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Abstract. This paper proposes virtual element methods for approximating the
mathematical model consisting of coupled poroelastic and Advection-Diffusion-Reac-
tion (ADR) equations. The space discretization relies on virtual element spaces con-
taining piecewise linear polynomials as well as non-polynomials for displacement,
pressure and concentrations, and piecewise constant for total pressure; a backward-
Euler scheme is employed for the approximation of time derivative. Using standard
techniques of explicit schemes, the well-posedness of the resultant fully discrete scheme
is derived. Moreover, under certain regularity assumptions on the mesh, optimal a-
priori error estimates are established by introducing suitable projection operators.
Several numerical experiments are presented to validate the theoretical convergence
rate and exhibit the proposed scheme’s performance.
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1 Introduction

Considering the computational efficiency of polygonal meshes, in the last decade,
there have been many developments in virtual element methods (VEMs)–
numerical techniques evolved from mimetic finite difference methods, see [1, 5]
and references therein. Contrary to finite element methods, in VEM, the mass
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and stiffness matrices are computed (with the help of degrees of freedom) with-
out explicit knowledge of the basis functions. This is desirable while dealing
with polygonal meshes and demanding more accurate solutions, i.e., higher-
order approximations. Virtual element spaces involved in the discrete formula-
tions contain the polynomial functions and non-polynomial functions (solution
of suitable PDEs). However, neither the implementation nor the theory de-
mands the expression of these unknown non-polynomial functions. The pres-
ence of the polynomial functions in the virtual element spaces would help in
demonstrating the convergence rates of the proposed VEM. We remark that
convergence analysis of VEM can be carried out similarly as in finite element
methods by introducing certain projection operators onto the space of polyno-
mial functions. Recently, VEM has been also developed in [12,14,24,25,26] for
the Biot’s equation and for nonlinear problems in [9, 13].

In this paper, we propose a virtual element method for a three-field formu-
lation of the time-dependent poromechanics equations coupled with advection-
diffusion-reaction equations for two species. We base the development of cur-
rent work as the formulation proposed in [20] and [22] for the stationary Biot
system and extend the discrete analysis to include the quasi-steady case, and
the development in time-dependent problems [9, 27]. Several other works on
the Biot’s equation with various numerical techniques such as finite element
method, hybrid high order method, discontinuous Galerkin method are seen
in [10,11,19,23,30] and references within.

Governing equations: Coupled poroelastic and a system of advection-
diffusion-reaction equations

Let us consider the model describing the fluid flow of two chemical species
in poroelastic media on a domain Ω ⊂ R2. The coupled problem is stated
as follows [15, 28]: For given body load b and a mass source ℓ, one seeks for
each time t ∈ (0, tfinal], the displacements of the porous skeleton us, the pore
pressure of the fluid pf , the volumetric part of the total stress, or total pressure
ψ, concentration of first species w1 and concentration of second species w2 such
that

−div(2µε(us)− ψI) = ρb+ divσact in Ω × (0, tfinal],(
c0 +

α2

λ

)
∂tp

f − α

λ
∂tψ − 1

η
div(κ∇pf ) = ℓ in Ω × (0, tfinal],

ψ − αpf + λ divus = 0 in Ω × (0, tfinal],

∂tw1 + us · ∇w1 − div(D1(x)∇w1) = f(w1, w2,u
s) in Ω × (0, tfinal],

∂tw2 + us · ∇w2 − div(D2(x)∇w2) = g(w1, w2,u
s) in Ω × (0, tfinal],

(1.1)

here κ(x) is the hydraulic conductivity of the porous medium (possibly ani-
sotropic), ρ is the density of the solid material, η is the constant viscosity of
the interstitial fluid, c0 is the constrained specific storage coefficient, α is the
Biot-Willis consolidation parameter, and µ, λ are the shear and dilation moduli
associated with the constitutive law of the solid structure, D1, D2 are positive
definite diffusion matrices. Nevertheless, for sake of fixing ideas and to specify
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the coupling effects also through a stability analysis, that is conducted in [15],
they chose the coupling terms f and g as

f(w1, w2,u
s) = β1(β2 − w1 + w2

1w2) + γ w1 divus,

g(w1, w2,u
s) = β1(β3 − w2

1w2) + γ w2 divus,

where β1, β2, β3, γ are positive model constants. The active component of total
Cauchy stress, or active stress is given as σact = −τ r(w1, w2)k⊗k, that is, σact

operates primarily on a given constant direction k, and its intensity depends
on a scalar field r(w1, w2) and on a positive constant τ .

We endow the problem (1.1) with appropriate initial data

us(0) = us0, p
f (0) = pf0 , ψ(0) = ψ0, wi(0) = wi,0, in Ω × {0}, (1.2)

for i = 1, 2 and boundary conditions in the following manner

us = 0 and
κ

η
∇pf · n = 0 on Γ × (0, tfinal],

D1(x)∇w1 · n = 0 and D2(x)∇w2 · n = 0 on Γ × (0, tfinal],

[2µε(us)− ψ I+ σact]n = 0 and pf = 0 on Σ × (0, tfinal],

w1 = 0 and w2 = 0 on Σ × (0, tfinal],

where the boundary ∂Ω = Γ ∪ Σ is disjointly split into Γ and Σ where we
prescribe clamped boundaries and zero fluid normal fluxes; and zero (total)
traction together with constant fluid pressure, respectively. Moreover, zero
concentrations normal fluxes are prescribed on ∂Ω. We point out that, if we
would like to start with a model in terms of the divergence (div(wiu

s) instead
of us · ∇wi in (1.1), i ∈ {1, 2}), we need to assume zero total flux (including
the advective term, see, e.g., [2]). Homogeneity of the boundary conditions is
only assumed to simplify the exposition of the subsequent analysis.

This paper is structured as follows. In Section 2, we propose the weak for-
mulation by introducing suitable Sobolev spaces. The fully discretized scheme
is presented and proved that the scheme is well-posed in Section 3. We estab-
lished a-priori error estimates in Section 4 with the help of Stokes and elliptic
projection operators. In Section 5, we implement the numerical examples to
verify the convergence results. Finally, we conclude the work by providing the
future directions in Section 6.

2 Weak formulation

We will use the following notations for the Sobolev spaces in this article.

V := [H1
Γ (Ω)]2, Q := H1

Σ(Ω), Z := L2(Ω) and W := H1
Γ (Ω).

Let us multiply (1.1) by adequate test functions and integrate by parts (in
space) whenever appropriate. Incorporating the boundary conditions (1.3),
the variational problem formulated as: For a given t > 0 and initial conditions
(1.2), find us ∈ V, pf ∈ Q,ψ ∈ Z, w1, w2 ∈W such that

a1(u
s,vs) + b1(v

s, ψ) = Fb,r(w1, w2;v
s) ∀vs ∈ V, (2.1)
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ã2(∂tp
f , qf ) + a2(p

f , qf )− b2(q
f , ∂tψ) = Gℓ(q

f ) ∀qf ∈ Q,

b1(u
s, ϕ) + b2(p

f , ϕ)− a3(ψ, ϕ) = 0 ∀ϕ ∈ Z,

m(∂tw1, s) + a4(w1, s) + c(us;w1, s) = Jf (w1, w2,u
s; s) ∀s ∈W, (2.2)

m(∂tw2, s) + a5(w2, s) + c(us;w2, s) = Jg(w1, w2,u
s; s) ∀s ∈W, (2.3)

where the formulation with the bilinear forms a1 : V×V → R, a2 : Q×Q→ R,
a3 : Z × Z → R, a4, a5 : W ×W → R, b1 : V × Q → R, b2 : Q × Z → R, the
trilinear form c : V ×W ×W → R, and linear functionals Fb,r : V → R (for r
known), Gℓ : Q→ R, Jf , Jg : W → R (for known f and known g), are defined
as

a1(u
s,vs) := µ

∫
Ω

ε(us) : ε(vs), b1(v
s, ϕ) := −

∫
Ω

ϕ div vs,

ã2(p
f , qf ) :=

(
c0 +

α2

λ

)∫
Ω

pfqf , a2(p
f , qf ) :=

1

η

∫
Ω

κ(x)∇pf · ∇qf ,

b2(p
f , ϕ) :=

α

λ

∫
Ω

pfϕ, a3(ψ, ϕ) :=
1

λ

∫
Ω

ψϕ,

m(wi, s) :=

∫
Ω

wi s, a3+i(wi, s) :=

∫
Ω

Di(x)∇wi · ∇s, for i = 1, 2,

c(us;w, s) :=

∫
Ω

(us · ∇w)s, Fb,r(w1, w2;v
s) := Fb(v

s) + Fr(w1, w2;v
s)

where

Fb(v
s) := ρ

∫
Ω

b · vs, Fr(w1, w2;v
s) := τ

∫
Ω

r(w1, w2)k ⊗ k : ε(vs),

Gℓ(q
f ) :=

∫
Ω

ℓ qf , Jz(w1, w2,u
s; s) :=

∫
Ω

z(w1, w2,u
s) s, z = f, g.

Remark 1. Throughout this paper, z stands for the coupling terms f and g .

We will consider that the initial data (1.2) are non-negative and regular enough.
Moreover, throughout the text we will assume that the anisotropic permeabil-
ity κ(x) and the diffusion matrices D1(x), D2(x) are uniformly bounded and
positive definite in Ω. The latter means that, there exist positive constants
κ1, κ2, and D

a
i , D

b
i , i ∈ {1, 2}, such that ∀w ∈ Rd, d = 1, 2, ∀x ∈ Ω,

κ1|w|2 ≤ wtκ(x)w ≤ κ2|w|2 and Da
i |w|2 ≤ wtDi(x)w ≤ Db

i |w|2.

Also, for a fixed us, the reaction kinetics f(w1, w2, ·), g(w1, w2, ·) satisfy the
growth conditions, that is,

|z(w1, w2, ·)− z(w̃1, w̃2, ·)| ≤ C(|w1 − w̃1|+ |w2 − w̃2|)
|z(w1, w2, ·)| ≤ C(1 + |w1|+ |w2|),

for given w1, w2 ∈ R, the scalar field r(w1, w2) and reaction kinetics f(·, ·,us),
g(·, ·,us) such that

|r(w1, w2)− r(w̃1, w̃2)| ≤ C(|w1 − w̃1|+ |w2 − w̃2|),
|r(w1, w2)| ≤ |w1|+ |w2|, |z(·, ·,us)− z(·, ·, ũs)| ≤ C|divus − div ũs|,
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for fixed w1, w2.
In addition, the terms in (2.1) fulfill the continuity bounds, coercivity and

positivity bounds, and Ck,1 and Ck,2 are the positive constants satisfying

Ck,1∥vs∥21,Ω ≤ ∥ε(vs)∥20,Ω ≤ Ck,2∥vs∥21,Ω

and cp is the Poincaré constant. Moreover, the bilinear form b1 satisfies the
inf-sup condition (see, e.g., [17]).

3 Discrete formulations and wellposedness

In this section, by following virtual element methods for space and Euler back-
ward scheme for time discretizations, we present a fully discrete scheme corre-
sponding to (2.1). We also address the stability, existence and uniqueness of
solution for the discrete problem.

3.1 Virtual element discretizations

Let the domain Ω be discretised into the family of the polygonal meshes Th with
mesh size h and elementsK, vertices on each elementK as Vi, 1 ≤ i ≤ Nv

K with
Nv
K number of vertices in K, and any edge in the polygonal mesh is denoted

by e. For any natural number k, let Pk(S) and Mk(S) represent the space of
polynomials and monomials, or scaled polynomials of degree less than or equal
to k for any S ⊂ R2. We will write a ≲ b for the expressions a ≤ Cb, where C
is a generic constant independent of parameters h and ∆t.

We also suppose that the polygonal mesh satisfy the assumptions (refer
[5, 8]).

Before proceeding to define the virtual element spaces, we will take few
notations as, for any smooth enough u, v,

(u, v)∇,K := (∇u,∇v)0,K , (u, v)ε,K := (ε(u), ε(v))0,K .

The standard energy projection Π∇
K : H1(K) → P1(K) is defined as

(Π∇
Kq − q, p1)∇,K = 0 ∀p1 ∈ P1(K).

Note that the above definition on the H1 scalar product is defined up to a
constant, and in order to determine the constant, we define another projection
P 0
K as follows

P 0
K(Π∇

Kq − q) = 0, where P 0
Kq :=

1

Nv
K

Nv
K∑

i=1

q(Vi).

The vectorial energy projection from the vector space [H1(K)]2 to [P1(K)]2

is denoted as Π∇
K . A variant of the vectorial projection Π∇

K and supported by
the bilinear form aK1 (·, ·), we define a projection Πε

K as,

(Πε
Kv − v,p1)ε,K = 0 ∀p1 ∈ [P1(K)]2, v ∈ [H1(K)]2
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and the function p1 ∈ ker(aK1 (·, ·)) are again taken from

P0
K(Πε

Kv − v,p1) :=
1

Nv
K

Nv
K∑

i=1

(Πε
Kv − v)(Vi) · p1(Vi) = 0.

The classical L2-projection operator Π0
K : L2(K) → P1(K) is expressed as

(Π0
Kv − v, p1)0,K = 0 ∀v ∈ L2(K), p1 ∈ P1(K).

Similar to the energy projections, the projections Π0,0
K : [L2(K)]2 → [P0(K)]2

and Π0
K : [L2(K)]2 → [P1(K)]2 are identified as the vectorial L2 projection

onto constants and linear polynomials, respectively. We stress that these op-
erators not only help us in deriving the optimal error estimates but are also
useful in the computation of discrete bilinear forms (to be defined later).

Then the local VE spaces are introduced as follows [1, 4]:

Vh(K):=

{
vs ∈ Bv(∂K) :

{
−∆vs+∇s=0 in K, for some s ∈ L2(K),

div vs ∈ P0(K)

}
,

Qh(K):=

{
qf ∈ Bq(∂K) :

{
−∆qf = 0 in K,

(qf −Π∇
Kq

f ,mα)0,K = 0 ∀mα ∈ M1(K)

}
,

Zh(K) := P0(K),

where the boundary space is given by

Bv(∂K):=

{
vs ∈ [C0(∂K) ∩H1(K)]2 :

{
(vs · teK)|e ∈ P1(e),

(vs · neK)|e ∈ P2(e)
∀e ∈ ∂K

}
,

Bq(∂K) := {qf ∈ C0(∂K) ∩H1(K) : qf |e ∈ P1(e) ∀e ∈ ∂K}.

The approximation space for displacement is Vh, for total pressure, Zh, and
for pressure and concentration is Qh(K). We have the following degrees of
freedom depending on the corresponding spaces (refer [1, 4, 29] for details on
unisolvance) as, for displacement: the values at all vertices of the element K,
and value of vs · neK at mid point on each edge e ∈ ∂K; for total volumetric
stress: value of ψ at any point in K; and for pressure, or concentration: the
values of qf at vertices of the element K.

Then any global spaceXh corresponding to spaceX (choices areX=V, Q,W )
is given as

Xh := {v ∈ X : v|K ∈ Xh(K) ∀K ∈ Th}.

Note from above that the local discrete spaces and its degrees of freedom
for pressure and concentration are the same, and thus have the same local
projection operators on each element K ∈ Th.

We define the local discrete bilinear forms by considering the computability,
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consistency and stability, as:

ah,K1 (ush,v
s
h) := aK1 (Πε

Kush,Π
ε
Kvsh) + 2µ Sε,K((I −Πε

K)ush, (I −Πε
K)vsh),

bK1 (vsh, ϕh) = (div vsh, ϕh)0,K , bK2 (qfh , ϕh) := αλ−1(Π0
Kq

f
h , ϕh)0,K ,

ãh,K2 (pfh, q
f
h) := ãK2 (Π0

Kp
f
h, Π

0
Kq

f
h)+

(
c0+

α2

λ

)
S0,K((I−Π0

K)pfh, (I−Π
0
K)qfh),

ah,K2 (pfh, q
f
h) := aK2 (Π∇

Kp
f
h, Π

∇
Kq

f
h) + κ̄ η−1 S∇,K((I −Π∇

K )pfh, (I −Π∇
K )qfh),

aK3 (ψh, ϕh) := (ψh, ϕh)0,K , ch,K(vsh;wh, sh)

:=
(
(Π0

Kvsh) · (Π
0,0
K ∇wh), Π0

Ksh

)
0,K

,

ah,Ki (wh, sh) := aKi (Π∇
Kwh, Π

∇
Ksh)

+ D̄i−3 S∇,K((I −Π∇
K )wh, (I −Π∇

K )sh), i = 4, 5,

mh,K(wh, sh) := mK(Π0
Kwh, Π

0
Ksh) + S0,K((I −Π0

K)wh, (I −Π0
K)sh),

where κ̄ and D̄i’s denoting the average values of the respective parameters, and
the stabilization terms on each K, with Ndof denoting the dimension of the
associated space to the variables (for instance, we have Ndof as dimension of
Qh(K) for the variable ph, qh), as

S∇,K(wh, sh) :=

Ndof∑
r=1

dofr(wh) dofr(sh) with Π
∇
Kwh, Π

∇
Ksh = 0,

S0,K(wh, sh) := area(K)

Ndof∑
r=1

dofr(wh) dofr(sh) with Π
0
Kwh, Π

0
Ksh = 0,

Sε,K(ush,v
s
h) :=

Ndof∑
r=1

dofr(u
s
h) dofr(v

s
h) with Π

ε
Kush, Π

ε
Kvsh = 0.

Then the global discrete bilinear forms and discrete functional are defined nat-
urally for any discrete form ah(·, ·) : Xh ×Xh → R as

ah(uh, vh) :=
∑
K∈Th

ah,K(uh, vh) ∀uh, vh ∈ Xh.

The discrete functionals are defined in terms of L2 projections as

Ghl (qh)|K := ⟨ℓh, qh⟩0,K , Fhb,r(w1,h, w2,h;v
s
h) := Fhb (v

s
h)+F

h
r (w1,h, w2,h;v

s
h),

Fhb (v
s
h)|K := ρ ⟨bh,vsh⟩0,K ,

Fhr (w1,h, w2,h;v
s
h)|K := τ ⟨rh(w1,h, w2,h)(k ⊗ k), ε(vsh)⟩0,K ,

Jhz (w1,h, w2,h,u
s
h; sh)|K := ⟨zh (w1,h, w2,h,u

s
h) , sh⟩0,K ,

where

bh|K := Π0,0
K b, rh(w1,h, w2,h)|K := Π0,0

K r
(
Π0
Kw1,h, Π

0
Kw2,h

)
,

ℓh|K := Π0
Kℓ, zh(w1,h, w2,h,u

s
h)|K := Π0

Kz
(
Π0
Kw1,h, Π

0
Kw2,h,u

s
h

)
.
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The stabilization terms satisfies the stability condition with respect to the
norm associated with the respective bilinear forms, that is, for vsh ∈ Vh(K),
sh ∈Wh(K), or Qh(K), we have

c∗|sh|21,K ≤ S∇,K(sh, sh) ≤ c∗|sh|21,K ,

c̃∗ ∥sh∥20,K ≤ S0,K(sh, sh) ≤ c̃∗ ∥sh∥20,K ,

ĉ∗ ∥ε(vsh)∥
2
0,K ≤ Sε,K(vsh, v

s
h) ≤ ĉ∗ ∥ε(vsh)∥

2
0,K ,

where c∗, c
∗, c̃∗, c̃

∗, ĉ∗, ĉ
∗ are constants independent of hK . With the help of

the stability of the projection operators and stabilizations terms, we obtain the
following lemma ( for details, see [6, 9, 12] and references within).

Lemma 1. For all ush,v
s
h ∈ Vh, p

f
h, q

f
h ∈ Qh, wh, sh ∈ Wh, we have, for

i = 1, 2,

ah1 (u
s
h,v

s
h) ≤ 2µα̂∗ ∥ε(ush)∥0,Ω ∥ε(vsh)∥0,Ω ,

ãh2 (p
f
h, q

f
h) ≤ α̃∗ (c0 + α2

λ

) ∥∥∥pfh∥∥∥
0,Ω

∥∥∥qfh∥∥∥
0,Ω

,

ah2 (p
f
h, q

f
h) ≤ α∗ κ2η

−1
∥∥∥∇pfh∥∥∥

0,Ω

∥∥∥∇qfh∥∥∥
0,Ω

,

ah3+i(wh, sh) ≤ α∗Db
i ∥∇wh∥0,Ω ∥∇sh∥0,Ω ,

Fhb,r(w1,h, w2,h;v
s
h) ≲ (ρ ∥b∥0,Ω ∥vsh∥0,Ω + τ

√
Ck,2 ∥rh∥0,Ω ∥ε(vsh)∥0,Ω),

mh(wh, sh) ≤ ∥wh∥0,Ω ∥sh∥0,Ω , Ghℓ (q
f
h) ≤ ∥ℓ∥0,Ω

∥∥∥qfh∥∥∥
0,Ω

,

ch(vsh;wh, sh) ≲ |vsh|1,Ω ∥wh∥1,Ω ∥sh∥1,Ω ,

Jhz (w1,h, w2,h,u
s
h; sh) ≤ ∥zh∥0,Ω ∥sh∥0,Ω . (3.1)

Moreover, the coercivity properties can be obtained through similar argu-
ments, which implies that for all vsh ∈ Vh, q

f
h ∈ Qh, sh ∈Wh,

ah1 (v
s
h,v

s
h) ≥ 2µα̂∗ ∥ε(vsh)∥

2
0,Ω , ah2 (q

f
h , q

f
h) ≥ α∗ κ1 η

−1
∥∥∇qfh∥∥20,Ω ,

mh(sh, sh) ≥ α̃∗ ∥sh∥20,Ω , ah3+i(sh, sh) ≥ α∗D
a
i ∥∇sh∥

2
0,Ω ∀i = 1, 2.

Also, the discrete inf-sup condition hold on (Vh, Zh) (refer [7, 8, 29]).
By introducing the adequate discrete spaces associated with velocity, pres-

sure, total volumetric stress, and concentrations, the fully discrete formulation
is described in the next subsection.

3.2 Fully discrete scheme

Let us discretise the time interval (0, tfinal] into N equispaced points and time
step ∆t with denoting nth time step as tn = n∆t and n = 1, . . . , N , and use the
following general notation for the first order backward difference ∆t δtX

n :=
Xn−Xn−1. In this way, we can write a discrete form of (2.1): From the given

initial data us,0h , pf,0h , ψ0
h, w

0
1,h, w

0
2,h (which will be projections of the continuous
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initial conditions of each field) and starting with n = 1, we first solve for

us,nh ∈ Vh, p
f,n
h ∈ Qh, ψ

n
h ∈ Zh such that, for all vsh ∈ Vh, q

f
h ∈ Qh, ϕh ∈ Zh,

ah1 (u
s,n
h ,vsh) + b1(v

s
h, ψ

n
h) = Fh,nb,r (w

n−1
1,h , wn−1

2,h ;vsh), (3.2a)

ãh2 (δtp
f,n
h , qfh) + ah2 (p

f,n
h , qfh)− b2(q

f
h , δtψ

n
h) = Gh,nℓ (qfh), (3.2b)

b1(u
s,n
h , ϕh) + b2(p

f,n
h , ϕh)− a3(ψ

n
h , ϕh) = 0. (3.2c)

Then we seek the concentrations wn1,h, w
n
2,h ∈Wh for given displacement us,nh ∈

Vh (solution of (3.2)) and known initial data w0
1,h, w

0
2,h such that ∀sh ∈Wh,

mh(δtw
n
1,h, sh)+a

h
4 (w

n
1,h, sh)+c

h(us,nh ;wn1,h, sh) = Jh,nf (wn−1
1,h , wn−1

2,h ,us,nh ; sh),

(3.3a)

mh(δtw
n
2,h, sh)+a

h
5 (w

n
2,h, sh)+c

h(us,nh ;wn2,h, sh) = Jh,ng (wn−1
1,h , wn−1

2,h ,us,nh ; sh).

(3.3b)

The above process of solving the problem continues iteratively for n = 2, . . . , N .
We note that the above systems of equations are linear for each n since we

have considered the explicit scheme in time discretization.

Existence and Uniqueness

We will show the well-posedness of the discrete scheme through stability and
then uniqueness of the linear system of equations. We start it by introducing
the discrete-in-time l2− norm as follows,

∥X∥2l2(V ) := ∥X∥2l2(0,tn;V ) = ∆t

n∑
j=0

∥Xj∥2V .

Now, we collect the following important results for the further analysis:∫
Ω

XnδtX
n =

1

2
δt∥Xn∥20,Ω +

1

2
∆t∥δtXn∥20,Ω , (3.4)∫

Ω

(vs · ∇w)w dx =
1

2

∫
Ω

vs · ∇w2 dx = −1

2

∫
Ω

div (vs)w2 dx,

for vs ∈ V and w ∈W .
The next lemma is referred from our previous work [12] and it is needed for

the analysis.

Lemma 2. We have the following bound, for all qf,nh ∈ Qh and ϕnh ∈ Zh at
each n = 1, . . . , N

(∆t)

n∑
j=1

Ljh ≥1

2

∑
K∈Th

n∑
j=1

δt

(
1

λ

∥∥∥αΠ0
Kq

f,j
h − ϕjh

∥∥∥2
0,K

+ c0

∥∥∥Π0
Kq

f,j
h

∥∥∥2
0,K

+ α̃∗

(
c0 +

α2

λ

)∥∥∥(I −Π0
K)qf,jh

∥∥∥2
0,K

)
,

where

Lnh := ãh2 (δtq
f,n
h , qf,nh )− b2(q

f,n
h , δtϕ

n
h)− b2(δtq

f,n
h , qf,nh ) + a3(δtϕ

n
h, ϕ

n
h).
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Next, we recall a well known lemma utilized to handle analysis of the non-
linear and time dependent problems. Also, the proof of the following lemma
can be consulted from [18, Lemma 5.1].

Lemma 3 [Generalised Discrete Gronwall lemma]. Let k, B, and aj , bj,
cj , γj for integer j ≥ 0 be non-negative numbers such that, for n > 0, we have

an + k

n∑
j=0

bj ≤ k

n∑
j=0

γjaj + k

n∑
j=0

cj +B.

If kγj < 1, then

an + k

n∑
j=0

bj ≤ exp

(
k

n∑
j=0

(1− kγj)
−1γj

){
k

n∑
j=0

cj +B

}
. (3.5)

Theorem 1 [Existence and Uniqueness]. For each n = 1, . . . , N , the fully-
discrete formulation (3.2)–(3.3) of the coupled problem (1.1) has a unique so-

lution (us,nh , pf,nh , ψnh , w
n
1,h, w

n
2,h) ∈ Vh ×Qh × Zh ×Wh ×Wh.

Proof. The linear problem (3.2) in the form of an uncoupled fully discrete
scheme for poroelasticity problem is well-posed for a given data and can be
referred from [12]. We will ensure the existence of a unique solution of linear
uncoupled ADR equation (3.3) by virtue of the Lax-Milgram lemma. In order
to proceed, we define the bilinear forms for each i = 1, 2 and given us,nh as
solution of the problem (3.2a)–(3.2c) as,

Chi (wni,h, sh) := mh(wni,h, sh) +∆t
(
ah3+i(w

n
i,h, sh) + ch(us,nh ;wni,h, sh)

)
.

We can rewrite the uncoupled ADR problem (3.3a)–(3.3b) for all sh ∈ Wh

as

mh(wni,h, sh) +∆t
(
ah3+i(w

n
i,h, sh) + ch(us,nh ;wni,h, sh)

)
= ∆t Jh,nz (wn−1

1,h , wn−1
2,h ,us,nh ; sh) +mh(wn−1

i,h , sh),

and i = 1, 2. The continuity of right hand side obtained using the bounds of
the linear functionals mh(wn−1

1,h , ·) and Jh,nz (wn−1
1,h , wn−1

2,h ,us,nh ; ·). Now, we will

prove the coercivity of bilinear form Chi (·, ·). For all sh ∈ Wh, the usage of
Inverse inequality for polynomials leads to

cKh (us,nh ; sh, sh) ≤ C ∥us,nh ∥∞,K
∥∇sh∥0,K ∥sh∥0,K .

Now, for any sh ∈ Wh, the use of above bound for cKh (us,nh ; ·, ·), coercivity of
bilinear forms mh(·, ·) and ah3+i(·, ·), and Young’s inequality, we get

Chi (sh, sh) = mh(sh, sh) +∆t
(
ah3+i(sh, sh) + ch(us,nh ; sh, sh)

)
≥

(
α̃∗ −

C∆t

2α∗Da
i

∥us,nh ∥2∞,Ω

)
∥sh∥20,Ω +

α∗

2
Da
i∆t ∥∇sh∥

2
0,Ω .
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Choosing ∆t > 0 small enough and require Da
i so that α̃∗ ≥

C∥us,n
h ∥2

∞,Ω

2α∗Da
i

∆t,

we achieve the coercivity of Chi (·, ·). Also, the continuity of the bilinear form is
followed from the boundedness of the discrete bilinear forms (3.1). Thus, the
Lax-Milgram lemma deduces the existence of a unique solution. ⊓⊔

Theorem 2 [Stability of the fully discrete scheme]. Assume that the so-

lution (us,nh , pf,nh , ψnh , w
n
1,h, w

n
2,h) ∈ Vh ×Qh × Zh ×Wh ×Wh of fully discrete

scheme (3.2)–(3.3) satisfies, for constant C > 0 (independent of h and ∆t),

∥ε(us,nh )∥2
0,Ω

+
∥∥∥pfh∥∥∥2

l2(H1(Ω))
+ ∥ψnh∥

2
0,Ω +

2∑
i=1

( ∥∥wni,h∥∥20,Ω +Da
i ∥wi,h∥

2
l2(H1(Ω))

)
≤ C

(∥∥∥ε(us,0h )
∥∥∥2
0,Ω

+
∥∥∥pf,0h ∥∥∥2

0,Ω
+
∥∥ψ0

h

∥∥2
0,Ω

+

2∑
i=1

∥∥w0
i,h

∥∥2
0,Ω

+ ∥ℓ∥2l2(L2(Ω))

+

n∑
j=1

(
1 +

∥∥bj∥∥2
0,Ω

))
.

Proof. Taking vs,nh = δtu
s,n
h in (3.2a), qfh = pf,nh in (3.2b), and for time step

n and n−1 in Equation (3.2c) with ϕh = ψnh , and adding these equations gives

ah1 (u
s,n
h , δtu

s,n
h ) + ah2 (p

f,n
h , pf,nh ) + ãh2 (δtp

f,n
h , pf,nh )− b2(p

f,n
h , δtψ

n
h)

− b2(δtp
f,n
h , ψnh) + a3(δtψ

n
h , ψ

n
h) = Fh,nb,r (w

n−1
1,h , wn−1

2,h ; δtu
s,n
h ) +Gh,nℓ (pf,nh ).

Summing over n, and a use of (3.4) and bound of Lnh from Lemma (2), we get

µ

2
∥ε(us,nh )∥2

0,Ω
+ µ

∆t2

2

n∑
j=1

∥∥∥δtε(us,jh )
∥∥∥2
0,Ω

+
κ1
η
∆t

n∑
j=1

∥∥∥∇pf,jh ∥∥∥2
0,Ω

+
1

2

∑
K∈Th

(
1

λ

∥∥∥αΠ0
Kp

f,n
h − ψnh

∥∥∥2
0,K

+ c0

∥∥∥Π0
Kp

f,n
h

∥∥∥2
0,K

+ α̃∗

(
c0 +

α2

λ

)(∥∥∥(I −Π0
K)pf,nh

∥∥∥2
0,K

))
≤ N .

Here, the term N is defined as,

N :=
1

2

∑
K∈Th

(
1

λ

∥∥∥αΠ0
Kp

f,0
h − ψ0

h

∥∥∥2
0,K

+ c0

∥∥∥Π0
Kp

f,0
h

∥∥∥2
0,K

+ α̃∗

(
c0 +

α2

λ

)∥∥∥(I −Π0
K)pf,0h

∥∥∥2
0,K

)
+
µ

2

∥∥∥ε(us,0h )
∥∥∥2
0,Ω

+ C∆t

n∑
j=1

(
Fh,jb,r (w

j−1
1,h , w

j−1
2,h ; δtu

s,j
h ) +Gh,jℓ (pf,jh )

)
.
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Use of Young’s inequality gives

N ≤µ
2

∥∥∥ε(us,0h )
∥∥∥2
0,Ω

+
κ1
2η
∆t

n∑
j=1

∥∥∇pf,j∥∥2
0,Ω

+
c0
2

∑
K∈Th

∥∥∥Π0
Kp

f,0
h

∥∥∥2
0,K

+
1

2

∑
K∈Th

(
1

λ

∥∥∥αΠ0
Kp

f,0
h − ψ0

h

∥∥∥2
0,K

+ α̃∗

(
c0 +

α2

λ

)∥∥∥(I −Π0
K)pf,0h

∥∥∥2
0,K

)

+ C

n∑
j=1

(∥∥bj∥∥2
0,Ω

+∆t
∥∥ℓj∥∥2

0,Ω
+
∥∥∥wj−1

1,h

∥∥∥2
0,Ω

+
∥∥∥wj−1

2,h

∥∥∥2
0,Ω

)
.

Using inf-sup condition and Equation (3.2a), we obtain

β̃ ∥ψnh∥0,Ω ≲
(
∥bn∥0,Ω +

∥∥∥wn−1
1,h

∥∥∥
0,Ω

+
∥∥∥wn−1

2,h

∥∥∥
0,Ω

+ µ ∥ε(us,nh )∥
0,Ω

)
.

For given us,nh as solution of the problem (3.2a)–(3.2c), and taking sh = wn1,h
in (3.3a) then the use of Young’s inequality with appropriate choice of ϵ and
the bound of trilinear form ch(·; ·, ·) implies

∆t

2
δt
∥∥wn1,h∥∥20,Ω+∆tDa

1

∥∥∇wn1,h∥∥20,Ω ≲mh(wn1,h−wn−1
1,h , wn1,h)+∆ta

h
4 (w

n
1,h, w

n
1,h)

≤ C∆t(1 +
∥∥∥wn−1

1,h

∥∥∥2
0,Ω

+
∥∥∥wn−1

2,h

∥∥∥2
0,Ω

) +∆t(ϵ+ C1 ∥us,nh ∥
1,∞,Ω

)
∥∥wn1,h∥∥20,Ω .

Summing over n gives

∥∥wn1,h∥∥20,Ω+∆tDa
1

n∑
j=1

∥∥∥∇wj1,h∥∥∥2
0,Ω

≤
∥∥w0

1,h

∥∥2
0,Ω

+C
(
1+∆t

n∑
j=1

2∑
i=1

∥∥∥wj−1
i,h

∥∥∥2
0,Ω

)
+∆t

n∑
j=1

(ϵ+ C1

∥∥∥us,jh ∥∥∥
1,∞,Ω

)
∥∥∥wj1,h∥∥∥2

0,Ω
.

Again use of these arguments for Equation (3.3b) with sh = wn2,h. Then adding

the resultant bounds and assuming M := max
1≤j≤n

∥∥∥us,jh ∥∥∥
1,∞,Ω

<∞, then choos-

ing ϵ,∆t so that, we have ∆t(ϵ + C1M) < 1. Thus, the use of Lemma 3
completes the stability of the discrete solution. ⊓⊔

4 Error analysis

We will assume the following regularity assumptions to generate the conver-
gence results: For all t > 0, the displacement of porous medium us(t) ∈
[H2(Ω)]2, the fluid pressure pf (t) ∈ H2(Ω), the total pressure ψ(t) ∈ H1(Ω)
and concentrations w1, w2 ∈ H2(Ω). We will assume the regularity in time
as, ∂tu

s ∈ L2(0, T ; [H2(Ω)]2); ∂tp
f and ∂tψ ∈ L2(0, T ;H1(Ω)), ∂tw1 and ∂tw2

in l2(0, T ;L2(Ω)); ∂ttu
s ∈ L2(0, T ; [L2(Ω)]2); ∂ttp

f , ∂ttψ, ∂ttw1 and ∂ttw2 in
L2(0, T ;L2(Ω)).
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Lemma 4. For each us ∈ V ∩ [H1+r(Ω)]2 with 0 ≤ r ≤ 1 and under the
regularity assumption on the polygonal mesh (mentioned in Section 3.1), there
exist an interpolant usI ∈ Vh satisfying

∥us − usI∥0,Ω + hK |us − usI |1,Ω ≲ h1+r|us|1+r,Ω .

Now, we define the following projection operator Ah:=(Au
h , A

p
h, A

ψ
h , A

w1

h , Aw2

h ),

where (Au
h , A

ψ
h ) and Aph, A

w1

h , Aw2

h are standard Stokes and elliptic projection
operators respectively.

For V := V×Q×Z ×W ×W and Vh := Vh ×Qh ×Zh ×Wh ×Wh, these
operators satisfy the following estimates (see, for instance, [27,29]):

Lemma 5. Let (us, pf , ψ, w1, w2) ∈ V, (Au
hu

s, Aphp
f , Aψhψ,A

w1

h w1, A
w2

h w2) ∈
Vh be the unique solution to the system of equations (2.1) and projection oper-
ators, respectively. Then,

∥us−Au
hu

s∥0,Ω +h
(
|us−Au

hu
s|1,Ω+

∥∥∥ψ−Aψhψ∥∥∥
0,Ω

)
≲ h2(|u|2,Ω+|ψ|1,Ω), (4.1a)∥∥pf −Aphp

f
∥∥
0,Ω

+ h|pf −Aphp
f |1,Ω ≲ h2|p|2,Ω ,

∥wi −Awi

h wi∥0,Ω + h|wi −Awi

h wi|1,Ω ≲ h2|wi|2,Ω , i = 1, 2.

To derive the theoretical error estimates for fully discrete scheme, we de-
compose the error using the projection operator Ah as follows :

ξ(tn)− ξnh = (ξ(tn)−Ahξ(tn)) + (Ahξ(tn)− ξnh ) := ρnξ + ηnξ ,

for ξ(tn) = us(tn), p
f (tn), ψ(tn), w1(tn), w2(tn), ξ

n
h = us,nh , pf,nh , ψnh , w

n
1,h, w

n
2,h

and for each n = 1, . . . , N .
From the weak formulation (2.1) and fully discrete scheme (3.2)–(3.3), and

an appeal to projection operator Ah, the error equations for the fully discrete
scheme in terms of ηnξ , where ξ = u, p, ψ, w1, w2, are

ah1 (η
n
u,v

s
h) + b1(v

s
h, η

n
ψ) = Fnb,r(w

n
1 , w

n
2 ;v

s
h)− Fh,nb,r (w

n−1
1,h , wn−1

2,h ;vsh), (4.2a)

ãh2 (δtη
n
p , q

f
h) + ah2 (η

n
p , q

f
h)− b2(q

f
h , δtη

n
ψ) = (Gnℓ −Gh,nℓ )(qfh)

+ b2(q
f
h , δtA

ψ
hψ

n − ∂tψ
n) +

(
ãh2 (δtA

p
hp
n, qfh)− ã2(∂tp

n, qfh)
)
, (4.2b)

b1(δtη
n
u, ϕh)+b2(δtη

n
p , ϕh)−a3(δtηnψ, ϕh)=− b2(δtρ

n
p , ϕh)+a3(δtρ

n
ψ, ϕh), (4.2c)

mh(δtη
n
wi
, sh) + ah3+i(η

n
wi
, sh) =

(
mh(δtA

wi

h w
n
i , sh)−m(∂tw

n
i , sh)

)
+
((
Jnz (w

n
1 , w

n
2 ,u

s,n; sh)− Jh,nz (wn−1
1,h , wn−1

2,h ,us,nh ; sh)
)

−
(
c(us,j ;wji , sh)− ch(us,jh ;wji,h, sh)

))
, (4.2d)

for i = 1, z = f and i = 2, z = g.
Now, we will divide the derivation of the error estimates of the fully discrete

scheme (3.2)–(3.3) into the two lemmas: one containing the error bounds from
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the poroelasticity equations and other-regarding ADR equations. We start here
by recalling/mentioning the bounds to be used in succeeding lemmas.

The use of Taylor’s expansion shows the following corollary holds,

Corollary 1. For any ξ, we have

n∑
j=1

∥∥ξj − ξj−1
∥∥2
0,Ω

≲ (∆t)2
( n∑
j=1

∥∥∂tξj∥∥20,Ω + ∥∂ttξ(s)∥2L1(L2(Ω))

)
, (4.3a)

∆t

n∑
j=1

∥∥∂tξj − δtξ
j
∥∥2
0,Ω

≲ (∆t)3 ∥∂ttξ∥2L2(L2(Ω)) . (4.3b)

Now, we derive the result below by using the Lipshitz condition of function
r(wn1 , w

n
2 ) for each n, Corollary 1 and standard inequalities.

Lemma 6 [Coupled poroelastic error bounds]. Let (us,n, pf,n, ψn) ∈ V×
Q×Z be the solution to the system (2.1) and (us,nh , pf,nh , ψnh) ∈ Vh ×Qh ×Zh
be the solution to the system (3.2) for each n = 1, . . . , N . Then the following
estimate holds, with constant C independent of h and ∆t,

∥ε(ηnu)∥20,Ω + ∥ηnψ∥20,Ω + ∥ηp∥2l2(H1(Ω))

≤ C
(
h2 +∆t2 +

n∑
j=1

2∑
i=1

∥∥ηj−1
wi

∥∥2
0,Ω

)
+ 2ϵ3∆t

n∑
j=1

∥∥∥ηjψ∥∥∥2
0,Ω

, (4.4)

where ϵ3 > 0 chosen in subsequent analysis.

Proof. Set vsh = δtη
n
u in (4.2a), qfh = ηnp in (4.2b), and ϕh = ηnψ in (4.2c) then

summing over each n the resultant equation with the use of Lemma 2 gives

∆t

n∑
j=1

(
δta

h
1 (η

j
u, η

j
u) +∆t ah1 (δtη

j
u, δtη

j
u) + ah2 (η

j
p, η

j
p) + Ljh

)
= ∆t

n∑
j=1

((
F jb,r(w

j
1, w

j
2; δtη

j
u)− Fh,jb,r (w

j−1
1,h , w

j−1
2,h ; δtη

j
u)
)
+

(
(Gjℓ −Gh,jℓ )(ηjp)

+
(
ãh2 (δtA

p
hp
j , ηjp)− ã2(∂tp

j , ηjp)
) )

+ b2(η
j
p, δtA

ψ
hψ

j − ∂tψ
j)

+
(
b2(δtρ

j
p, η

j
ψ)− a3(δtρ

j
ψ, η

j
ψ)
))

:=
4∑
i=1

Ri.

The error term R1 can be written as

R1 = ∆t

n∑
j=1

∑
K∈Th

(
ρ
(
(I −Π0,0

K )bj , δtη
j
u

)
0,K

+ τ
〈
(r(wj1, w

j
2)− rh(w

j−1
1,h , w

j−1
2,h ))(k ⊗ k), δtε(η

j
u)
〉
0,K

)
:= Ra1 +Rb1.
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The Young’s inequality with some constant ϵ1 > 0 gives

Ra1 ≤ Ch2
n∑
j=1

|bj |21,Ω + ϵ1∆t
2

n∑
j=1

∥∥ε(δtηju)∥∥20,Ω .
The bound of Rb1 is through the property of function r(w1, w2), triangle’s in-
equality, and bound (4.3a) yields

Rb1 ≤ ϵ1∆t
2

n∑
j=1

∥∥ε(δtηju)∥∥20,Ω +Cτ
n∑
j=1

∥∥∥(r(wj1, wj2)−rh(wj−1
1,h , w

j−1
2,h ))

∥∥∥2
0,Ω

,

≤ ϵ1∆t
2

n∑
j=0

∥∥ε(δtηju)∥∥20,Ω +Cτ2
n∑
j=1

2∑
i=1

∥∥ηj−1
wi

∥∥2
0,Ω

+Cτ2h2
2∑
i=1

n−1∑
j=0

|wji |
2
1,Ω

+ Cτ2(∆t)2
2∑
i=1

( n∑
j=1

∥∥∥∂twji∥∥∥2
0,Ω

+ ∥∂ttwi(s)∥2L1(L2(Ω))

)
.

Use of polynomial approximation and consistency of ãh,K2 (·, ·), using Cauchy
Schwarz, Poincaré and Young’s inequalities, estimate (4.3b) and by Taylor’s
expansion, we get

R2 ≤ C
(
h2

( ∥∥∂tpf∥∥2L2(H1(Ω))
+ ∥ℓ∥2l2(H1(Ω))

)
+(∆t)3

∥∥∂ttpf∥∥2L2(L2(Ω))

)
+ ϵ2∆t

n∑
j=1

∥∥∇ηjp∥∥20,Ω .
An application of Lemma 1 and Young’s inequality implies

R3 ≤ Ch2
∫ tn

0

∥∂tψ(s)∥21,Ω ds+ C(∆t)3 ∥∂ttψ∥2L2(L2(Ω)) + ϵ2∆t

n∑
j=1

∥∥∇ηjp∥∥20,Ω .
Use of the estimates (4.1a) and Lemma 1 as seen in bound of R2 with constant
ϵ3 > 0 gives

R4 ≤ C h2(
∥∥∂tpf∥∥2L2(H1(Ω))

+ ∥∂tψ∥2L2(H1(Ω))) + ϵ3∆t

n∑
j=1

∥∥∥ηjψ∥∥∥2
0,Ω

.

Combining the bounds of Ri’s, we get

4∑
i=1

Ri ≤ C(h2 +∆t2) + 2ϵ1 ∥ε(ηnu)∥
2
0,Ω + 5ϵ2∆t

n∑
j=1

∥∥∇ηjp∥∥20,Ω
+ 2ϵ3∆t

n∑
j=1

∥∥∥ηjψ∥∥∥2
0,Ω

+ C

n∑
j=1

2∑
i=1

∥∥ηj−1
wi

∥∥2
0,Ω

.
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Using inf-sup condition of b1(·, ·) and error equation (4.2a), we obtain∥∥ηnψ∥∥0,Ω ≤ C
(
h
(
|bn|1,Ω +

2∑
i=1

|wn−1
i |1,Ω

)
+ (∆t)

(
µ ∥ε(ηnu)∥0,Ω

+

2∑
i=1

(
∥∂twni ∥0,Ω + ∥∂ttwi(s)∥L1(tn−1,tn;L2(Ω)) +

∥∥ηn−1
wi

∥∥
0,K

))
∥vsh∥1,Ω .

Therefore, the adequate choices of ϵ’s and choosing the initial conditions using
projections as

us,0h := usI(0) and pf,0h := pfI (0)

conclude the error bounds (4.4). ⊓⊔

Note that the initial conditions are chosen so that the estimates of ηnu, η
n
p

and ηnψ are known, and can consider another such choices for analysis and
computations. Next, we approach the remaining error equations to avail the
following lemma.

Lemma 7 [Coupled CDR error bounds]. Let (wn1 , w
n
2 ) ∈ [W ]2 be the so-

lution to the continuous problem (2.2)–(2.3) and (wn1,h, w
n
2,h) ∈ [Wh]

2 be the
solution to the discrete problem (3.3) for each n. Then the following estimate
holds, with constant C independent of h and ∆t,

2∑
i=1

(∥∥ηnwi

∥∥2
0,Ω

+Da
1(∆t)

n∑
j=1

|ηjwi
|21,Ω

)
≤ C(h2 +∆t2 +

n∑
j=1

∥∥ηj−1
u

∥∥2
0,Ω

+

n∑
j=1

2∑
i=1

∥∥ηj−1
wi

∥∥2
0,Ω

) +∆t2
n∑
j=1

(2ϵ1
∥∥ε(ηju)∥∥20,Ω + 6ϵ4|ηjw1

|21,Ω).

Proof. Taking sh = ηnw1
in (4.2d) for i = 1, then multiplying with ∆t and

summing over n enable us to get

(
∥∥ηnw1

∥∥2
0,Ω

−
∥∥η0w1

∥∥2
0,Ω

) +Da
1∆t

n∑
j=1

∥∥∇ηjw1

∥∥2
0,Ω

≲ ∆t

n∑
j=1

((
Jjf (w

j
1, w

j
2,u

s,j ; ηjw1
)− Jh,jf (wj−1

1,h , w
j−1
2,h ,u

s,j
h ; ηjw1

)
)

−
(
m(∂tw

j
1, η

j
w1

)−mh(δtA
w1

h wj1, η
j
w1

)
)

−
(
c(us,j ;wj1, η

j
w1

)− ch(us,jh ;wj1,h, η
j
w1

)
))

:= A1 +A2 +A3.

Use of estimates for projection Π0
K , triangle’s inequality and projection (4.1)

gives

A1 ≲∆t
n∑
j=1

(∥∥ρju∥∥0,Ω +
∥∥ηju∥∥0,Ω + h|f(wj−1

1 , wj−1
2 ,us,j)|1,Ω

+

2∑
i=1

( ∥∥ρj−1
wi

∥∥
0,Ω

+
∥∥ηj−1
wi

∥∥
0,Ω

+
∥∥∥wji − wj−1

i

∥∥∥
0,Ω

)) ∥∥ηjw1

∥∥
0,Ω

.
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The estimate (4.3a), and Young’s inequality with ϵ1ϵ4 = C2/4 and ϵ1, ϵ4 > 0
gives

A1 ≤ C

n∑
j=1

2∑
i=1

∥∥ηj−1
wi

∥∥2
0,Ω

+ ϵ1 ∆t
∥∥ηju∥∥20,Ω + ϵ4 ∆t

n∑
j=1

∥∥ηjw1

∥∥2
0,Ω

+ C

n∑
j=1

(
h2

(
|us,j |22,Ω + |f(wj−1

1 , wj−1
2 ,us,j)|21,Ω +

2∑
i=1

|wj−1
i |22,Ω

)

+ (∆t)2
2∑
i=1

(∥∥∥∂twji∥∥∥
0,Ω

+

∫ tj

tj−1

∥∂ttwi(s)∥0,Ω ds
)2

)
.

The use of consistency for bilinear form mh(·, ·) and bounds (4.3a)–(4.3b) with
Young’s inequality for ϵ4 > 0 gives

A2 ≤C
(
h2

∫ tn

0

|∂tw1(s)|21,Ω ds+ (∆t)2
∫ tn

0

∥∂ttw1(s)∥20,Ω ds
)

+ ϵ4∆t

n∑
j=1

∥∥∇ηjw1

∥∥2
0,Ω

.

Assume that∇wj1 and us,jh are bounded for each j then the values of
∥∥∥∇wj1∥∥∥∞,K

and
∥∥∥Π0

Kus,jh

∥∥∥
∞,K

(by use of inverse estimate) are finite respectively.

A3 ≲ ∆t

n∑
j=1

∑
K∈Th

(∥∥∥(I −Π0
K)(us,j · ∇wj1)

∥∥∥
0,K

+
∥∥(I −Π0

K)us,j
∥∥
0,K

+
∥∥∥(I−Π0,0

K )∇wj1
∥∥∥
0,K

+
∥∥ρju∥∥0,K+

∥∥ηju∥∥0,K+|ρjw1
|1,K + |ηjw1

|1,K
)∥∥ηjw1

∥∥
0,K

.

Thus, by applying the Cauchy-Schwarz and Young’s inequalities implies

A3 ≤C h2
n∑
j=1

(∥∥∥(us,j · ∇wj1)∥∥∥2
1,Ω

+ |us,j |21,Ω + |∇wj1|21,Ω
)

+∆t2
n∑
j=1

(ϵ1
∥∥ηju∥∥20,Ω + ϵ4|ηjw1

|21,Ω).

Thus, the bounds of Ai’s gives∥∥ηnw1

∥∥2
0,Ω

+∆t

n∑
j=1

∥∥∇ηjw1

∥∥2
0,Ω

≤C
(
h2 +∆t2 +

∥∥η0w1

∥∥2
0,Ω

+

n∑
j=1

2∑
i=1

∥∥ηj−1
wi

∥∥2
0,Ω

)
+∆t

n∑
j=1

(ϵ1
∥∥ηju∥∥20,Ω + 3ϵ4|ηjw1

|21,Ω).

Similar to the above bounds, taking sh = ηnw2
in (4.2d) for i = 2, we get the

error bounds in the terms of ηw2
. Thus, the addition of the bounds for w1 and

w2 concludes the proof. ⊓⊔
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Application of the discrete Gronwall’s inequality (Lemma 3.5) with the combi-
nation of results from Lemmas 6–7 yield the final result:

Theorem 3 [Fully-discrete error estimates]. Let us(tn) ∈ V, pf (tn) ∈ Q,
ψ(tn) ∈ Z, w1(tn), w2(tn) ∈ W be the solution to continuous problem (2.1),

and us,nh ∈ Vh, p
f,n
h ∈ Qh, ψ

n
h ∈ Zh, w

n
1,h, w

n
2,h ∈ Wh be the solution to fully

discrete problem (3.2)–(3.3) for each n = 1, . . . , N . Then the following estimate
holds, with constant C independent of h and ∆t,

∥ε(us(tn)− us,nh )∥20,Ω + ∥ψ(tn)− ψnh∥20,Ω + ∥pf − pfh∥
2
l2(H1(Ω))

+

2∑
i=1

∥wi − wi,h∥2l2(H1(Ω)) ≲ (∆t2 + h2).

5 Numerical experiments

We define the L2 and H1 errors for the approximation space of order k as

E0(v) :=
∑
K∈Th

∥∥v −Π0
Kvh

∥∥
0,K

, E1(v) :=
∑
K∈Th

∥∥∥∇v −Π0,0
K ∇vh

∥∥∥
0,K

,

where v can be us, pf , ψ and w1, w2. The convergence rates of the errors Ek(v)
and E′

k(v) with k = 0, 1 for the corresponding mesh sizes h and h′ respectively,
are calculated as rk(v) = log(Ek(v)/E

′
k(v))/ log(h/h

′).

5.1 Space and time convergence

We initiate the tests in the domain Ω1 := (0, 1) × (0, 1) and verify the spa-
tial convergence rate of the VEM for given exact solutions by discretizing the
domain into elements containing non-convex polygons seen in Figures 1–3.

Figure 1. Concave mesh
Nh.

Figure 2. Distorted
triangular mesh Hh.

Figure 3. Distorted
square mesh Dh.

For this, we consider the following exact solutions for global displacement
and fluid pressure,

us(x, y, t) =

(
t (− cos(2πx) sin(2πy) + sin(2πy) + sin2(πx) sin2(πy))

t (sin(2πx) cos(2πy)− sin(2πx))

)
,

pf (x, y, t) = t sin2(πx) sin2(πy),
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together with the parametric values ν = 0.3, E = 100, κ = 1, α = 1, c0 = 1,
η = 0.1, λ = ν E

(1+ν)(1−2ν) , µ = E
2(1+ν) , and scalar function r(w1, w2) :=

w1 + w2. Also, the exact concentration solutions are given as w1(x, y, t) =
w2(x, y, t) = t sin(πx) sin(πy), and the reaction kinematics with unit value of
D1, D2, β1, β2, β3 and γ = 0.1 making the concentration equations with differ-
ent load functions. However, the load functions ℓ and b, and the exact global
pressure ψ is obtained from the problem (1.1) in domain Ω with τ = 1, ρ = 1.
We see that the trend of the computed errors with h = ∆t in the Figure 4 is
the one expected from the theoretical results in Section 4.

Figure 4. Computed errors for meshes Nh, Hh and Dh in first three figures, and last one
for variable κ = x+ y + 10 on mesh Hh.

5.2 Space convergence with mixed boundary conditions

For this, we consider the following exact solutions for global displacement and
fluid pressure

us(x, y, t) =

(
exp(−t) sin(πx) sin(πy)
exp(−t) sin(πx) sin(πy)

)
,

pf (x, y, t) = exp(−t) sin(πx) (1 + cos(πy)),

together with the parametric values ν = 0.495, E = 100, κ = 0.5, α = 0.1,
c0 = 1e− 03, η = 0.1 and scalar function r(w1, w2) := w1+w2. Also, the exact
concentration solutions are given as

w1(x, y, t) = exp(−t)(− cos(2πx) sin(2πy) + sin(2πy) + sin2(πx) sin2(πy)),

w2(x, y, t) = exp(−t)(sin(2πx) cos(2πy)− sin(2πx)),
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taking the diffusion constants D1 = 0.01, D2 = 1, and the reaction kinematics
with γ = 0.0001, β3 = 0.80, β1, β2 = 0.15. However the load functions ℓ, b
and the exact global pressure ψ is obtained from the respective problem (1.1)
in domain Ω with τ = 10, ρ = 1. We can note that we have considered the
parametric values to check the extend of the method with small c0 and D1, and
large values of λ. We show the computed rate of convergence with ∆t = 0.005
and varying mesh sizes h on a distorted triangular meshes (shown in Figure 2)
in the Table 1. We have computed the relative errors Ēk for any variable v as
Ēk(v) = Ek(v)/ ∥v∥k,Ω and rk(v) as their rate of convergence.

Table 1. Computed relative errors and their rate of convergence with mesh size h.

h−1 Ē1(u) r1(u) Ē1(p) r1(p) Ē0(ψ) r0(ψ) Ē1(w1) r1(w1) Ē1(w2) r1(w2)

10 0.9720 − 0.5232 − 0.9774 − 0.4283 − 0.3479 −
20 0.5514 0.82 0.3374 0.63 0.3909 1.32 0.2352 0.86 0.2040 0.77
40 0.2913 0.92 0.1614 1.06 0.1649 1.24 0.1074 1.13 0.1008 1.01
80 0.1490 0.97 0.0817 0.98 0.0814 1.02 0.0516 1.06 0.0506 0.99
160 0.0751 0.99 0.0407 1.01 0.0404 1.01 0.0255 1.02 0.0254 1.00
320 0.0380 0.98 0.0202 1.01 0.0200 1.01 0.0128 0.99 0.0123 1.04

6 Conclusions

By extending the analysis of [12,29], we have discussed and analyzed the lowest
order conforming virtual element methods for the approximation of coupled
poroelasticity and ADR equations. The major contributions of this article
are: showing the well-posedness of fully discrete schemes and establishing the
optimal a-priori error estimates for all the variables that naturally appeared in
the weak formulation. The possible extensions of this work include the study
of general flow-transport problems, and the coupling with other phenomena
such as diffusion of solutes in poroelastic structures [28], interface elasticity-
poroelasticity problems [3, 16], multilayer poromechanics, or multiple-network
consolidation models [21].
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[28] N. Verma, B. Gómez-Vargas, L. Miguel De Oliveira Vilaca, S. Kumar and
R. Ruiz-Baier. Well-posedness and discrete analysis for advection-diffusion-
reaction in poroelastic media. Applicable Analysis, 101(14):4914–4941, 2022.
https://doi.org/10.1080/00036811.2021.1877677.

[29] N. Verma and S. Kumar. Lowest order virtual element approximations
for transient Stokes problem on polygonal meshes. Calcolo, 58(48), 2021.
https://doi.org/10.1007/s10092-021-00440-7.

[30] S.-Y. Yi. A study of two modes of locking in poroelasticity. SIAM Journal on Nu-
merical Analysis, 55(4):1915–1936, 2017. https://doi.org/10.1137/16M1056109.

https://doi.org/10.1080/00036811.2021.1877677
https://doi.org/10.1007/s10092-021-00440-7
https://doi.org/10.1137/16M1056109

	Introduction
	Weak formulation
	Discrete formulations and wellposedness
	Virtual element discretizations 
	Fully discrete scheme

	Error analysis
	Numerical experiments
	Space and time convergence
	Space convergence with mixed boundary conditions

	Conclusions
	References

