-2}} ||n^{\epsilon}||_{H^{s'-2}} \le C(T,R)$$

for $s' > \frac{5}{2}$ and

$$||u^{\epsilon}n^{\epsilon}||_{H^{s'-2}} \le ||u^{\epsilon}n^{\epsilon}||_{H^{1}} \lesssim ||u^{\epsilon}||_{H^{1}} ||n^{\epsilon}||_{H^{1}} \le C(T,R)$$

for $s' \in [1, \frac{5}{2}]$. Moreover, since $\|u^{\epsilon}\|_{\dot{H}^{s'}} \leq \|\langle \epsilon \nabla \rangle^2 \Delta u^{\epsilon}\|_{H^{s'-2}}$ for all $\epsilon \geq 0$,

$$\|u^{\epsilon}\|_{H^{s'}}^2 \lesssim \|u_0^{\epsilon}\|_{L^2}^2 + \|\partial_t u^{\epsilon}\|_{H^{s'-2}}^2 + \|u^{\epsilon} n^{\epsilon}\|_{H^{s'-2}}^2 \le \|u_0^{\epsilon}\|_{L^2}^2 + \|\partial_t u^{\epsilon}\|_{H^{s'-2}}^2 + C(T,R),$$

and hence the differential inequality obtained from the first equation of (1.1) is

$$\frac{d}{dt} \Big(\|\partial_t n^{\epsilon}\|_{H^{s'-2}}^2 + \|\partial_x n^{\epsilon}\|_{H^{s'-2}}^2 + \epsilon^2 \|\partial_{xx} n^{\epsilon}\|_{H^{s'-2}}^2 \Big) \\
\lesssim \|\partial_t n^{\epsilon}\|_{H^{s'-2}}^2 + \|\partial_t u^{\epsilon}\|_{H^{s'-2}}^2 + C(T, R),$$
(5.7)

where its LHS is well-defined since $s' \leq s - 2 \leq l$ from $(s, l) \in \Omega_G$.

Similarly we derive another differential inequality as (5.4) with b = s' - 2. A similar calculation as before shows

$$\|\partial_t u^{\epsilon} \cdot n^{\epsilon}\|_{H^{s'-2}} \lesssim \|\partial_t u^{\epsilon}\|_{H^{s'-2}}, \ \|u^{\epsilon}\partial_t n^{\epsilon}\|_{H^{s'-2}} \lesssim \|\partial_t n^{\epsilon}\|_{H^{s'-2}},$$

by the inductive hypothesis where the implicit constants are independent of ϵ , and hence by the Young's inequality

$$\frac{d}{dt} \|\partial_t u^{\epsilon}\|_{H^{s'-2}}^2 \lesssim \|\partial_t u^{\epsilon}\|_{H^{s'-2}}^2 + \|\partial_t n^{\epsilon}\|_{H^{s'-2}}^2.$$

$$(5.8)$$

Integrating (5.7) and (5.8),

$$\|\partial_t n^{\epsilon}\|_{H^{s'-2}}^2 + \|\partial_x n^{\epsilon}\|_{H^{s'-2}}^2 + \epsilon^2 \|\partial_{xx} n^{\epsilon}\|_{H^{s'-2}}^2 + \|\partial_t u^{\epsilon}\|_{H^{s'-2}}^2 \le C(T,R).$$

Now we show (5.6). By [8, proposition 2.4], we have $\sup_{\epsilon} \|n^{\epsilon}\|_{C_{T}H^{1}_{x}} \leq C(T, R)$. On the other hand, if $1 \leq s' \leq 2$, then $\|u^{\epsilon}\|_{H^{s'-2}}, \|n^{\epsilon}\|_{H^{s'-2}} \leq C$, independent of ϵ , by Lemma 9. Hence for such s', Lemma 9 holds and using $s'_{0} = 2$ as a base case, we can extend the uniform bound to all $2 \leq s' \leq 3$ from which we iterate to cover the entire $1 \leq s' \leq s - 2$. \Box

Remark 3. When $T = \infty$, the continuity of $\epsilon \to u^{\epsilon}$ is not expected for all $\epsilon \geq 0$. Let $(u_0, n_0, n_1) = (\langle N \rangle^{-s} e^{iNx}, 0, 0)$ for $N \in \mathbb{R} \setminus \{0\}$. Then, $(u, n, \partial_t n)(x, t) = (\langle N \rangle^{-s} e^{-it(N^2 + \epsilon^2 N^4) + iNx}, 0, 0)$ is the (classical) solution. By direct computation,

$$\sup_{t \in [0,\infty)} \|\langle N \rangle^{-s} e^{-it(N^2 + \epsilon^2 N^4) + iNx} - \langle N \rangle^{-s} e^{-it(N^2 + \epsilon_0^2 N^4) + iNx} \|_{H^s_x}$$
$$= \sup_{t \in [0,\infty)} |1 - e^{it(\epsilon^2 - \epsilon_0^2)N^4}| = 2.$$

6 Conclusions

The QZS with the periodic boundary condition is well-posed for data with low Sobolev regularity. The smoothing effect of the fourth-order perturbation nullifies the resonance phenomenon $(\frac{\beta}{\alpha} \in \mathbb{Z})$, which played an important role when $\epsilon = 0$. The continuity of solution in ϵ holds for $T < \infty$ but not for $T = \infty$.

References

- J. Bourgain. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. *Geometric and Functional Analysis*, 3(3):209–262, 1993. https://doi.org/10.1007/BF01895688.
- [2] J. Bourgain. On the Cauchy and invariant measure problem for the periodic Zakharov system. Duke Math. J, 76(1):175–202, 1994. https://doi.org/10.1215/S0012-7094-94-07607-2.
- [3] T.-J. Chen, Y.-F. Fang and K.-H. Wang. Low regularity global well-posedness for the quantum Zakharov system in 1D. *Taiwanese Journal of Mathematics*, 21(2):341–361, 2017. https://doi.org/10.11650/tjm/7806.
- [4] M.B. Erdoğan and N. Tzirakis. Smoothing and global attractors for the Zakharov system on the torus. Analysis & PDE, 6(3):723–750, 2013. https://doi.org/10.2140/apde.2013.6.723.
- [5] Y.-F. Fang, H.-W. Shih and K.-H. Wang. Local well-posedness for the quantum Zakharov system in one spatial dimension. *Journal of Hyperbolic Differential Equations*, 14(01):157–192, 2017. https://doi.org/10.1142/S0219891617500059.
- [6] L.G. Garcia, F. Haas, L.P.L. De Oliveira and J. Goedert. Modified Zakharov equations for plasmas with a quantum correction. *Physics of Plasmas*, 12(1):012302, 2005. https://doi.org/10.1063/1.1819935.
- [7] J. Ginibre, Y. Tsutsumi and G. Velo. On the Cauchy problem for the Zakharov system. *Journal of Functional Analysis*, 151(2):384–436, 1997. https://doi.org/10.1006/jfan.1997.3148.
- [8] Y. Guo, J. Zhang and B. Guo. Global well-posedness and the classical limit of the solution for the quantum Zakharov system. *Zeitschrift für angewandte Mathematik und Physik*, 64(1):53–68, 2013. https://doi.org/10.1007/s00033-012-0215-y.
- [9] F. Haas. Quantum plasmas: An hydrodynamic approach, volume 65. Springer Science & Business Media, 2011.
- [10] J.-C. Jiang, C.-K. Lin and S. Shao. On one dimensional quantum Zakharov system. Discrete & Continuous Dynamical Systems, 36(10):5445-5475, 2016. https://doi.org/10.3934/dcds.2016040.
- [11] C. Kenig, G. Ponce and L. Vega. A bilinear estimate with applications to the KdV equation. Journal of the American Mathematical Society, 9(2):573-603, 1996. https://doi.org/10.1090/S0894-0347-96-00200-7.
- [12] C. Kenig, G. Ponce and L. Vega. Quadratic forms for the 1-D semilinear Schrödinger equation. *Transactions of the American Mathematical Society*, 348(8):3323–3353, 1996. https://doi.org/10.1090/S0002-9947-96-01645-5.

- [13] N. Kishimoto. Local well-posedness for the Zakharov system on the multidimensional torus. Journal d'Analyse Mathématique, 119(1):213–253, 2013. https://doi.org/10.1007/s11854-013-0007-0.
- [14] G. Simpson, C. Sulem and P.-L. Sulem. Arrest of Langmuir wave collapse by quantum effects. *Physical Review E*, 80(5):056405, 2009. https://doi.org/10.1103/PhysRevE.80.056405.
- [15] H. Takaoka et al. Well-posedness for the Zakharov system with the periodic boundary condition. *Differential and Integral Equations*, **12**(6):789–810, 1999.
- [16] T. Tao. Nonlinear dispersive equations: local and global analysis. Number 106. American Mathematical Soc., 2006.
- [17] V.E. Zakharov et al. Collapse of Langmuir waves. Sov. Phys. JETP, 35(5):908– 914, 1972.

Appendix

We show Proposition 3 by providing concrete examples.

Proof. The main idea is to add a fourth-order perturbation to the spacetime functions constructed in [15]. Once those examples are given, one can directly substitute the examples to the inequalities in Proposition 3 to derive a set of necessary conditions on the scaling parameter $N \gg 1$. Let $\delta(k)$ be the Kronecker delta function defined on \mathbb{Z} and let $\phi(\tau)$ be a smooth bump function on \mathbb{R} with a compact support. It suffices to consider $u_i, 1 \leq i \leq 8, n_i, 1 \leq i \leq 4$, and $v_i, 5 \leq i \leq 8$, where

$$\begin{split} \widehat{u}_1(k,\tau) &= \delta(k+N)\phi(\tau+\alpha N^2+\epsilon^2 N^4), \\ \widehat{n}_1(k,\tau) &= \delta(k-2N)\phi(|\tau|-2\beta N\langle 2\epsilon N\rangle), \\ \widehat{u}_2(k,\tau) &= \delta(k-2N)\phi(|\tau|-2\beta N\langle 2\epsilon N\rangle), \\ \widehat{n}_2(k,\tau) &= \delta(k-2N)\phi(|\tau|-2\beta N\langle 2\epsilon N\rangle), \\ \widehat{u}_3(k,\tau) &= \delta(k)\phi(\tau), \quad \widehat{n}_3(k,\tau) &= \delta(k-N)\phi(|\tau|-\beta N\langle \epsilon N\rangle), \\ \widehat{u}_4(k,\tau) &= \delta(k)\phi(\tau+\alpha N^2+\epsilon^2 N^4+\beta N\langle \epsilon N\rangle), \\ \widehat{n}_4(k,\tau) &= \delta(k-N)\phi(|\tau|-\beta N\langle \epsilon N\rangle), \\ \widehat{u}_5(k,\tau) &= \delta(k-N)\phi(\tau+\alpha N^2+\epsilon^2 N^4), \\ \widehat{v}_5(k,\tau) &= \delta(k-N)\phi(\tau+\alpha N^2+\epsilon^2 N^4), \\ \widehat{u}_6(k,\tau) &= \delta(k-N)\phi(\tau+\alpha N^2+\epsilon^2 N^4), \\ \widehat{u}_6(k,\tau) &= \delta(k+N)\phi(\tau+\alpha N^2+\epsilon^2 N^4), \\ \widehat{u}_7(k,\tau) &= \delta(k)\phi(\tau), \quad \widehat{v}_7(k,\tau) &= \delta(k-N)\phi(\tau+\alpha N^2+\epsilon^2 N^4), \\ \widehat{u}_8(k,\tau) &= \delta(k-N)\phi(\tau+\alpha N^2+\epsilon^2 N^4). \end{split}$$