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Abstract. We consider the well-posedness theory of the compact case of one-dimen-
sional quantum Zakharov system with the periodic boundary condition. The global
well-posedness for sufficiently regular data is shown. The semi-classical limit as ε → 0
is obtained on a compact time interval whereas the quantum perturbation proves to
be singular on an infinite time interval.
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1 Introduction

Consider the quantum Zakharov system (QZS)
(i∂t + α∂xx − ε2∂2xx)u = un, (x, t) ∈ T× [0, T ],

(β−2∂tt − ∂xx + ε2∂2xx)n = ∂xx(|u|2),

(u(x, 0), n(x, 0), ∂tn(x, 0))=(u0, n0, n1)∈Hs,l:=Hs(T)×H l(T)×H l−2(T),

(1.1)
where u(x, t) ∈ C, n(x, t) ∈ R, T > 0, α, β > 0, s, l ∈ R. The two conserved
quantities that are of use in this paper are

M [u, n, ∂tn](t) = ‖u‖2L2 = ‖u0‖2L2 , H[u, n, ∂tn](t) = α‖∂xu‖2L2 + ε2‖∂xxu‖2L2

+
1

2

(
‖n‖2L2 +

1

β2
‖∂tn‖2Ḣ−1 + ε2‖∂xn‖2L2

)
+

∫
n|u|2. (1.2)

When ε = 0, QZS is well-known as the classical Zakharov system (ZS) that
models the interaction of Langmuir turbulence waves and ion-acoustic waves.
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Here u denotes the slowly-varying envelope of electric field, and n represents
an ion-acoustic wave that models the density fluctuation of ions [17]. A thrust
of interest in studying the quantum effects unexplained by ZS came from the
physics community [6]. There the quantum effect is characterized by a fourth-
order derivative perturbation with a quantum parameter ε > 0 that is non-
negligible when either the ion-plasma frequency is high or the electrons’ tem-
perature is low; for more background in the physics of this model, see [9, 14].

Although the QZS model is relatively new, the Bourgain norm method
has been used successfully by many including, but not limited to, [1, 7, 11,
12], in applications to various dispersive equations such as the KdV, nonlinear
Schrödinger equation, and ZS. The task of proving boundedness for certain
multilinear operators reduces to showing spacetime Lebesgue-type estimates
in the Fourier space, which can be a challenge on bounded domains where
satisfactory Strichartz estimates are not available. Despite this difficulty, see
[2, 4, 13] for the well-posedness theory of ZS on periodic domains. For more
recent work on QZS on R, see [3, 5, 10].

Our goal is to understand the effect of quantum modification represented by
the additional biharmonic operator on T, thereby extending the results of [15].
We show that the biharmonic operator provides an extra degree of smoothing
that nullifies the distinction between resonance (βα ∈ Z) and non-resonance

(βα /∈ Z), a phenomenon that played a central role in [15]. More precisely,
we show that the region of Sobolev exponent pairs (s, l) ∈ R2 yielding well-
posedness for ε = 0 (which depend on β

α ∈ Z or β
α /∈ Z) are no longer different

when ε > 0. It is shown that if ZS is well-posed with data in certain Sobolev
spaces, then so is QZS. Under the condition s ≥ 0, it is shown that our method
yields a region of Sobolev exponents for the local well-posedness that is sharp
up to the boundary.

For s, l ∈ R, b ∈ R, define

‖f‖Xs,bS = ‖〈k〉s〈τ + αk2 + ε2k4〉bf̂(k, τ)‖L2
τ l

2
k
,

‖f‖Xl,bW = ‖〈k〉l〈|τ | − β|k|〈εk〉〉bf̂(k, τ)‖L2
τ l

2
k
,

(1.3)

and the augmented norm

‖f‖Y sS = ‖f‖
X
s, 1

2
S

+ ‖f̂(k, τ)〈k〉s‖l2kL1
τ
,

‖f‖Y lW = ‖f‖
X
l, 1

2
W

+ ‖f̂(k, τ)〈k〉s‖l2kL1
τ
,

(1.4)

where k, τ denote the Fourier dual variables to the physical variables x, t, and
f̂ (or Ff) denotes either the space or spacetime Fourier transform, depending
on the context. Let the restricted space be

‖f‖Xs,bS,T = inf
f̃=f, t∈[0,T ]

‖f̃‖Xs,bS ,

and similarly for norms defined in (1.3) and (1.4). Further define the region of
well-posedness

ΩL = {s ≥ 0, −1 ≤ l < 2s+ 1, −2 < s− l ≤ 2} ,
ΩG = {0 ≤ s− l ≤ 2, s+ l ≥ 4} ∪ {(2, 1)} .

Math. Model. Anal., 27(2):342–359, 2022.



344 B. Choi

Theorem 1. If (s, l) ∈ ΩL, then (1.1) is locally well-posed; there exists T =
T (‖(u0, n0, n1)‖Hs,l) > 0 and a unique (u, n, ∂tn) ∈ Y sS,T×Y lW,T×Y

l−2
W,T that sat-

isfies (1.1). Further, if T ′ ∈ (0, T ), then there exists a neighborhood B ⊆ Hs,l

around (u0, n0, n1) such that the data-to-solution map (u0, n0, n1) 7→ (u, n, ∂tn)
is Lipschitz-continuous from B to Y sS,T × Y lW,T × Y

l−2
W,T .

In the Appendix, explicit examples are given that illustrate the necessity of

s ≥ −1, −1 ≤ l ≤ 2s+ 1, −2 ≤ s− l ≤ 2.

Theorem 2. If (s, l) ∈ ΩG, then the unique local solution obtained in Theo-
rem 1 can be extended globally in time. More precisely, there exists
(u, n, ∂tn) ∈ Cloc([0,∞);Hs,l) that satisfies (1.1) such that for all T > 0,
(u, n, ∂tn) is a unique solution in Y sS,T × Y lW,T × Y

l−2
W,T .

Lastly the semi-classical limit of QZS to ZS as ε → 0 is considered. We
extend the results of [8] to show that the solutions behave continuously as
ε → 0 on a compact time interval. On the other hand, explicit examples are
given to illustrate that the biharmonic operator ε2∆2, for any ε > 0, is a
singular perturbation on an infinite time interval. Here we address a subtlety
that QZS generates flow on Hs,l whereas the classical ZS does so on Hs,l

0 :=
Hs(T) ×H l(T) ×H l−1(T). To overcome this apparent gap of solution space,
the growth of Sobolev norm of solutions is estimated in various function spaces
with bounds independent of ε > 0.

We outline the organization of the paper. In Section 2, notations are in-
troduced. In Section 3, we summarize a set of linear estimates that are used
throughout the paper. In Section 4, nonlinear estimates are proved and applied
to yield local well-posedness of (1.1). In Section 5, the local solutions obtained
in Section 4 are extended to global solutions for every ε > 0, and the limit
ε→ 0 is considered.

2 Notation

Given A±, denote
∑
±
A± := A+ + A−. Let ψ ∈ C∞c (R) be a smooth cutoff

function with a compact support in [−2, 2] and ψ(t) = 1 for all t ∈ [−1, 1]. For
b ∈ R, we write b± to denote b ± ε′ for some universal ε′ � 1. Assume ε ≤ 1.
Let 〈k〉 = (1 + k2)

1
2 and define 〈∇〉, D := |∇| as multipliers.

Assume without loss of generality that n0, n1 have zero means. If∫
n0dx,

∫
n1dx 6= 0, then consider the change of variable

u(x, t) 7→ e
i

(
t2

4π

∫
n1+

t
2π

∫
n0

)
u(x, t), n(x, t) 7→ n(x, t)− t

2π

∫
n1 −

1

2π

∫
n0,

which, by direct computation, satisfies (1.1) with zero means in the new vari-
able. By integrating the second equation of (1.1) over space, one obtains
d2

dt2

∫
T n = 0, and, therefore, the mean zero condition on n0, n1 allows us to

make sense of ‖∂tn‖Ḣ−1 in (1.2).
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The contraction mapping argument is developed to show

u(t) = Γ1(u, n)(t) := Uε(t)u0 − i
∫ t

0

Uε(t− t′)(un)(t′)dt′,

n(t) = Γ2(u)(t):=∂tVε(t)n0+Vε(t)n1+β2

∫ t

0

Vε(t−t′)∂xx(|u|2)(t′)dt′, (2.1)

where Uε(t), Vε(t), ∂tVε(t) for ε ≥ 0 are defined via Fourier multipliers

e−it(αk
2+ε2k4),

sin(β|k|〈εk〉t)
β|k|〈εk〉

, cos(β|k|〈εk〉t),

respectively on Z.
To control the nonlinear contribution coming from the Duhamel term of

(2.1), consider the companion spaces to Y sS , Y
l
W :

‖f‖ZsS = ‖f‖
X
s,− 1

2
S

+
∥∥∥ 〈k〉s

〈τ + αk2 + ε2k4〉
f̂(k, τ)

∥∥∥
l2kL

1
τ

,

‖f‖ZlW = ‖f‖
X
l,− 1

2
W

+
∥∥∥ 〈k〉l

〈|τ | − β|k|〈εk〉〉
f̂(k, τ)

∥∥∥
l2kL

1
τ

.

3 Linear estimates

Fix α, β, ε ≥ 0 and T ∈ (0, 1] for Sections 3 and 4.

Lemma 1 [Homogeneous estimates]. For s, l ∈ R,

‖Uε(t)u0‖Hs = ‖u0‖Hs , ‖ψ(t)Uε(t)u0‖Y sS .ψ ‖u0‖Hs ,∀ε ≥ 0.

‖∂tVε(t)n0‖Hl ≤ ‖n0‖Hl , ‖ψ(t)∂tVε(t)n0‖Y lW .ψ ‖n0‖Hl ,∀ε ≥ 0.

‖Vε(t)n1‖Hl . (t+
1

βε
)‖n1‖Hl−2 , ‖ψ(t)Vε(t)n1‖Y lW .ψ (1 +

1

βε
)‖n1‖Hl−2 ,

‖V0(t)n1‖Hl . (t+
1

β
)‖n1‖Hl−1 , ‖ψ(t)V0(t)n1‖Y lW .ψ (1 +

1

β
)‖n1‖Hl−1 .

Proof. The first line of inequalities follows from the unitarity of Schrödinger
operator; see [16, Lemma 2.8]. A similar argument can be used to show the
other inequalities. ut

Lemma 2 [Inhomogeneous estimates]. For s, l ∈ R and ρ ∈ [0, 1],∥∥∥ψ(t)

∫ t

0

Uε(t− t′)F (t′)dt′
∥∥∥
Y sS

.ψ ‖F‖ZsS ,∥∥∥ψ(t)

∫ t

0

Vε(t− t′)D2−ρF (t′)dt′
∥∥∥
Y lW

.ψ c(ρ, β, ε)‖F‖ZlW ,∥∥∥ψ(t)

∫ t

0

∂tVε(t− t′)D2−ρF (t′)dt′
∥∥∥
Y l−2
W

.ψ ‖F‖ZlW .

Math. Model. Anal., 27(2):342–359, 2022.
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Proof. The first inequality is standard in literature; see [16, Proposition 2.12].
The second and third are proved similarly where

c(ρ, β, ε) =
(
1−ρ
ρε2

) 1−ρ
2 /βρ−1/2. ut

Lemma 3. Let T ≤ 1, s, l ∈ R, and − 1
2 < b ≤ b′ < 1

2 . Then

‖ψ(t/T )u‖Xs,bS .ψ,b,b′ T
b′−b‖u‖

Xs,b
′

S

, ‖ψ(t/T )u‖Xl,bW .ψ,b,b′ T
b′−b‖u‖

Xl,b
′

W

.

Proof. The first inequality follows from [16, Lemma 2.11]. The second in-
equality follows similarly. ut

4 Nonlinear estimates

Proposition 1. For 0 < ρ ≤ 1, suppose s ≥ 0, −1 ≤ l ≤ 2s+ 1− ρ, −2 + ρ ≤
s − l ≤ 2 and b ∈ ( 1

6 ,
1
2 ]. Then there exists C = C(α, β, ε, ρ, s, l, b) > 0 such

that

‖un‖
X
s,− 1

2
S

≤ C(‖u‖Xs,bS ‖n‖Xl,
1
2

W

+ ‖u‖
X
s, 1

2
S

‖n‖Xl,bW ),

‖Dρ(uv)‖
X
l,− 1

2
W

≤ C(‖u‖Xs,bS ‖v‖Xs,
1
2

S

+ ‖u‖
X
s, 1

2
S

‖v‖Xs,bS ).

Proposition 2. Assuming the hypotheses of Proposition 1,∥∥∥ 〈k〉s

〈τ + αk2 + ε2k4〉
ûn(k, τ)

∥∥∥
l2kL

1
τ

. ‖u‖Xs,bS ‖n‖Xl,
1
2

W

+ ‖u‖
X
s, 1

2
S

‖n‖Xl,bW ,∥∥∥ 〈k〉l

〈|τ | − β|k|〈εk〉〉
D̂ρ(uv)(k, τ)

∥∥∥
l2kL

1
τ

. ‖u‖Xs,bS ‖v‖Xs,
1
2

S

+ ‖u‖
X
s, 1

2
S

‖v‖Xs,bS .

The contraction mapping argument can be closed by combining Propositions 1
and 2 and Lemma 3.

Corollary 1. For some θ ∈ (0, 13 ),

‖un‖ZsS . T
θ‖u‖Y sS ‖n‖Y lW , ‖D

ρ(|u|2)‖ZlW . T
θ‖u‖2Y sS .

Remark 1. The proof of Proposition 2 is similar to that of Proposition 1, and
thus is omitted. See [15] for more details.

Remark 2. The method of direct estimation by the Cauchy-Schwarz inequality
does not seem to work, at least directly, when ρ = 0. One can check that the
τ1-integral in (4.7) is not justified. In fact if k = 0, then IV = ∞ by direct
computation.

Assuming the aforementioned statements, we prove Theorem 1.

Proof. For T > 0, define X = Y sS,T×Y lW,T×Y
l−2
W,T with ‖(u, n, ∂tn)‖ := ‖u‖XsS,T

+‖n‖Y lW,T + ‖∂tn‖Y l−2
W,T

, X(R) = {(u, n, ∂tn) ∈ X : ‖(u, n, ∂tn)‖ ≤ Rσ} for

R > 0 to be determined and σ = ‖(u0, n0, n1)‖Hs,l .
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Consider Γ (u, n, ∂tn) = (Γ1(u, n), Γ2(u), Γ3(u)) on X(R) where Γ1, Γ2 are
defined in (2.1) and Γ3(u)(t) = ∂tΓ2(u)(t). If (s, l) ∈ ΩL, pick ρ > 0 sufficiently
small such that the hypotheses of Proposition 1 are fulfilled. By Corollary 1,
there exists θ > 0 such that

‖Γ (u, n, ∂tn)‖ . σ + T θ‖u‖Y sS,T ‖n‖Y lW,T + T θ‖u‖2Y sS,T ≤ σ + 2T θR2σ2.

If R is chosen sufficiently big (depending on the given parameters), then by

choosing 0 < T . σ−
1
θ , Γ maps into X(R). Similarly given

(u1, n1, ∂tn1), (u2, n2, ∂tn2) ∈ X,

‖Γ (u1, n1, ∂tn1)− Γ (u2, n2, ∂tn2)‖ . T θRσ‖(u1, n1, ∂tn1)− (u2, n2, ∂tn2)‖,

and by choosing 0 < T . σ−
1
θ sufficiently small, Γ is a contraction on X(R)

and hence there exists a unique (u, n, ∂tn) ∈ X ↪→ C([0, T ];Hs,l) that satisfies
(1.1). The local Lipschitz continuity of the solution map immediately follows
from the contraction mapping argument. ut

The goal is to show the boundedness of the multilinear operators corre-
sponding to the nonlinear terms which, at a technical level, involves directly
estimating a L∞L1-norm of a function defined on the spacetime Fourier space
in different regions depending on which dispersive weight is most dominant.
Observing that

(τ + αk2 + ε2k4)− (τ1 + αk21 + ε2k41)− (τ2 ± βk2〈εk2〉)

= (k − k1)
(

(k + k1)(α+ ε2(k2 + k21))∓ β〈ε(k − k1)〉
)
,

we obtain

max
(
|τ + αk2 + ε2k4|, |τ1 + αk21 + ε2k41|, ||τ2| − β|k2|〈εk2〉|

)
≥ 1

3
|k − k1|

∣∣(k + k1)(α+ ε2(k2 + k21))∓ β〈ε(k − k1)〉
∣∣ , (4.1)

where the sign on the RHS of (4.1) depends on τ2, k2. Since this subtlety does
not affect our subsequent analysis, we do not keep track of the sign. For the
sake of notational convenience, define

h(k, k1) = (k + k1)(α+ ε2(k2 + k21))∓ β〈ε(k − k1)〉.

Lemma 4. [4, Lemma 3.3] If δ ≥ γ ≥ 0 and δ + γ > 1, then

∫
dτ

〈τ − a1〉δ〈τ − a2〉γ
. 〈a1−a2〉−γφδ(a1−a2), φδ(a) '


1, δ > 1,

log(1 + 〈a〉), δ = 1,

〈a〉1−δ, δ < 1.

Math. Model. Anal., 27(2):342–359, 2022.
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Lemma 5. For all e1 >
1
4 , e2 >

1
3 ,

σ1(k, τ) :=
∑

k1 6=k;±

1

〈ε2k41 + αk21 + τ ± β(k − k1)〈ε(k − k1)〉〉e1

≤ c1(α, β, ε, e1) <∞,

σ2(k, τ) :=
∑
k1

1

〈k31 − 3k
2 k

2
1 +

(
α+2ε2k2

2ε2

)
k1 + τ−αk2−ε2k4

4ε2k 〉e2

≤ c2(α, β, ε, e2) <∞, if k 6= 0.

Proof. The second inequality can be proved similarly as [4, lemma 3(c)]. For
the first inequality, there exists c > 0 independent of k, k1 such that∣∣(k − k1)〈ε(k − k1)〉 − (k − k1)|ε(k − k1)|

∣∣ ≤ c.
Hence the term 〈ε(k− k1)〉 in the summation can be replaced with |ε(k− k1)|.
Then

σ1(k, τ) ≤
∑

k1 6=k;±

1

〈ε2k41 + αk21 + τ ± βε(k − k1)2〉e1
≤ c′,

where the constant is independent of k, τ by an argument similar to [4, lemma
3(c)]. ut

Lemma 6. There exist C(α, β, ε), c(α, β, ε) > 0 such that for all (k, k1) ∈ Z2

that satisfies {|k| ≥ C(α, β, ε)} ∪ {|k1| ≥ C(α, β, ε)}, the estimate, |h(k, k1)| ≥
c(α, β, ε)|k − k1|, holds.

Proof. Assume k 6= k1. For a fixed k ∈ Z, let r∓(k) ∈ R be the unique
real-root of h(k, ·), where r−(k) corresponds to the minus sign in h(k, ·), and
similarly for r+(k); we drop the ∓-subscript. Noting that h is symmetric in
both arguments, it suffices to assume |k| ≥ C(α, β, ε), where

C(α, β, ε) := max
(
C1(α, β, ε),

√
3
√

2β

ε
,

1

3ε

)
, (4.2)

where for all |k| ≥ C1(α, β, ε) > 0, we have β〈εk〉 < |k|(α+ ε2k2).
We first show that for k sufficiently big, r(k) /∈ Z. For k ∈ Z, consider

the graphs of k1 7→ (k + k1)(α + ε2(k2 + k21)) and k1 7→ ±β〈ε(k − k1)〉. If the
y-intercept of the cubic polynomial is greater (in magnitude) than that of the
square-root term, i.e., β〈εk〉 < |k|(α + ε2k2), then r(k) ∈ [−c2k, 0] for k > 0
and r(k) ∈ [0,−c2k] for k < 0, where c2 = c2(α, β, ε) > 0.

Now we claim lim
|k|→∞

|r(k) + k| = 0. From h(k, r(k)) = 0,

|r(k) + k| =
∣∣∣∣ β〈ε(k − r(k)〉)
α+ ε2(k2 + r(k)2)

∣∣∣∣ . βε|k − r(k)|
α+ ε2k2

≤ (1 + c2)βε|k|
α+ ε2k2

−−−−→
|k|→∞

0.

Hence, if |k| is sufficiently big and r(k) ∈ Z, then r(k) = −k, which cannot
be since |h(k,−k)| = β〈2εk〉 ≥ β. For k ∈ Z, to show inf

k1∈Z
|h(k, k1)| is attained
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at k1 = −k, note that from standard calculus,

∂k1h(k, k1)=3ε2k21+2ε2kk1+α+ ε2k2 ± βε2(k − k1)

〈ε(k − k1)〉
≥α+

2

3
ε2k2 ± βε2(k − k1)

〈ε(k − k1)〉
,

and since βε2|k−k1|
〈ε(k−k1)〉 ≤ βε, it follows that ∂k1h ≥ α by (4.2), and hence

inf
|k|≥C(α,β,ε), (k,k1)∈Z2

|h(k, k1)| ≥ β.

If |k − k1| ≤ 3|k|, then inf |k|≥C(α,β,ε), (k,k1)∈Z2 |h(k,k1)k−k1 | ≥
β

3C(α,β,ε) . If |k −
k1| ≥ 3|k|, then |k1| ≥ 2|k|, |k + k1| ≥ |k1|2 , and |k − k1| ≤ 3|k1|

2 . Furthermore,∣∣∣∣h(k, k1)

k − k1

∣∣∣∣ ≥ 1

3
(α+ε2(k2+k21))−

∣∣∣∣β 〈ε(k−k1)〉
k − k1

∣∣∣∣ ≥ 1

3
(α+ε2(k2+k21))−

√
2βε ≥ α

3
,

where the last inequality is by (4.2). ut

Lemma 7. There exists C(α, β, ε) > 0 such that if
{0 6= |k| ≥ 2|k1|} ∩ {|k| ≥ C(α, β, ε)}, then |k − k1||h(k, k1)| & |k|4. Similarly

if
{

0 6= |k1|
2 ≥ |k|

}
∩ {|k1| ≥ C(α, β, ε)}, then |k − k1||h(k, k1)| & |k1|4.

Proof. Since h is symmetric in k, k1, it suffices to prove the first statement. If

|k| ≥ 2|k1|, then |k ± k1| ≥ |k|2 . If we further assume |k| ≥ 2
ε , then ε|k − k1| ≥

ε
2 |k| ≥ 1, and therefore,

β〈ε(k − k1)〉 ≤
√

2βε|k − k1| ≤
√

2βε(|k|+ |k1|) ≤
3√
2
βε|k|.

By the triangle inequality, if |k| ≥ 10 max(1/ε,
√
β/ε),

|k − k1||h(k, k1)| ≥ |k|
2

(ε2
2
|k|3 − 3√

2
βε|k|

)
≥ ε2

8
|k|4.

ut

The proof of Proposition 1 is given below.

Proof. Though the main idea of this proof follows closely that of [15], we
include a full proof here to address any subtleties that rise from the fourth-
order perturbation. To use the duality argument, let w ∈ L2

k,τ , ‖w‖L2 = 1 and
w ≥ 0. Since

‖un‖
X
s,− 1

2
S

=
∥∥∥ 〈k〉s

〈τ + αk2 + ε2k4〉1/2
∑

k1+k2=k

∫
τ1+τ2=τ

û(τ1, k1)n̂(τ2, k2)
∥∥∥
l2kL

2
τ

,

it suffices to estimate∑
k1+k2−k=0

∫
τ1+τ2−τ=0

〈k〉s〈k1〉−s〈k2〉−lf(τ1, k1)g(τ2, k2)w(τ, k)

〈τ+αk2+ε2k4〉1/2〈τ1+αk21+ε2k41〉b1〈|τ2|−β|k2|〈εk2〉〉b2
=:E,
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where

f(τ, k)=|û(τ, k)|〈k〉s〈τ+αk2+ε2k4〉b1 , g(τ, k)=|n̂(τ, k)|〈k〉l〈|τ |−β|k|〈εk〉〉b2 ,

and b1, b2 ≤ 1
2 . By direct computation, one can rule out k2 = 0, and hence we

assume the sum is over k2 6= 0, or equivalently, k1 6= k.

I. max
(
|τ+αk2+ε2k4|, |τ1+αk21 +ε2k41|, ||τ2| − β|k2|〈εk2〉|

)
= |τ+αk2+ε2k4|.

Let b1 = b2 = b = 1
2−. Applying the Cauchy-Schwarz inequality in variables

(k1, τ1) and (k2, τ2), followed by the Young’s inequality, it suffices to show

sup
τ,k

〈k〉2s

〈τ+αk2+ε2k4〉
∑
k1 6=k

∫
〈k1〉−2s〈k − k1〉−2ldτ1

〈τ1+αk21+ε2k41〉2b〈|τ−τ1| − β|k − k1|〈ε(k − k1)〉〉2b

=: sup
τ,k

I <∞, (4.3)

since

E .
(

sup
τ,k

I
)1/2
‖u‖Xs,bS ‖n‖Xl,bW ‖w‖L2

k,τ
.

Let |k|/2 ≤ |k1| ≤ 2|k|. Integrating in τ1 via Lemma 4 and noting that
〈k〉2s〈k1〉−2s ' 1, we have

I .
∑

k1 6=k;±

1

〈τ+αk2+ε2k4〉〈k−k1〉2l〈ε2k41+αk21+τ ± β(k−k1)〈ε(k−k1)〉〉4b−1
.

(4.4)
If |k| . 1, then 〈k − k1〉 ' 1, and, therefore, the sum above is finite by

Lemma 5. On the other hand, by Lemma 6, if |k| ≥ C(α, β, ε),

I .
∑

k1 6=k;±

1

〈k − k1〉2l+2〈ε2k41 + αk21 + τ ± β(k − k1)〈ε(k − k1)〉〉4b−1
≤ c1,

since l ≥ −1. Now let |k| ≥ 2|k1|. In this region, we have |k|2 ≤ |k − k1| ≤
3|k|
2

and by Lemma 7, if |k| ≥ C(α, β, ε), then 〈τ + αk2 + ε2k4〉 & 〈k〉4 and

I .
∑

k1 6=k;±

〈k1〉−2s

〈k〉2l−2s+4〈ε2k41 + αk21 + τ ± β(k − k1)〈ε(k − k1)〉〉4b−1
≤ c1,

since s − l ≤ 2 and s ≥ 0. If |k| . 1, then by Lemma 5, I . σ1 ≤ c1. Lastly

if |k1|2 ≥ |k|, then |k1|2 ≤ |k − k1| ≤
3|k1|
2 and by treating |k1| ≥ C(α, β, ε) and

|k1| ≤ C(α, β, ε) separately as above, (4.3) has been shown.

II. max
(
|τ+αk2+ε2k4|, |τ1+αk21+ε2k41|, ||τ2| − β|k2|〈εk2〉|

)
= |τ1+αk21+ε2k41|.

Arguing as above, it suffices to show

sup
τ1,k1

II := sup
τ1,k1

〈k1〉−2s

〈τ1 + αk21 + ε2k41〉

×
∑
k 6=k1

∫
〈k〉2s〈k − k1〉−2ldτ

〈τ + αk2 + ε2k4〉〈|τ − τ1| − β|k − k1|〈ε(k − k1)〉〉2b2

. sup
τ1,k1

〈k1〉−2s

〈τ1+αk21+ε2k41〉
∑

k 6=k1;±

〈k〉2s〈k−k1〉−2l

〈ε2k4+αk2 + τ1 ± β(k1 − k)〈ε(k − k1)〉〉2b2−
,
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where we set b1 = 1
2 . By Lemma 7, if |k| ≥ 2|k1| and |k| ≥ C(α, β, ε), then

〈τ1 + αk21 + ε2k41〉 & 〈k〉4, and we have

II .
∑

k 6=k1;±

max(1, 〈k〉−2s)
〈k〉2l−2s+4〈ε2k4 + αk2 + τ1 ± β(k1 − k)〈ε(k − k1)〉〉2b2−

≤ c1,

and similarly, the desired uniform bound of II follows if |k| ≥ 2|k1| and |k| . 1;
by applying Lemma 7 again, we can show that II is uniformly bounded for
|k1|
2 ≥ |k| by treating |k| ≤ C(α, β, ε) and |k| ≥ C(α, β, ε) separately. For
|k|
2 ≤ |k1| ≤ 2|k|, we can argue as (4.4).
III. max

(
|τ+αk2+ε2k4|, |τ1+αk21+ε2k41|, ||τ2|−β|k2|〈εk2〉|

)
= ||τ2|−β|k2|〈εk2〉|.

From (4.1), it follows that

||τ2| − β|k2|〈εk2〉| & |k2|
∣∣(2k − k2)(α+ ε2(k2 + (k − k2)2))∓ β〈εk2〉

∣∣ . (4.5)

If suffices to show sup
τ2,k2

III <∞ where b2 = 1
2 and III :=

〈k2〉−2l

〈|τ2|−β|k2|〈εk2〉〉
∑
k

∫
〈k〉2s〈k − k2〉−2sdτ

〈τ+αk2+ε2k4〉〈τ−τ2 + α(k−k2)2+ε2(k−k2)4〉2b1

.
∑
k

〈k〉2s

〈k2〉2l〈k − k2〉2s〈|τ2| − β|k2|〈εk2〉〉〈4ε2k2p(k)〉2b1−
,

where

p(k) = k3 − 3k2
2
k2 +

(α+ 2ε2k22
2ε2

)
k +

τ2 − αk22 − ε2k42
4ε2k2

. (4.6)

If 2
3 |k2| ≤ |k| ≤ 2|k2|, then 〈k〉2s

〈k2〉2l〈k−k2〉2s .
1

〈k〉2l−2s〈k−k2〉2s . If |k| . 1, III .

σ2 ≤ c2 by Lemma 5. If |k| � 1, we argue as in Lemma 7 to obtain∣∣(2k − k2)(α+ ε2(k2 + (k − k2)2))∓ β〈εk2〉
∣∣ & |k|3,

from which, we estimate

III .
∑
k

max(1, 〈k〉−2s)
〈k〉2l−2s+4〈k2p(k)〉2b1−

. σ2 ≤ c2,

by Lemma 5 and l ≥ −2.

If |k| ≤ 2
3 |k2| or |k| ≥ 2|k2|, then 〈k〉2s

〈k2〉2l〈k−k2〉2s .
1

〈k2〉2l since |k − k2| ≥ |k|2 .

As in Lemma 6, if |k2| ≥ C(α, β, ε), we have

III .
∑
k

1

〈k2〉2l+2〈k2p(k)〉2b1−
. σ2 ≤ c2.

Lastly if |k2| . 1 (for |k| ≤ 2
3 |k2|) or |k| . 1 (for |k| ≥ 2|k2|), then 〈k2〉 ' 1

and we have III . σ2 ≤ c2, which concludes the proof of the first inequality
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of Proposition 1. To show the second inequality by the duality argument, it
suffices to estimate∑
k1+k2−k=0

∫
τ1+τ2−τ=0

〈k〉l+ρ〈k1〉−s〈k2〉−sf(τ1, k1)g(−τ2,−k2)w(τ, k)

〈|τ |−β|k|〈εk〉〉1/2〈τ1+αk21+ε2k41〉b1〈τ2−αk22−ε2k42〉b2
,

where f(τ, k) = |û(τ, k)|〈k〉s〈τ +αk2 + ε2k4〉b1 , g(τ, k) = |v̂(τ, k)|〈k〉s〈τ +αk2 +
ε2k4〉b2 and b1, b2 ≤ 1

2 . Since ρ > 0, we take k 6= 0 in the sum.
IV. max

(
||τ |−β|k|〈εk〉| , |τ1+αk21+ε2k41|, |τ2−αk22 − ε2k42|

)
= ||τ | − β|k|〈εk〉|.

In this region, the lower bound of the dispersive weight is similar to (4.5).
For b1 = b2 = b = 1

2−, it suffices to show

sup
τ,k

IV := sup
τ,k

〈k〉2l+2ρ

〈|τ | − β|k|〈εk〉〉

×
∑
k1

∫
〈k1〉−2s〈k − k1〉−2sdτ1

〈τ1 + αk21 + ε2k41〉2b〈τ − τ1 − α(k − k1)2 − ε2(k − k1)4〉2b

. sup
τ,k

〈k〉2l+2ρ

〈|τ | − β|k|〈εk〉〉
∑
k1

1

〈k1〉2s〈k − k1〉2s〈〈k〉p(k1)〉4b−1
<∞, (4.7)

where p is defined in (4.6). If 2
5 |k| ≤ |k1| ≤

2
3 |k|, then |k|

3 ≤ |k − k1| ≤
5
3 |k|

and 〈k〉2l+2ρ

〈k1〉2s〈k−k1〉2s .
1

〈k〉4s−2l−2ρ . For |k| . 1, (4.7) reduces to Lemma 5. If

|k| ≥ C(α, β, ε) as in Lemma 6,

IV .
∑
k1

1

〈k〉4s−2l−2ρ+2〈〈k〉p(k1)〉4b−1
. σ2,

since 4s − 2l − 2ρ + 2 ≥ 0. If 2
3 |k| ≤ |k1| ≤

3
2 |k| and |k| . 1, then again (4.7)

reduces to Lemma 5. If |k| ≥ C(α, β, ε), then as in Lemma 7,

IV .
∑
k1

1

〈k〉2s−2l−2ρ+4〈〈k〉p(k1)〉4b−1
≤ σ2, (4.8)

since s−l ≥ −2+ρ. Similarly for |k1| ≤ 2
5 |k| or |k1| ≥ 3

2 |k|, we treat |k| . 1 and
|k| ≥ C(α, β, ε) separately where for |k| ≥ C(α, β, ε), we have 〈|τ −β|k|〈εk〉|〉 &
〈k〉4, and therefore we can argue as (4.8).

V. max
(
||τ |−β|k|〈εk〉| , |τ1+αk21+ε2k41|, |τ2−αk22−ε2k42|

)
=|τ1+αk21+ε2k41|.

It suffices to show

sup
τ1,k1

V := sup
τ1,k1

〈k1〉−2s

〈τ1 + αk21 + ε2k41〉

×
∑
k

∫
〈k〉2l+2ρ〈k − k1〉−2sdτ

〈|τ | − β|k|〈εk〉〉〈τ − τ1 − α(k − k1)2 − ε2(k − k1)4〉2b2

. sup
τ1,k1

〈k1〉−2s

〈τ1 + αk21 + ε2k41〉
∑
k,±

〈k〉2l+2ρ〈k − k1〉−2s

〈ε2(k−k1)4+α(k−k1)2+τ1∓βk〈εk〉〉2b2−
,
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where |τ1 + αk21 + ε2k41| & |k| · |α(2k1 − k)(α+ ε2(k21 + (k− k1)2))∓ β〈εk〉| and
b1 = 1

2 . Note that for

max
(
||τ | − β|k|〈εk〉| , |τ1 +αk21 + ε2k41|, |τ2 −αk22 − ε2k42|

)
= |τ2 −αk22 − ε2k42|,

the corresponding L∞L1 estimate reduces to the current case by an appropriate
change of variable.

If |k| ≤ |k1|
2 or 3|k1|

2 ≤ |k| ≤ 5|k1|
2 , then |k − k1| & |k1|, and therefore

〈k1〉−2s〈k〉2l+2ρ〈k − k1〉−2s . 〈k1〉−4s〈k〉2l+2ρ. Hence V . σ1 if |k1| . 1, and
by Lemma 6,

V .
∑
k,±

〈k1〉−4s max(1, 〈k1〉2l+2ρ−2)

〈ε2(k − k1)4 + α(k − k1)2 + τ1 ∓ βk〈εk〉〉2b2−
. σ1,

if |k1| ≥ C(α, β, ε). If |k1|2 ≤ |k| ≤ 3|k1|
2 , then 〈k1〉−2s〈k〉2l+2ρ〈k − k1〉−2s .

1
〈k〉2s−2l−2ρ . If |k| . 1, then V . σ1, and by Lemma 7 if |k| ≥ C(α, β, ε), then

V . σ1 since 2s− 2l− 2ρ+ 4 ≥ 0. A similar statement follows for 5|k1|
2 ≤ |k| if

s− l ≥ −2 + ρ since |k− k1| & |k| and 〈τ1 + αk21 + ε2k41〉 & 〈k〉4 for sufficiently
large |k| by Lemma 7. ut

In the Appendix, we give explicit examples to show the converse statement
for Proposition 1 (see also [15]). Hence, Proposition 1 is sharp up to the
boundary based on our method as long as s ≥ 0.

Proposition 3. Suppose ‖un‖Xs,b−1
S

. ‖u‖Xs,bS ‖n‖Xl,bW holds for all u, n ∈
C∞c (T × R) for some s, l, b ∈ R. Then l ≥ max(2(b − 1),−2b) ≥ −1 and
s − l ≤ min(−4(b − 1), 4b) ≤ 2. Furthermore, suppose ‖Dρ(uv)‖Xl,b−1

W
.

‖u‖Xs,bS ‖v‖Xs,bS holds for all u, v ∈ C∞c (T × R) for some s, l, b ∈ R, ρ ∈ (0, 1].

Then 2s−l−ρ ≥ max(2(b−1),−2b) ≥ −1 and s−l ≥ max(ρ+4(b−1), ρ−4b) ≥
−2 + ρ.

5 Global well-posedness and semi-classical limit

We adopt the argument of [8] to show that a (strict) subset of local solutions
obtained in Theorem 1 can be extended globally; however it is suggested from
the scaling-invariance perspectives in [7] that any local solution is global. Let
α = β = 1 for the sake of simplicity. To prove Theorem 2, the following Sobolev
inequality is useful.

Lemma 8. Let d ∈ N, s ∈ [−d2 ,
d
2 ] and consider Hs(M), where M = Rd,Td.

Then,

‖fg‖Hs .d,s ‖f‖
H
d
2
+‖g‖Hs .

Proof. If s = 0, the statement follows from the Hölder’s inequality and the
Sobolev embedding H

d
2+ ↪→ L∞. If s < 0, then

‖fg‖Hs = sup
‖h‖H−s=1

|〈fg, h〉| ≤ ‖g‖Hs sup
‖h‖H−s=1

‖fh‖H−s ,
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and hence it suffices to show the statement for s > 0. By the Leibniz’s rule,

‖fg‖Hs . ‖f‖W s,q‖g‖Lr + ‖f‖L∞‖g‖Hs ,

where q ∈ [2,∞), r ∈ (2,∞] are to be determined. The second term is bounded

above by ‖f‖
H
d
2
+‖g‖Hs again by the Sobolev embedding. To obtain H

d
2+ ↪→

W s,q, Hs ↪→ Lr, it suffices to have 1
2 −

1
q <

(d/2+)−s
d , 1

2 −
1
r <

s
d . By noting

1
2 = 1

q + 1
r , we can pick r ∈ (2,∞] such that 1

2 −
s
d <

1
r <

(d/2+)−s
d , which

uniquely determines q ∈ [2,∞), and therefore validates the desired Sobolev
embedding. ut

The proof of Theorem 2 makes use of Lemma 8 and the Gronwall’s inequality.

Proof. Assume (s, l) = (2, 1). By the Gagliardo-Nirenberg inequality, (1.2),
and the Young’s inequality,∣∣∣∣∫ n|u|2

∣∣∣∣ ≤ 1

4
‖n‖2L2 +

ε2

2
‖∂xu‖2L2 + C(‖u0‖L2 , ε), (5.1)

and since

‖u(t)‖2H2 + ‖n(t)‖2H1 + ‖∂tn(t)‖2H−1 . ‖u0‖2L2 + ‖∂xxu(t)‖2L2 + ‖n(t)‖2L2

+ ‖∂xn‖2L2+‖∂tn(t)‖2
Ḣ−1.‖u0‖2L2+(1+ε−2)|H0|+(1+ε−2)

∣∣∣∣∫ n|u|2∣∣∣∣ , (5.2)

we obtain ‖(u, n, ∂tn)‖H2,1 ≤ C(ε) for all t ∈ R by using (5.1) to absorb
‖n‖L2 , ‖∂xu‖L2 to the LHS of (5.2).

Let (s, l) ∈ ΩG \ {(2, 1)} and denote l = s − l0 for 0 ≤ l0 ≤ 2, where since
s+ l ≥ 4, it follows that

s ≥ 2 +
l0
2
≥ 2, l ≥ 2− l0

2
≥ 1.

With a = l−2, multiply 〈∇〉2a∂tn to the second equation of (1.1) and integrate
by parts to obtain

1

2

d

dt

(
‖∂tn‖2Ha + ‖∂xn‖2Ha + ε2‖∂xxn‖2Ha

)
=

∫
(〈∇〉a∂tn)(〈∇〉a∂xx|u|2)

.a ‖∂tn‖2Ha + ‖u‖2Ha+2 .

(5.3)

First, let l0 > 0. For T > 0, assume the inductive hypothesis, ‖u‖Hl ≤
C(T, l0, ε) <∞, from which the Gronwall’s inequality on (5.3) yields

‖∂tn‖2Ha + ‖∂xn‖2Ha + ε2‖∂xxn‖2Ha ≤ C(T ),

which, together with (1.2), controls ‖n‖Hl .
Now take ∂t of the first equation of (1.1), multiply the resulting equation

by −i〈∇〉2b∂tu, integrate by parts, and take its real part to obtain

1

2

d

dt
‖∂tu‖2Hb = Im

∫ (
〈∇〉b∂tu

)(
〈∇〉b(∂tu · n+ u · ∂tn)

)
≤ ‖∂tu‖Hb(‖∂tu · n‖Hb + ‖u · ∂tn‖Hb).

(5.4)
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The first equation of (1.1) is equivalent to

∆u = 〈ε∇〉−2(−i∂tu+ un).

Let b = s− 4. Note that ‖∆u‖Hs−2 controls ‖u‖Hs by (1.2). We claim

‖∂tu · n‖Hb . ‖∂tu‖Hb‖n‖Hl .

If s > 9
2 , then b > 1

2 and ‖∂tu · n‖Hb . ‖∂tu‖Hb‖n‖Hb ≤ ‖∂tu‖Hb‖n‖Hs−4 . On
the other hand, if s < 7

2 , then −b > 1
2 and

‖∂tu · n‖Hb = sup
‖φ‖

H−b=1

|〈∂tu · n, φ〉| ≤ ‖∂tu‖Hb sup
‖φ‖

H−b=1

‖nφ‖H−b

. ‖∂tu‖Hb‖n‖H−b ≤ ‖∂tu‖Hb‖n‖Hl ,

where the last inequality holds since s ≥ 2+ l0
2 . If 7

2 ≤ s ≤
9
2 , then − 1

2 ≤ b ≤
1
2

and by Lemma 8,
‖∂tu · n‖Hb . ‖∂tu‖Hb‖n‖Hl .

Similarly ‖u · ∂tn‖Hb . 1, and hence d
dt‖∂tu‖

2
Hb . (‖∂tu‖2Hb + ‖∂tu‖Hb), from

which the Gronwall’s inequality yields ‖∂tu‖Hs−4 ≤ C(T ). Using similar argu-
ments, we obtain ‖un‖Hb ≤ C(T ), and from

‖∆u‖Hs−2 ≤ ‖〈ε∇〉−2∂tu‖Hs−2 + ‖〈ε∇〉−2(un)‖Hs−2

follows ‖u‖Hs ≤ C(T ). To show the inductive hypothesis, consider the base
case s0 = 2 + l0

2 . Then ‖u‖
H2− l0

2
≤ C by (1.2). Then for all s ∈ [s0, s1], where

s1 = s0 + l0, it follows that ‖u‖Hs−l0 ≤ ‖u‖Hs0 . This process is iterated by an
increment of l0 to cover the entire range of s ≥ 2 + l0

2 . It remains to prove the
l0 = 0 case.

Let s ≥ 2 + ε0
2 , where 0 ≤ ε0 ≤ 1. As before, consider the energy estimate

d

dt

(
‖∂tn‖2Hs−2 + ‖∂xn‖2Hs−2 + ε2‖∂xxn‖2Hs−2

)
. ‖∂tn‖2Hs−2 + ‖u‖2Hs

d

dt
‖∂tu‖2Hs−4 . ‖∂tu‖Hs−4(‖∂tu · n‖Hs−4 + ‖u · ∂tn‖Hs−4), (5.5)

where by a similar argument as before

‖∂tu · n‖Hs−4 . ‖∂tu‖Hs−4‖n‖Hs−ε0 ; ‖u∂tn‖Hs−4 . ‖u‖Hs‖∂tn‖Hs−4 .

Recall

‖∆u‖Hs−2 . ‖∂tu‖Hs−4 + ‖un‖Hs−4 . ‖∂tu‖Hs−4 + ‖u‖Hs−ε0‖n‖Hs−ε0 ,

and hence

d

dt

(
‖∂tn‖2Hs−2 + ‖∂xn‖2Hs−2 + ε2‖∂xxn‖2Hs−2

)
. ‖∂tn‖2Hs−2 + ‖∂tu‖2Hs−4 + ‖u0‖2L2 + (‖u‖Hs−ε0‖n‖Hs−ε0 )2,

d

dt
‖∂tu‖2Hs−4 . ‖∂tu‖2Hs−4‖n‖Hs−ε0

+ ‖∂tu‖Hs−4(‖u0‖L2 + ‖∂tu‖Hs−4 + ‖u‖Hs−ε0‖n‖Hs−ε0 )‖∂tn‖Hs−4 .
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If ε0 = 0, then integrate the first differential inequality of (5.5) to obtain an
exponential growth bound on ‖n‖H2 + ‖∂tn‖L2 , and then apply the Gronwall’s
inequality again to the second differential inequality of (5.5). If s > 2, use
the exponential growth bound for s = 2 for the base case s0 = 2 + ε0

2 . Such
exponential bound is obtained for all s ≥ 2 + ε0

2 by iterating the Gronwall’s
inequality. Since ε0 > 0 is arbitrary, we have an exponential bound on the
Sobolev norms of solutions for all s ≥ 2. ut

To discuss the semi-classical limit to ZS, denote (uε, nε, ∂tn
ε) by the QZS

solution with data (uε0, n
ε
0, n

ε
1) for ε ≥ 0. Given a solution (uε, nε, ∂tn

ε), we

denote Hε by the corresponding energy and Hε
0 by Hε at t = 0. Define Hs,l

0 =
Hs(T)×H l(T)×H l−1(T).

Proposition 4. Let s ≥ 4. If sup
ε
‖(uε0, nε0, nε1)‖Hs,s−1 ≤ R <∞ and

(u00, n
0
0, n

0
1) ∈ Hs,s−1

0 where (uε0, n
ε
0, n

ε
1)

Hs−2,s−3
0−−−−−−→
ε→0

(u00, n
0
0, n

0
1), then

(uε, nε, ∂tn
ε) −−−→

ε→0
(u0, n0, ∂tn

0) in C([0, T ];Hs−2,s−3
0 ).

To show Proposition 4, two key hypotheses need to be verified, after which
the proof proceeds as [8, theorem 1.3] and thus is omitted. First, a uniform
bound on (uε, nε, ∂tn

ε) that depends only on R, T is needed. Second, the
space of data needs to be regularized. In [8], this is done via a particular
convolution kernel on Rd. On a periodic domain, we define a family of mollifiers

as follows: for h > 0, define Ĵhf(k) = η(hk)f̂(k) for all f ∈ L1(T). Then
‖Jhf − f‖Hs −−−→

h→0
0 and for σ > 0

‖Jhf − f‖Hs−σ ≤ C(σ)hσ‖f‖Hs , ‖Jhf‖Hs+σ ≤
C(σ)

hσ
‖f‖Hs .

It suffices to obtain a uniform bound on (uε, nε, ∂tn
ε).

Lemma 9. If (s, l) ∈ ΩG and sup
ε>0
‖(uε0, nε0, nε1)‖Hs,l ≤ R <∞, then

sup
ε>0

sup
t∈[0,∞)

‖(uε, nε, ∂tnε)‖H1,0
0
≤ C(R). If s ≥ 4, then for all 1 ≤ s′ ≤ s− 2 and

T > 0, sup
ε>0
‖(uε, nε, ∂tnε)‖CTHs′,s′−1

0

≤ C(T,R).

Proof. By inspection, |Hε
0| ≤ C(R) uniformly in ε. Since mass is conserved

and

‖∂xuε‖2L2 +
1

2
‖nε‖2L2 +

1

2
‖∂tnε‖H−1 ≤ |Hε

0|+
∣∣∣ ∫ nε|uε|2

∣∣∣
≤ |Hε

0|+
1

4
‖nε‖2L2 +

1

2
‖∂xuε‖2L2 + C ′,

where the last inequality is by the Gagliardo-Nirenberg inequality, and C ′ is
independent of ε, we obtain the first uniform bound. Now assume s ≥ 4, T > 0
and the following inductive hypotheses:

‖uε‖Hs′−2 , ‖nε‖Hs′−2 , ‖nε‖H1 ≤ C(T,R), (5.6)
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uniformly in ε > 0 and t ∈ [0, T ]. Then (1.2) and (5.6) yield ‖uεnε‖Hs′−2 .
C(T,R) since

‖uεnε‖Hs′−2 . ‖uε‖Hs′−2‖nε‖Hs′−2 ≤ C(T,R)

for s′ > 5
2 and

‖uεnε‖Hs′−2 ≤ ‖uεnε‖H1 . ‖uε‖H1‖nε‖H1 ≤ C(T,R)

for s′ ∈ [1, 52 ]. Moreover, since ‖uε‖Ḣs′ ≤ ‖〈ε∇〉2∆uε‖Hs′−2 for all ε ≥ 0,

‖uε‖2
Hs′
.‖uε0‖2L2+‖∂tuε‖2Hs′−2+‖uεnε‖2

Hs′−2 ≤ ‖uε0‖2L2+‖∂tuε‖2Hs′−2+C(T,R),

and hence the differential inequality obtained from the first equation of (1.1)
is

d

dt

(
‖∂tnε‖2Hs′−2 + ‖∂xnε‖2Hs′−2 + ε2‖∂xxnε‖2Hs′−2

)
. ‖∂tnε‖2Hs′−2 + ‖∂tuε‖2Hs′−2 + C(T,R),

(5.7)

where its LHS is well-defined since s′ ≤ s− 2 ≤ l from (s, l) ∈ ΩG.
Similarly we derive another differential inequality as (5.4) with b = s′ − 2.

A similar calculation as before shows

‖∂tuε · nε‖Hs′−2 . ‖∂tuε‖Hs′−2 , ‖uε∂tnε‖Hs′−2 . ‖∂tnε‖Hs′−2 ,

by the inductive hypothesis where the implicit constants are independent of ε,
and hence by the Young’s inequality

d

dt
‖∂tuε‖2Hs′−2 . ‖∂tuε‖2Hs′−2 + ‖∂tnε‖2Hs′−2 . (5.8)

Integrating (5.7) and (5.8),

‖∂tnε‖2Hs′−2 + ‖∂xnε‖2Hs′−2 + ε2‖∂xxnε‖2Hs′−2 + ‖∂tuε‖2Hs′−2 ≤ C(T,R).

Now we show (5.6). By [8, proposition 2.4], we have sup
ε
‖nε‖CTH1

x
≤ C(T,R).

On the other hand, if 1 ≤ s′ ≤ 2, then ‖uε‖Hs′−2 , ‖nε‖Hs′−2 ≤ C, independent
of ε, by Lemma 9. Hence for such s′, Lemma 9 holds and using s′0 = 2 as a
base case, we can extend the uniform bound to all 2 ≤ s′ ≤ 3 from which we
iterate to cover the entire 1 ≤ s′ ≤ s− 2. ut

Remark 3. When T =∞, the continuity of ε→ uε is not expected for all ε ≥ 0.
Let (u0, n0, n1) = (〈N〉−seiNx, 0, 0) for N ∈ R \ {0}. Then, (u, n, ∂tn)(x, t) =

(〈N〉−se−it(N2+ε2N4)+iNx, 0, 0) is the (classical) solution. By direct computa-
tion,

sup
t∈[0,∞)

‖〈N〉−se−it(N
2+ε2N4)+iNx − 〈N〉−se−it(N

2+ε20N
4)+iNx‖Hsx

= sup
t∈[0,∞)

|1− eit(ε
2−ε20)N

4

| = 2.
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6 Conclusions

The QZS with the periodic boundary condition is well-posed for data with
low Sobolev regularity. The smoothing effect of the fourth-order perturbation
nullifies the resonance phenomenon (βα ∈ Z), which played an important role
when ε = 0. The continuity of solution in ε holds for T < ∞ but not for
T =∞.
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Appendix

We show Proposition 3 by providing concrete examples.

Proof. The main idea is to add a fourth-order perturbation to the spacetime
functions constructed in [15]. Once those examples are given, one can directly
substitute the examples to the inequalities in Proposition 3 to derive a set
of necessary conditions on the scaling parameter N � 1. Let δ(k) be the
Kronecker delta function defined on Z and let φ(τ) be a smooth bump function
on R with a compact support. It suffices to consider ui, 1 ≤ i ≤ 8, ni, 1 ≤ i ≤ 4,
and vi, 5 ≤ i ≤ 8, where

û1(k, τ) = δ(k +N)φ(τ + αN2 + ε2N4),

n̂1(k, τ) = δ(k − 2N)φ(|τ | − 2βN〈2εN〉),
û2(k, τ) = δ(k +N)φ(τ + αN2 + ε2N4 + 2βN〈2εN〉),
n̂2(k, τ) = δ(k − 2N)φ(|τ | − 2βN〈2εN〉),
û3(k, τ) = δ(k)φ(τ), n̂3(k, τ) = δ(k −N)φ(|τ | − βN〈εN〉),
û4(k, τ) = δ(k)φ(τ + αN2 + ε2N4 + βN〈εN〉),
n̂4(k, τ) = δ(k −N)φ(|τ | − βN〈εN〉),
û5(k, τ) = δ(k −N)φ(τ + αN2 + ε2N4),

v̂5(k, τ) = δ(k +N)φ(τ + αN2 + ε2N4),

û6(k, τ) = δ(k −N)φ(τ + αN2 + ε2N4 − 2βN〈2εN〉),
v̂6(k, τ) = δ(k +N)φ(τ + αN2 + ε2N4),

û7(k, τ) = δ(k)φ(τ), v̂7(k, τ) = δ(k −N)φ(τ + αN2 + ε2N4),

û8(k, τ) = δ(k)φ(τ + αN2 + ε2N4 + βN〈εN〉),
v̂8(k, τ) = δ(k −N)φ(τ + αN2 + ε2N4).

ut
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