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Abstract. A Leslie-Gower type predator-prey model including group defense for-
mation is analyzed. This phenomenon, described by a non-monotonic function origi-
nates interesting dynamics; positiveness, boundedness, permanence of solutions, and
existence of up to three positive equilibria are established. The solutions are highly
sensitive to initial conditions since there exists a separatrix curve dividing their be-
havior. Two near trajectories can have far omega-limit sets. The weakness of a
singularity is established showing two limit cycles can exist. Numerical simulations
endorse the analytical outcomes.
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1 Introduction

The development of the ecological theory has had an increasing growth in the
last decades. This is due to the intensive use of mathematical models describ-
ing the interaction between species, particularly those described by nonlinear

�
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ordinary differential equation systems (ODEs). Therefore, carrying out an ad-
equate analysis of simple theoretical models and using numerical simulations,
more realistic and complex food chains can be studied.

The most popular framework for modeling predator with its prey (resource-
consumer models) are the autonomous Gause-type predator-prey models. These
were formulated by the Russian biologist Georgii F. Gause at 1934 [10], based
on the mass action law transference of mass principle.

Nevertheless, the new proposed systems have more complicated dynamics
[11, 34]. This happens in the class of predator-prey models here analyzed, in
which the following important aspects are considered: 1) the predator’s growth
function is of logistic type; 2) the functional response or predator consumption
rate is a rational non-monotonic Holling type IV.

The first aspect characterizes the predator-prey model proposed by the
English ecologist Patrick F. Leslie in 1948 [18], called logistic predator-prey
model [3, 21, 29] or Leslie-Gower model [19, 20], proposed as an alternative to
the Gause models.

One important aspect of this type of models is the assumption that the
predator’s environmental carrying capacity Ky is proportional to the prey pop-
ulation size x, i.e., it depends on the available resources.

In this work, it is also assumed Ky = nx, as it is considered in the May-
Holling-Tanner model [26,29], partially studied in [3]. Nonetheless, in the case
of severe scarcity, some predator species can switch over to other available food,
if their favorite food is not available in abundance [2].

This ability is modelled adding a positive constant c to the environmental
carrying capacity for predators, which is described by K(x) = nx + c. So,
the model is represented by a Leslie-Gower scheme or a modified Leslie-Gower
model [2]; if x = 0, then K(0) = c, concluding that the predators are generalist
since they search an alternative food source, avoiding its extinction [29].

1.1 The functional response

One of the main elements of the predator-prey relationship is the predator
functional response or consumption function. It refers to the change in attacked
prey density per unit of time per predator when the prey density changes [7,21].
Prey-dependent functional responses are classified into four categories. Three
of them were proposed in an original work by the Canadian biologist Crawford
S. Holling in 1959 [13]. He based the classification on laboratory experments, all
of them being monotonic increasing and saturated functions. They are called
Holling Type I, II, and III [29], and they were expressed dependent only on
prey population (prey-dependent) [21,29].

Later in 1984, Robert J. Taylor [28] included a fourth type prey dependent,
described by the function hm (x) = qx/(x2 + a2), calling it Holling type IV or
dome-shaped functional response, which is non-monotonic; this has been used
in different previous works [20, 24, 25, 34]. It must highlight the Holling type I
is a piecewise-continuous function [27].

In most predator-prey models considered in the ecological literature, the
functional response is assumed increasing monotonically with respect to prey
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density, as the linear [18], the hyperbolic [2] or the sigmoid [12]. This is an
inherent assumption, meaning that the more prey animals there are in the
environment, the better off the predator [34].

In this work, the effect of the predation is represented by a non-monotonic
functional response or Holling type IV or Monod-Haldane, which is described
by the function H(x) = qx/(x2 + bx+ a) with q > 0, a > 0, and b ∈ R. As
the functional response H(x) must be positive; then x2 + bx + a > 0. Thus,
b2 − 4a < 0, so that −2

√
a < b [35, 36].

It is easy to prove that H(x) tends to zero as the prey population tends
to infinity and attains the maximum value when x =

√
a, as shown in the

following Figure 1, i.e., the quantity of prey needed for which depredation

effect is maximum. The maximum value of H(x) is H(xmax) = q
√
a

2a+b
√
a
, which

represents the maximal per capita consumption rate, that is, the maximum
number of prey that can be eaten by a predator in each time unit.
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Figure 1. Graph of the generalized Holling type IV functional response H(x). i) In the
left panel for different values of the parameter a, with q = 1, and b = 1 fixed. The values

are: a = 1 (blue), a = 3 (red), a = 10 (sienna). ii) In the right panel, different values of the
parameter b, are considered for q = 1, and a = 1 fixed. The values are: b = 0.05 (blue),

b = 0.3 (red), b = 1 (orange), b = 5 (sienna).

Remark 1. The differences between the graphs of the generalized non-monoto-
nic functional response H(x) for different values of the parameter a, implies
that if a is small, few preys are exposed to intensive predation; meanwhile,
when a is bigger, small numbers of prey are necessary to avoid predation. For
different values of the parameter b, it has a distinct situation; if b is small,
predation is more intensive; while, when b is bigger, the predation is minor; in
both cases, few preys are necessary to avoid predation.

The function H(x) has been used to study the dynamics of the Gause type
predator-prey models in [35,36]. This function generalizes the hyperbolic func-
tional response given by h (x) = qx/(x2 + a2) [1,11,20,24], which describes an
antipredator behavior (APB) called group defense formation [8, 28,33,34].

Examples of this phenomenon are described in [8]. Lone musk ox can be
successfully attacked by wolves. Small herds of musk ox (2-6 animals) are
attacked but with rare success. No successful attacks have been observed in
larger herds. A second example involves certain insect populations. Large
swarms of the insects make individual identification difficult for their predators.

Another manifestations of APB, in which a non-monotonic functional re-
sponse can be used for its description are the following phenomena: a) aggre-
gation, which is a social behavior of prey, in which prey congregate on a fine
scale relative to the predator; so that the predators hunting is not spatially ho-
mogeneous [28, 33], similar to what happens with miles-long schools of certain
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classes of fishes; b) inhibition, a behavior of the predators that occur at the mi-
crobial level where evidence indicates that when faced with an overabundance
of nutrients (the prey), the effectiveness of the consumers decline [8,34,35,36].
This is often seen when micro-organisms are used for waste decomposition or
for water purification [8, 33].

A similar to Holling type III functional response described by G(x) =
qx2/(x2 + bx+ a) was considered in [14] for the case b < 0, which is also
non-monotonic. Then, an interesting comparative analysis could arise between
the models, considering the three functional responses H(x), h (x) and G(x).

Another collective APB is the called prey herd behavior [30, 31]. This is
a social conduct to avoid predation, when the individuals realizing a senseless
reaction equal to that carried out by the majority of the other members of
the group [31]. This phenomenon has been modeled by the monotonic function
g1 (x) = q

√
x/(a+

√
x), but can also be described by the generalized monotonic

function gα (x) = qxα/(a+ xα), with 0 < α < 1 [31]. Both are Holling type II
functional response and non-differentiable in x = 0. The obtained ODE system
is non-Lipschitzian; it has two solutions for each point on the vertical axis.

Some authors have tried to homologate the way to model this phenomenon
with the defense group formation [30]. Although both are social interactions
among prey, we are do not completely agree with this version of similarity [31].
We believe those phenomena should be considered different because of the
distinct dynamics originated in each system when both kinds of functions are
incorporated.

Recently, it has been suggested that even though the shape of some func-
tional responses can be similar, the dynamic of the systems including that
functions, could change qualitatively [15]. This phenomenon is called struc-
tural sensitivity [15]. An interesting question would be to verify whether there
exist equivalences of the dynamical behaviors on the systems incorporating dif-
ferent non-monotonic functional responses. One of the aim of this paper is to
study dynamical behaviors of a system performing a qualitative and bifurca-

tion analysis in the phase plane
(
R+

0

)2
of the proposed model depending on

the parameter values.
The rest of the paper is organized as follows: In the Section 2, the mod-

ified Leslie-Gower predator.prey model is presented. In Section 3, the main
properties of model are proven. Some numerical simulations are shown in the
Section 4, and in Section 5 we explain the ecological meanings of the obtained
analytical outcomes.

2 The model

2.1 Model formulation

The Leslie-Gower predation model [19] to be analyzed, is described by the
autonomous ordinary differential equation system of Kolmogorov type [7]:

Xµ (x, y) :

{
dx
dt =

(
r
(
1− x

K

)
− qy

x2+bx+a

)
x,

dy
dt = s

(
1 − y

n x

)
y,

(2.1)
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where x(t) and y(t) denote the prey and predator population sizes respectively,
measured as biomass or densities by unit of area or volume, for all t ≥ 0. The
parameters are positives, i.e., µ = (r,K, q, a, b, s, n) ∈ R7

+, having the following
ecological meanings: r represents the intrinsic growth rate of the prey, K is
the prey’s environmental carrying capacity, q is the per capita attack rate of
predators, a and b are the fitting parameters [17], s represents the intrinsic
growth rate of the predators, n is an energy quality measure provided by the
prey as food for predators.

System (2.1) or the vector field Xµ (x, y) is defined in the first quadrant
except for x = 0, i.e., in the set Ω =

{
(x, y) ∈ R2/x > 0, y ≥ 0

}
. The equi-

librium point of the system (2.1) or singularities of the vector field Xµ (x, y)
are: PK = (K, 0) and Pe = (xe, ye) the positive equilibria, that satisfies the
equations of the isoclines y = nx, and y = r

q

(
1− x

K

) (
x2 + bx+ a

)
. Then, the

abscissa xe of the positive equilibrium points is a solution of the third degree
polynomial equation:

p (x) =
r

Kq
x3 −

(
r

q
− br

Kq

)
x2 +

(
ar

Kq
− br

q
+ n

)
x− a

q
r = 0.

2.2 Positive invariance, boundedness and permanence

For system (2.1) or vector field Xµ (x, y), the following results can be obtained:

Lemma 1 [Existence of a positively invariant region]. The set Γ ={
(x, y) ∈ R2/0 < x ≤ K, y ≥ 0

}
is a positively invariant region.

Proof. As system (2.1) is of Kolmogorov type, then, the coordinates axis are
invariant set [5]. Let x = K; we have that dx

dt = − qyx
K2+bK+a ≤ 0. Whatever the

sign of dy
dt = s

(
1 − y

n x

)
y, the trajectories of the system get into the region

Γ . ut

Proposition 1 [Boundedness of trajectories]. All solutions are uniformly
bounded.

Proof. From the first equation of (2.1), the following condition is obtained
dx
dt < rx (1− x/K) , with initial condition x(0) = x0 > 0. This shows that the
solutions of defined system must satisfy the condition x(t) ≤ K,∀t > 0.

Now, consider a function w(t) such that w(t) = x(t) + y(t), then

dw

dt
=
dx

dt
+
dy

dt
= rx

(
1− x

K

)
− qyx

x2 + bx+ a
+ sy − y2

n x

< rx (1− x/K) + sy − y2/nK.

Let L > 0 and rewriting the above equations, we have

dw

dt
+ Lw ≤ − r

K

(
x2 −Kx

)
− 1

nK

(
y2 − snKy

)
+ Lx+ Ly

≤ − r

K

(
x2 − (r + L)K

r
x

)
− 1

nK

(
y2 − (s+ L)nKy

)
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and a further simplification gives

dw

dt
+ Lw ≤ − r

K

(
x− (r + L)K

2r

)2

− 1

nK

(
y − (s+ L)nK

2

)2

+
K(r + L)2

4r
+
nK(s+ L)2

4
≤ K(r + L)2

4r
+
nK(s+ L)2

4
.

Denoting N = K(r + L)2/4r + nK(s+ L)2/4, we have

0 ≤ dw

dt
+ Lw ≤ N.

Applying a comparison theorem for differential inequalities, we obtain

w(t) ≤ N/L+ (w(0)−N)e−Lt, 0 < lim sup
t→∞

w(t) ≤ N/L.

Thus, there is a region R such that R=
{

(x, y) ∈ Ω/0 < x+y ≤ N
L+ε, ∀ε > 0

}
.

This proves that all solutions are bounded. ut

Remark 2. A dynamical system is said to be dissipative if all positive trajecto-
ries eventually lie in a bounded set. This is to ensure that all solutions exist for
all positive time. The last lemma assures this property for the system (2.1).

Definition 1. A system is said to be permanent if there is a possibility of get-
ting some positive constants k1, k2 and K1,K2 such that each positive solution
of system with some initial condition (x0, y0) ∈ R2

+ satisfies:

k1 ≤ lim inf
t→∞

x(t.x0, y0) ≤ lim sup
t→∞

x(t.x0, y0) ≤ K1,

k2 ≤ lim inf
t→∞

y(t.x0, y0) ≤ lim sup
t→∞

y(t.x0, y0) ≤ K2.

Proposition 2 [Permanence of solutions]. The system (2.1) with initial
condition (x0, y0) ∈ Ω is permanent if and only if K2 < ra/q.

Proof. From the first equation of (2.1), we get:

dx

dt
< rx

(
1− x

K

)
.

This implies
lim sup
t→∞

x(t) ≤ max{x0,K} = K ≡ K1.

From the second equation of system (2.1), we see that

dy

dt
≤ sy

(
1 − y

n K

)
.

Thus,
lim sup
t→∞

y(t) ≤ max{y0, nK} ≡ K2.

Math. Model. Anal., 27(3):510–532, 2022.
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On the other hand, it is easy to see that, if K2 < ra/q holds, from the first
equation of (2.1)

dx

dt
= x

(
r
(

1− x

K

)
− qy

x2 + bx+ a

)
≥ x

(
r
(

1− x

K

)
− qy

a

)
≥ rx

(
1− qK2

ra
− x

K

)
.

Denoting m = 1− qK2/(ra) > 0, the following can be concluded

lim inf
t→∞

x(t) ≥ min{x0,mK} ≡ k1.

Now, from the second equation of system (2.1) we have

dy

dt
= sy

(
1 − y

nx

)
≥ sy

(
1 − y

nk1

)
,

which yields that
lim inf
t→∞

y(t) ≥ min{y0, nk1} ≡ k2.

Therefore, the system is permanent. ut

3 Main results

3.1 Topologically equivalent system

In order to carry out an adequate description of behavior of system (2.1) and
to simplify the calculations, we follow the methodology used in [25, 26], doing
a change of variables and a time re-scaling given by the function: ϕ : Ω̄×R→
Ω × R such as,

ϕ (u, v, τ) =

(
Ku,Knv,

u
(
u2 + b

Ku+ a
K2

)
τ

r

)
= (x, y, t)

with Ω̄ =
{

(u, v) ∈ R2/ u ≥ 0, v ≥ 0
}

= R+
0 × R+

0 . As

Dϕ (u, v, τ) =

 K 0 0
0 Kn 0

1
K2r τ

(
3K2u2 + 2bKu+ a

)
0

u(u2+ b
K u+

a
K2 )

r

 .

Then,

detDϕ (u, v, τ) =
1

r

(
nK2u3 + bnKu2 + anu

)
> 0,

that is, ϕ is a diffeomorphism preserving the time orientation [5, 6], for which
the vector field Xµ (x, y) in the new system of coordinates, is topologically
equivalent to the vector field, with Yη (u, v) = ϕ◦ Xµ (x, y); it takes the form
Yη = P (u, v) ∂

∂u + Q (u, v) ∂
∂v [6] and the associated polynomial differential

equation system of fifth order is given by

Yη (u, v) :

{
du
dτ =

(
(1− u)

(
u2 +Bu+A

)
−Qv

)
u2,

dv
dτ = S (u − v)

(
u2 +Bu+A

)
v,

(3.1)
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with A = a/K2, B = b/k, Q = qn/(rk2) and S = s/rk, where η = (A,B,Q, S)
∈ R4

+. System (3.1) is defined at Ω̄.

Remark 3. The set Γ̄0 =
{

(u, v) ∈ R2/0 ≤ u ≤ 1, 0 ≤ v ≤ u
}
⊂ Ω̄ is a posi-

tively invariant region of system (3.1).

3.2 Existence of equilibrium points

As system (2.1) is not defined at the point (0, 0), system (3.1) is topologically
equivalent to a continuous extension of the system (2.1) at the point (0, 0).

The equilibrium point of the system (3.1) or singularities of vector field
Yη (u, v) are: (0, 0), (1, 0) and Pe = (ue, ve) determined by the intersection of
the isoclines

v = u, and v =
1

Q
(1− u)

(
u2 +Bu+A

)
.

Then, the abscissa ue of the positive equilibrium points is a solution of the
third degree polynomial equation:

P (u) = u3 − (1−B)u2 + (A−B +Q)u−A = 0. (3.2)

According to Descartes’ Rule of signs, the polynomial P (u) might have:
1) A unique positive root, if and only if, 1−B ≤ 0 and A+Q−B > 0, or
2) Three different positive roots, if and only if, 1−B > 0 and A+Q−B > 0,
3) A unique positive root, if and only if, 1−B > 0 and A−B +Q ≤ 0.

Substituting u by −u the following polynomial is obtained

P (−u) = −u3 − (1−B)u2 − (A−B +Q)u−A = 0.

Based on Descartes’ Rule of signs, the polynomial P (−u)
4) Does not change sign if and only if 1−B ≥ 0 y A+Q−B > 0; therefore,

P (u) would not have negative real roots.
5) It might have up two negative real roots or none, if and only if, 1−B < 0

and A+Q−B > 0.
Let ue = H be, the positive real root that always exists for Equation (3.2).

We assume that Pe = (H,H) lies at R2
+.

Performing the division among the polynomial P (u) and the binomial (u−H),
the following quadratic polynomial is obtained

P1(u) = u2 − (1−H −B)u+A−B +Q−H (1−H −B) = 0. (3.3)

As the polynomial P1(u) is a factor of P (u), the rest of the division is

R(H) = H3 − (1−B)H2 + (A−B +Q)H −A = 0.

Then, a parameter can be isolated, for instance Q = (1−H)
(
A+BH+H2

)
/H.

As Q > 0, it must fulfill that H < 1.
Let ∆ the discriminant of the quadratic equation associated (3.3), i.e.,

∆ = (1−H −B)
2 − 4 (A−B +Q−H (1−H −B)) .

Replacing the value of Q, it has ∆ = (1−H −B)
2 − 4A/H.

Math. Model. Anal., 27(3):510–532, 2022.
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Lemma 2 [Number of real roots and equilibrium points]. 1. For Equa-
tion (3.2) we have:

1a) There is one positive real root, if and only if, ∆ < 0.

1b) Three different real positive roots, if and only if, ∆ > 0.

1c) Two real positive roots, one of them having multiplicity two, if and only
if, ∆ = 0; they are ue1 = H and ue∗ = (1−H −B)/2.

2. For system (3.1) or vector field Yη (u, v), we have:

2a) If ∆<0, there is a unique equilibrium point (H,H) at the interior of Ω̄.

2b) If ∆ = 0, two equilibrium points exist at the interior of Ω̄, which are
(H,H) and (1−H −B/2, 1−H −B/2).

2c) If ∆ > 0, three equilibrium points exist at the interior of Ω̄, which
are (H,H), (u2, u2) and (u3, u3), where u2 = (1−H −B −

√
∆)/2 and u3 =

(1−H −B +
√
∆)/2, with u2 < u3.

Proof. 1. Replacing Q in P1(u) and simplifying it, we have P1(u) = u2 −
(1−H −B)u + A/H. Then, the roots of P1(u) when 1 − H − B > 0 are:
u2 = (1−H −B −

√
∆)/2 and u3 = (1−H −B +

√
∆)/2.

(a) P1(u) has no real root, if and only if, ∆ < 0. Then, P (u) has an unique
positive real root.

(b) There are three different real positive roots, if and only if, ∆ > 0. The
roots are H, u2 and u3; clearly, u2 < u3.

(c) P1(u) has one positive root of multiplicity two, if and only if, ∆ = 0,
given by u∗ = (1−H −B)/2.

Then, P (u) has two positive roots.

2. The second part of the lemma is immediate. ut

Therefore, the number of positive equilibrium points, and the different cases
obtained are displayed in the following Table 1.

Table 1. Number of positive real roots of Equation (3.2).

1 −B A−B +Q ∆ Positive real roots

+ + + 3
+ + 0 2
+ + − 1
+ 0 1
+ − 1
0 + 1
0 − 1
0 0 1
− + 1
− − 1
− 0 1
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3.3 Nature of boundary equilibria

In order to determine the nature of the hyperbolic equilibria of system (3.1),
the Jacobian matrix is required, which is

DYη (u, v) =

(
DYη (u, v)11 −Qu2

Sv
(
A+2Bu−Bv−2uv+3u2

)
S (u−2v)

(
u2 +Bu+A

) ) ,
with

DYη (u, v)11 =− u2
(
A−B−2u+2Bu+3u2

)
+2u

(
(1−u)

(
u2+Bu+A

)
−Qv

)
.

Lemma 3 [Nature of (1,0)]. The singularity (1, 0) is a hyperbolic saddle
point for all η = (A,B,Q, S).

Proof. Evaluating the Jacobian matrix at equilibrium point (1, 0) .

DYη (1, 0) =

(
− (A+B + 1) −Q

0 S (A+B + 1)

)
.

Clearly, detDYη (1, 0) = −S (A+B + 1)
2
< 0; thus, the point (1, 0) is a hy-

perbolic saddle point. ut

Lemma 4 [Nature of (0,0)]. The point (0, 0) has a hyperbolic sector and a
parabolic sector.

Proof. Evaluating the Jacobian matrix at the point (0, 0) we have that:

DYη (0, 0) =

(
0 0
0 0

)
.

Thus, the origin is a non-hyperbolic singularity [5,23]. To desingularize the ori-
gin, we use the directional blowing-up method [6]. We consider a function given

by Θ (p, q) = (p, pq) = (u, v) ; we have that dp
dτ = du

dτ and dq
dτ = 1

p

(
dv
dτ − q

dp
dτ

)
.

Rescaling the time by T = pτ, it becomes,

Y η (p, q) :


dp
dT = p

(
A−Bp2 −Ap+Bp+ p2 − p3 −Qpq

)
dq
dT = −q

(
A−Bp2 − Sp2 −AS −Ap+Bp+ p2 − p3

+Sp2q +ASq −BSp−Qpq +BSpq

)
.

If p = 0, then
dp

dT
= 0,

dq

dT
= −q (A−AS +ASq) .

Thus the singularities are: (0, 0) and (0, (S − 1)/S). This last point is positive,
if and only if, S > 1. The Jaccobian matrix of vector field Y η (p, q) is

DY η (p, q) =

(
Y η (p, q)11 −Qp2
Y η (p, q)21 Y η (p, q)22

)
Math. Model. Anal., 27(3):510–532, 2022.
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with

Y η (p, q)11 = A− 3Bp2 − 2Ap+ 2Bp+ 3p2 − 4p3 − 2Qpq,

Y η (p, q)21 = q
(
A−B − 2p+BS + 2Bp+Qq + 2Sp+ 3p2 −BSq − 2Spq

)
,

Y η (p, q)22 = Bp2 −A+ Sp2 +AS +Ap−Bp− p2 + p3

− 2Sp2q − 2ASq +BSp+ 2Qpq − 2BSpq.

a) When p = 0, it has

Y η (0, q)21 = q (A−B +BS +Qq −BSq) ,
Y η (0, q)22 = −A+AS − 2ASq.

Evaluating on the equilibrium (0, 0) it has

DY η (0, 0) =

(
A 0
0 A (S − 1)

)
.

Thus,
a1. detDY η (0, 0) = A2 (S − 1) < 0, if and only if, S < 1. Then the

singularity (0, 0) is a saddle point.
a2. detDY η (0, 0) = A2 (S − 1) > 0, if and only if, S > 1. Then the

singularity (0, 0) depends on the sign of the trDY η (0, 0) = A+A (S − 1) > 0.
Then, the singularity (0, 0) is a repeller.
b) When q = (S − 1)/S, with S > 1

Y η (0, (S − 1)/S)21 = (S − 1) (−Q+AS +QS)/S2,

Y η (0, (S − 1)/S)22 = −A (S − 1) .

Evaluating on the equilibrium (0, (S − 1)/S), it obtains

DY η

(
0,
S − 1

S

)
=

(
A 0

(S−1)(AS−Q+QS)
S2 −A (S − 1)

)
with, det DY η (0, (S − 1)/S) = −A2 (S − 1) < 0. Then, the point

(
0, S−1S

)
is a

saddle point, attractor on the vertical axis and repeller on the horizontal axis.
Then, by blowing down, the point (0, 0) is a non-hyperbolic saddle or a

non-hyperbolic repeller in the system (3.1). We notice that when S < 1, the
point (0, (S − 1)/S) is out of the first quadrant, but in that case is a repeller.
ut

3.4 Model with a unique positive equilibrium

In the following, we analyzed only one case assuming the existence of a unique
positive equilibrium point; the other cases must be studied in future research
to complete the description of the model properties described by system (3.1)
or vector field Yη (u, v).

Remark 4. We notice that the vector field Yη has up to three positive equi-
librium points at the interior of the first quadrant, the model has the same
quantity of equilibrium points as the Gause type model studied in [17] and the
Leslie-Gower type models studied in [11,20] and [14], respectively.
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Theorem 1 [Existence of a heteroclinic curve].
Let W s (0, 0) and Wu (1, 0) be the stable and unstable manifolds of (0, 0)

and (1, 0); then, a subset of parameters exist for which the intersection of
W s (0, 0) and Wu (1, 0) is not empty, i.e., W s (0, 0) ∩Wu (1, 0) 6= φ, giving
rise to a heteroclinic curve joining the points (0, 0) and (1, 0).

Proof. By Lemma 4, the point (0, 0) has a separatrix with an inclination of
v = u

(
S−1
S

)
and by Lemma 3, the equilibrium (1, 0) is a saddle point.

Let W s (0, 0) = Σ̄ and Wu (1, 0) be the stable and unstable manifolds of
(0, 0) and (1, 0). It is clear that α− limit of W s (0, 0) and the ω − limit of
Wu (1, 0) are not at infinity on the direction of v − axis; then there are points
(u∗, vs) ∈ W s (0, 0) and (u∗, vu) ∈ Wu (1, 0) where vs and vu are functions of
the parameters A,B,Q and S.

It is clear that if 0 < u << 1, then, vs < vu and if 0 << u < 1, then
vs > vu. Since the vector field Yη is continuous with respect to the parameter
values, then the stable manifold W s (0, 0) = Σ̄ intersects with the unstable
manifold Wu (1, 0); then there exist (u∗, v∗) ∈ Γ̄ , such as vs = vu = v∗. This
equation defines a surface in the parameter space for which the heteroclinic
curve exists. ut

Figure 2 shows the relative positions of stable and unstable manifolds of
(0, 0) and (1, 0).

vs

vu

u

v

u (1,0)*

(H,H)

(0,0)

(0,0)w
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(1,0)w
u

u

v

u (1,0)*

(H,H)

(0,0)

(0,0)w
s

(1,0)w
u

vu

vs

Figure 2. The intersection of W s (0, 0) and Wu (1, 0) is not empty, giving rise to the
heteroclinic curve joining the points (0, 0) and (1, 0) .

The separatrix curve Σ̄, the straight line u = 1 and the u−axis determines
a subregion Γ̄ , which is closed and bounded, that is,

Ψ̄ =
{

(u, v) ∈ (R+)2/0 ≤ u ≤ 1, 0 ≤ v ≤ vs and (u, vs) ∈ Σ̄
}

is a compact region, where it is possible to apply the Poincaré-Bendixon theo-
rem. By the diffeomorphim ϕ a separatrix Σ and a subregion Ψ exist, where
the Poincaré-Bendixon theorem applies, in system (2.1) (see Figure 3).

To study the nature of the equilibrium point (H,H) with H < 1, we will
use the relation obtained above: Q = (1−H)

(
H2 +BH +A

)
/H, then, the

vector field Yη or system (3.1) takes the form:

Yθ :

 du
dτ =

(
(1− u)

(
u2 +Bu+A

)
− (1−H)(H2+BH+A)

H v

)
u2,

dv
dτ = S (u − v)

(
u2 +Bu+A

)
v

(3.4)

Math. Model. Anal., 27(3):510–532, 2022.
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Y

Figure 3. Subregion in the phase plane where it is possible to apply the
Poincaré-Bendixson theorem.

with θ = (A,B,H, S). The Jacobian matrix is now:

DYθ (H,H)

=

(
−H2

(
A−B − 2H + 2BH + 3H2

)
−H (1−H)

(
A+BH +H2

)
HS

(
A+BH +H2

)
−HS

(
A+BH +H2

) )
with detDYθ (H,H) = H2S

(
A+BH +H2

) (
A+H2 (B + 2H − 1)

)
.

It has that detDYθ (H,H) > 0, if and only if, A + H2 (B + 2H − 1) > 0,
that is, if and only if, A > H2 (1−B − 2H). The trace is given by:

trDYθ(H,H) = −H2
(
A−B − 2H + 2BH + 3H2

)
−HS

(
H2 +BH +A

)
.

If trDYθ(H,H) = 0, then S = −H
(
A−B−2H+2BH+3H2

)
/(H2+BH+A).

Then, as S > 0, A − B − 2H + 2BH + 3H2 > 0, if and only if, A > B +
H (2− 2B − 3H). We remember that in this case, ∆ = (1−H −B)

2−4AH = 0.

Then, A = 4H (1−H −B)
2
.

Replacing Q, Equation (3.2) can be rewritten as

P (u) = u3− (1−B)u2+ (4 (1−B)−3H) (1−H−B)u− 4H (1−H −B)
2

=0,

since Q = (1−H)
(
−7B − 7H + 8BH + 4B2 + 4H2 + 4

)
. Let us

P = (trDYθ(H,H))
2 − 4 detDYθ (H,H) .

For the system (3.4) we have

Theorem 2 [Nature of the positive equilibrium].
Let us (u∗, vs) ∈W s (0, 0) and (u∗, vu) ∈Wu (1, 0). Assuming 0 < H < 1,

the equilibrium point (H,H) is in the interior of the first quadrant.

1. Assuming vs > vu, it has that (H,H) is

(a) an attractor, if and only if, S >
−H(A−B−2H+2BH+3H2)

H2+BH+A . Moreover,
assuming the last inequality

i. an attractor node, if and only if, P > 0 (see Figure 4), and

ii. an attractor focus, if and only if, P < 0 (see Figure 5),

(b) a repeller, if and only if, S <
−H(A−B−2H+2BH+3H2)

H2+BH+A . Moreover,
assuming the last inequality
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i. a repeller node, if and only if, P > 0 and

ii. a repeller focus, which is surrounded by a limit cycle, if and only
if, P < 0 (see Figure 6),

(c) a weak focus, if and only if, S =
−H(A−B−2H+2BH+3H2)

H2+BH+A .

2. Assuming vs < vu, it has that (H,H) is a repeller (node or focus).

Figure 4. For A = 0.1, B = 4, S = 0.15 and Q = 0.7. The positive equilibrium point is
an attractor node and (1, 0) is a hyperbolic saddle.

Figure 5. Considering A = 0.1, B = 0.02, S = 0.3 and Q = 0.7, the unique positive
equilibrium point is an attractor focus and (1, 0) is a hyperbolic saddle.

Figure 6. For A = 0.1, B = 0.02, S = 0.15 and S = 0.7, the unique positive equilibrium
is a repeller focus surrounded by a stable limit cycle and (1, 0) is a hyperbolic saddle.

Proof. 1. Immediate, considering the sign of trDYθ(H,H) and P .

Math. Model. Anal., 27(3):510–532, 2022.
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When P < 0, then, the point is a repeller focus; by the Poincaré-Bendixon
Theorem [3, 5] in the subregion Γ̄ determined by the straight line u = 1, the
u−axis and the stable manifold W s (0, 0) = Σ̄, the point (H,H) is surrounded
by at least one limit cycle.

2. Assuming that vs > vu, then the stable manifold W s (0, 0) lies under
the unstable Wu (1, 0) and the equilibrium point (H,H) is a repeller node or
focus. The trajectories have the origin as their ω − limit. ut

Corollary 1. A Hopf bifurcation occurs at equilibrium point (H,H) for the
bifurcation value S = −H

(
A−B − 2H + 2BH + 3H2

)
/(H2 +BH +A).

Proof. It follows from the theorem described above since detDYθ (H,H) is
positive and trDYθ(H,H) changes sign. Moreover, the transversality condition
is verified since

∂

∂S
(trDYθ(H,H)) = −H

(
H2 +BH +A

)
< 0.

ut

Remark 5. 1. When vs > vu in the theorem described above, the point (0, 0)
is almost globally asymptotically stable [22], since the equilibrium (H,H) is
the unique solution not attaining that point. Thus, all the trajectories in the
neighborhood of the point (H,H) go to the equilibrium (0, 0).

2. When the parameters change, the limit cycle generated by the Hopf
bifurcation expands and hits the heteroclinic curve, which is then broken and
disappears.

Theorem 3 [Existence of two limit cycles]. The equilibrium point (H,H)
is a second order weak focus.

Proof. We use the calculations of the Lyapunov quantities [16] and consider
the change of variables,

Su = U +H, v = V +H, so,
du

dτ
=
dU

dτ
;
dv

dτ
=
dV

dτ
.

Then, the new system translated to the origin is:

Aη (U, V ) :

 dU
dτ =

(
(1−U−H)

(
(U+H)2 +B (U +H) +A

)
− 1
H (1−H)

(
A+BH +H2

)
(V +H)

)
(U+H)

2
,

dV
dτ = S (V +H) (U − V )((U +H)2 +B (U +H) +A).

A normal form [3] for this system is obtained by making an adequate change
of coordinates. For this, we use the Jordan matrix [3] associated to vector field
Aη (U, V ):

J =

(
0 −W
W 0

)
with, W 2 = detDAη (0, 0) = H2S

(
A+BH +H2

) (
A+BH2 −H2 + 2H3

)
.

The first Lyapunov quantity is η1 = trDAη(H,H) = 0. The matrix for the
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change of coordinates is:

M =

(
HS

(
A+BH +H2

)
−W

HS
(
A+BH +H2

)
0

)
.

Considering the change of variables given by(
U
V

)
=

(
HS

(
A+BH +H2

)
−W

HS
(
A+BH +H2

)
0

)(
x
y

)
,

that is, U = HS
(
A+BH +H2

)
x − Wy and V = HS

(
A+BH +H2

)
x.

Then, (
x
y

)
=

(
0 1

HS(A+BH+H2)

− 1
W

1
W

)(
U
V

)
with, x = 1

HS(A+BH+H2)V and y = − 1
W U + 1

W V. After long algebraic calcu-

lations and by means of time rescaling, we obtain the normal form:

Z̄η =

(
dx

dτ
,
dy

dτ

)
:

where

dx

dτ
= −y − S

(
A+ 2BH + 3H2

)
xy +

W (B + 2H)

A+BH +H2
y2 −HS2 (B + 3H)

×
(
A+BH +H2

)
x2y + SW (B + 4H)xy2 − W 2

A+BH +H2
y3

− S3H2
(
A+BH+H2

)2
x3y + 2S2HW

(
A+BH+H2

)
x2y2 − SW 2xy3;

dy

dτ
= x+

1

W 2
H2S2

(
2A+ 3BH2 − 3H2 + 7H3

) (
A+BH +H2

)2
x2

+
1

W
HS

(
A+BH +H2

) (
(−2A− 8BH2−3H2S−2AH+2BH−AS+8H2

− 16H3 − 2BHS
)
xy +H

(
2A− 2B − 5H + 5BH +BS + 2HS + 9H2

)
y2

+
1

W
H2S3

(
A+ 3BH2 − 3H2 + 9H3

) (
A+BH +H2

)3
x3

1

W
+HS2

×
(
A+BH +H2

)2 (− 2A− 10BH2 − 3H2S −AH +BH + 10H2 − 28H3

−BHS
)
x2y + S

(
A+BH +H2

) (
A+ 11BH2 + 4H2S + 2AH − 2BH

− 11H2 + 29H3 +BHS
)
xy2 −W

(
A−B − 4H + 4BH +HS + 10H2

)
y3

+
1

W 2
H4S4 (B+5H−1)

(
A+BH+H2

)4
x4 − 1

W
H3S3

(
A+BH+H2

)3
× (4B+20H+S−4)x3y+2H2S2W

(
A+BH+H2

)
(3B+15H+S−3)x2y2

−HSW
(
A+BH +H2

)
(4B + 20H + S − 4)xy3 +W 2 (B + 5H − 1) y4

+
1

W 2
H5S5

(
A+BH +H2

)5
x5 − 1

W
5H4S4

(
A+BH +H2

)4
x4y

+ 10H3S3
(
A+BH +H2

)3
x3y2 − 10H2S2W

(
A+BH +H2

)2
x2y3

+ 5HSW 2
(
A+BH +H2

)
xy4 +W 3y5.
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Using the Mathematica package [32], the second Liapunov quantity [5] is ob-
tained, being given by:

η2 (A,B,H) = AHf (A,B,H)/
(
B
(
A+H3

)2 )
,

where

f (A,B,H) = 17A8 − 56A8B − 15A8B2 + 38A8H + 51A8B2H + 51A8B2H

− 39A8B3H − 27A7H2 − 19A8H2 + 79A2BH2 − 22A8B2H3 + 25A6B2H3

− 56A7H3 − 9A6B2H3 − 23A8B2H3 + 17A6B2H3 + 35A5H4 − 41A6H4

−A4BH4 + 42A6B2H4 − 63A4B3H4 + 29A6B2H4 − 31A5BH5 + 67A6H5

− 53A4BH5+11A6B2H5+15A4B2H7+18A3H6−21A2BH6−24A2B2H6

+ 12A4B2H7 + 12A3B2H6+13A4B3H6+47A3H7+196A5H7−214A3B3H7

+ 72A4B3H7 + 45A2B3H8 − 5A3H8 + 96A3B3H8 − 31A2B3H6

+ 46BH9 + 32A4H9 + 37B3H9 + 41A2B2H9 + 18B2H9 + 35ABH10

− 91B2H10 − 5B2H10 + 13BH11 − 7BH11.

Clearly, the sign of η2 depends on f (A,B,H) . Taking into account that A =
1
4H (1−B −H)

2
by Lemma 3, and after some simplifications and algebraic

calculations, it has that:

f (B,H) = 96BH7 +
(
312B2 − 1296B − 888

)
H6+

(
20B4+280B3−2784B2

+ 1360B + 2148
)
H5+

(
20B5+44B4−1810B3+4442B2−442B − 2878

)
H4

+
(
5B6 + 6B5 − 349B4 + 2612B3 − 4453B2 − 1242B + 2333

)
H3

+
(
3B6 − 38B5 + 508B4 − 2422B3 + 1789B2 + 1292B − 1212

)
H2

+
(
42B5 − 5B6 − 473B4 + 806B3 − 297B2 − 512B + 391

)
H

+
(
88B4 − 30B5 − 3B6 − 114B3 + 19B2 + 96B − 56

)
.

Numerically, it can show that f (B,H) changes its sign. For instance: i) choos-
ing H = 0.1, it has

f (B, 0.1) = −3.465B6 − 26.172B5 + 45.436B4 − 55.186B3

+ 3.1537B2 + 56.446B − 26.954.

Evaluating for B = 0.6 and B = 0.7 we obtain, f (0.6, 0.1) = −0.179 54
and f (0.7, 0.1) = 1. 277 5; thus a value B∗ exists in B ∈ ]0.6, 0.7[, for which
f (B∗, 0.1) = 0. Next: ii) analogously, choosing H = 0.5, it has

f (B, 0.5) = 3.12B − 16.5B5 − 61.75B4 − 94.37B3 − 43.38B2 − 4.125B6 + 1.5.

Evaluating for B = 0.1 and B = 0.3 we obtain, f (0.1, 0.5) = 1. 277 5 and
f (0.3, 0.5) = −4. 559 5; therefore a value B∗∗ exists in B ∈ ]0.1, 0.3[, for which
f (B∗∗, 0.5) = 0. Then, f (B,H) and f (A,B,H) change of sign. Thus, values
of A,B and H exist such that η2 (A,B,H) = 0. Therefore, at least two limit
cycles can exist (see Figure 7). This complete the proof. ut
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Figure 7. For A = 0.1, B = 0.02, S = 0.01 and Q = 0.7, the positive equilibrium point is
a weak focus of order two, surrounded by two limit cycles, the innermost unstable and the

outermost stable and (1, 0) is a hyperbolic saddle.

Figure 8. The factor f (B,H) in the Theorem 3 that presents changes of sign.

Figure 8 shows graph of the factor f (B,H) of the Theorem 3, which changes
its sign.

Remark 6. As it’s well-known, the existence of limit cycles is relevant to the
existence, stability and bifurcation of a positive equilibrium. They are impor-
tant in the study of the oscillations of the populational sizes. Thus, the order
of a weak focus plays a key role to determine the number of limit cycles for the
predator-prey models, which is an open problem in Populational Dynamic.

Following the methodology described in [9], where studying global bifurca-
tions of limit cycles and applying the Wintner-Perko termination principle [23],
it could be shown that the system has at most two concentric limit cycles sur-
rounding one positive equilibrium point, as we have verified in Figure 7.

4 Numerical simulations

Some simulations that agree with the mathematical results are shown related
with the behavior of the positive equilibrium point (H,H). Here, we can ap-
preciate different situations for the system when parameters values change.

We show two cases considering the number of positive equilibrium points, at
the phase plane. In all simulations, it can appreciate that the stable manifold
W s (0, 0) has a great slope, and it almost coincides with the vertical axis.

Case 1. Existence of one positive equilibrium point. In Figures 4 to 7, the
main dynamics of the system (3.1) are shown, which have been proved in the
text.
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Case 2. Existence of three positive equilibrium points. In Figures 9 and 10,
we show complex dynamic behaviors of the system (3.1) not described in the
proven properties.
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Figure 9. For A = 0.0275, B = 0.0075, S = 0.65 and Q = 0.2875, there exists a
non-infinitesimal limit cycle surrounded three positive equilibrium points, one of them

(ue1, ue1) to the left, is an attractor focus encircled by a unstable cycle. The point (0, 0) is
a non-hyperbolic saddle and (1, 0) is a hyperbolic saddle.
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Figure 10. For A = 0.0245, B = 0.001, S = 0.01 and Q = 0.2675, there exists a
non-infinitesimal limit cycle surrounded three positive equilibrium points, one of them

(ue1, ue1) to the left, is a repeller node, (ue2, ue2) to the right is an attractor focus. The
point (0, 0) is a non-hyperbolic saddle and (1, 0) is a hyperbolic saddle.

5 Discussion

In this work, a Leslie-Gower type predator prey model, described by a bidi-
mensional continuous-time differential equations system, is analyzed, consid-
ering a rational functional response of Holling type IV. By means of both a
reparametrization and a time rescaling, the original system was transformed



Model with a Non-Monotonic Functional Response 529

into a polynomial system topologically equivalent, in order to reduce the cal-
culations and to carry out an adequate study of the model.

First, we established the quantity of singularities of the vector field, showing
that the system can have up three positive equilibria. Nevertheless, we focused
the attention on the case in which a unique positive equilibrium exists.

We have shown the importance of the point (0, 0) in the modified Leslie-
Gower model, although system (2.1) is not defined there. The singularity (0, 0)
is a point with a complex nature since it possesses parabolic and hyperbolic
sectors on the phase plane. Using the blowing up method [6], we demonstrated
the existence of a separatrix curve Σ̄, determined by the stable manifold of non-
hyperbolic singularity (0, 0). This curve divides the behavior of trajectories;
very near solutions, but to different sides with respect to this curve have distinct
ω− limit; then, solutions are highly sensitive to initial conditions.

The existence of a heteroclinic curve joining the equilibrium (1, 0) and the
singularity (0, 0) is also proven, which is generated by the stable manifold of
non-hyperbolic equilibrium (0, 0) and the unstable manifold of the (1, 0).

Also, we proved the boundedness of solutions of system (3.1), using the
compactification of Poincaré method [23], showing that the modified Leslie-
Gower model is well-posed. Furthermore, we proved the existence of parameter
constraints for which the positive equilibrium point is an attractor or is a
repeller surrounded by a unique limit cycle.

The problem of determining conditions, which guarantee the uniqueness
of a limit cycle or the global stability of the unique positive equilibrium in
predator prey systems is an interesting problem. This problem is related to
the unsolved problem proposed by the mathematician David Hilbert in 1900
and refers to finding the maximum number of limit cycles of a bidimensional
polynomial differential equation system, whose degree must be less than or
equal to n ∈ N .

In Population Dynamics, this issue has been extensively studied over the
last three decades starting with the work by Kuo-Shung Cheng in 1981 [4].
Using the symmetry of the prey isocline, he was the first scientist to prove the
uniqueness of a limit cycle for a specific predator-prey model with a Holling
type II functional response.

By using the Lyapunov quantities method [16] we demonstrate that the
model has a two-order weak focus, that is, the unique positive equilibrium point
is an attractor focus surrounded two limit cycles, the innermost unstable and
the outhermost stable.

As the systems (2.1) and (3.1) are topologically equivalent, it is possible
affirm that the main characteristic of the model (2.1) is that both species can
coexist or else, the predators can go extinct, for the same parameter values,
according to the relation between their initial population sizes.

Simulations considering three positive equilibrium points in system (3.1)
show that the stable manifold W s (0, 0) of the equilibrium point (0, 0) is also
very near to the vertical axis. This result implies in system (2.1) that both
populations cannot be driven into extinction, simultaneously.

Some prospective studies can be considered to analyze, such as:

i) the cases in which two or three positive equilibria exist. Moreover, the

Math. Model. Anal., 27(3):510–532, 2022.
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some model considering alternative food for predator, i.e, assuming the variable
environmental carrying capacity of predators described by K(x) = nx+c, with
c > 0.

ii) The Leslie-Gower type predator-prey model considering the generalized

non-monotonic functional response h(x) = qxm

xn+a , with n, m ∈ N and n > m ≥
1. Simple cases have been analyzed in [11,20], assuming m = 1 and n = 2.

iii) The Allee effect [9] can also be included in the above models. Some
particular cases have been studied in [1, 9].

iv) Likewise, the influence of the shape of non-monotonic functional re-
sponses may also be a topic to be developed.

Therefore, the comparison among these models arises naturally; in partic-
ular, the showdown about the number of positive equilibria and their nature,
as well as the number of limit cycles around of a positive equilibrium point
generated by Hopf bifurcation, or else, the existence of non-infinitesimal limit
cycle originated by homoclinic or heteroclinic bifurcations.
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