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Abstract. A new procedure in the field of Bézier base extended isogeometric me-
thod (XIGA) has been introduced to analyze the effect of welding residual stress and
thermal load on crack propagation rate and fatigue life. This new procedure is based
on the constitutive thermoelastic plastic equation. The main parts of this procedure
are using the Bézier base XIGA method to calculate the redistribution of welding
residual stress due to crack growth and to compute the value of stress intensity factor
(SIF) in the welding residual stress field. For this purpose, the grid points of Bézier
elements (with C0-continuity) around the crack line and the crack tip are identified
by the level set representation. Then, discontinuous enrichment functions are added
to the isogeometric analysis approximation. Thus, this method does not require the
re-meshing process. The results show that there is a good agreement between the
results of proposed numerical method and the Hole-Drilling Strain-Gage method.
The interaction integral method has been used to extract SIF. The effects of welding
residual stress and thermal load on the SIF are considered using the superposition
method. Also, the Walker equation has been modified to calculate the fatigue life
caused by thermal loading and welding residual stress. The results display a good
agreement between the proposed method and the finite element method. Due to the
advantages of the Bézier based XIGA method, which eliminates parametric space and
allows the precise addition of enrichment functions to the basis functions of cracked
elements (crack line or crack tip), the obtained results are highly accurate that shows
this method is effective for analyzing discontinuous problems.
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1 Introduction

The most important effect of welding on mechanical parts is residual stress.
Crack and defects caused by residual stress are the common defects in me-
chanical parts. Welding is a reliable and effective joining process in metals.
The presence of residual stresses can be detrimental to the performance of the
welded product. The butt-weld is a common type of welding joint. The residual
stress can be harmful to the welded part performance. Tensile residual stresses
generally increasing the susceptibility of a weld to stress cracking, fracture and
fatigue [23]. In defects growth assessing the welding residual stress may give
a large quota in total stress field than stress caused by mechanical loads [5].
Welding residual stress may result in some failure mechanisms such as brittle
fracture and fatigue. Therefore, in the presence of mechanical load and resid-
ual stress in welded parts, the probability of failure due to fatigue is greatly
increased and it is very important to investigate this cases. Numerical meth-
ods have been widely used in various sciences [19, 28, 29, 42]. These methods
have high accuracy and acceptable convergence rate [8,18,34]. Thus, numerical
methods have been presented to find an accelerate and possible solution in this
case. The finite element method (FEM) has been widely used to obtain the
residual stress caused by the welding [34, 42], and also to compute the SIF of
crack [33]. In terms of crack growth problems and thermoelastic plastic analy-
sis, FEM analysis has some weak points such as being time-consuming in SIF
calculation. To overcome these weak points, new numerical methods have been
introduced like the meshfree method and isogeometric method (IGA).

In the meshfree method, known as the meshless method there is no mesh
in the domain of the problem [32]. Isogeometric analysis numerical method
has been performed successfully [13, 15, 38] in some numerical methods such
as FEM. The fundamental concept of isogeometric method is that the analy-
sis receives geometry data directly from computer-aided design (CAD) models
and uses a geometric basis function, as used in CAD, within the modeling and
analysis process. Fundamental basis function in CAD is B-spline or NURBS.
In comparison with Lagrange and Hermit basis functions that are used in fi-
nite element method, this kind of basis function can achieve higher continuity
of derivatives. The Bézier extraction operator approach can be used with the
isogeometric analysis. By choosing Bernstein functions as basis functions, an
isogeometric analysis similar to that performed on the traditional finite ele-
ment will be performed. Bernstein functions have a C0-continuity similar to
Lagrange functions. The Bézier extraction operator allows the NURBS based
isogeometric analysis numerical method to be incorporated into the traditional
finite element method framework.

The isogeometric numerical method is used in numerous fields. Nguyen
et al. [24] employed isogeometric Bézier FEM with a C0-type shear deforma-
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tion theory for structural vibration analysis of functionally graded piezoelectric
porous plates. They showed that the results of this method are very consis-
tent with similar numerical studies or other solutions in the literature. Kumar
et al. [31] studied the stress intensity factor on the crack tip plastic zones by
XIGA. This study showed the effect of holes on the extent of crack tip plastic
zones. Shuohui et al. [40] developed a novel method for the analysis of static
and dynamic crack problems in elastic solids by XIGA analysis. Their proposed
method provides several advantages in fracture modeling and analysis. Tran et
al. [36] employed IGA for the buckling, static and dynamic response of plates.
Huang et al. [12] performed analytical characterizations of the crack tip stress
field and crack tip plastic zone for central cracked unstiffened and stiffened
plates under biaxial loading. Yuan et al. [41] studied mode-I stress intensity
factor for cracked special-shaped shells under bending load. Nguyen et al. [26]
employed XIGA to analyze through-thickness cracks in thin shell structures.
Bhardwaj et al. [3] performed fatigue crack life analysis in functionally graded
material using XIGA. Also, continuous research has been done on the combina-
tion of meshfree and XIGA methods(adaptive isogeometric-meshfree coupling
approach) [11, 20, 25] and also XIGA methods and FEM method [14,16,17] to
investigate different parameters in cracked structures.This researchs was done
in order to take advantage of both methods, which also had acceptable and
important results.

In this study, the extended IGA is employed to investigate the fatigue life
of a plate with welding residual stress and thermal load. A new formulation is
presented to calculate the temperature distribution and residual stresses in a
welding process. The stress field is then analyzed in the presence of crack and
crack growth. In addition, the temperature and stress fields caused by thermal
loading are calculated in the presence of crack. To validate the IGA results
of residual stresses, the results of the hole-drilling strain-gauge method were
used. To avoid re-meshing process, the grid points around the crack line and
the crack tip are identified by representing the level set, and discontinuous en-
richment functions are added to the isogeometric analysis approximation. The
interaction integral method is used to extract SIF. The superposition principle
is used to investigate the effect of welding residual stress and thermal loading
on the effective SIF. The Walker equation is modified to calculate the fatigue
life caused by thermal loading and residual stress due to welding. To confirm
the results, FEM analysis was done under the same conditions. Prediction of
fatigue life with the proposed procedure showed a good agreement with FEM
results.

2 Constitutive equations for thermo elastic-plastic stress

The governing equation for the 2D problem in the domain Ω and the boundary
Γ is explained as

σij,j + bi = 0,

where i, j = (1, 2) denote the x and y coordinates, respectively and b is the
external traction.
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The initial and boundary conditions are as follows:

σijnj = t̄i on Γt and ui = ūi on Γu,

where ūi and t̄i represent the displacement and tractions, respectively, and nj
is the component of the unit vector that is normal to the boundary. Because
of the high rate of temperature rise in the welding and low yield stress at high
temperatures, plastic strain is produced in the material. Therefore, to analyze
the behavior of materials and calculate the welding residual stress, the use of
thermoelastic plastic equations is necessary.

[dσ] = [Dep]{dϵ} − [Dth]dT and [Dep] = [De]− [Dp],

where [Dep] is the elastic-plastic stiffness matrix, [De] and [Dp] are the elastic
and plastic stiffness matrix, respectively, and [Dth] is the thermal stiffness
matrix.

Due to the nonlinear dependence between strains and stresses in the ma-
terial, the material stiffness cannot be considered constant. Equations that
describe the appropriate dependency are defined in a variety of methods. In
this study, the incremental plasticity method has been used to define the consti-
tutive equations, which describes the appropriate dependence. The material is
modeled with thermoelastic plastic behavior and temperature-dependent prop-
erties. Also, plasticity is independent of rate and is modeled using the kinematic
hardening, associated flow rule and von Mises criterion.

Thus, using the plasticity theory, the thermoelastic plastic equation is de-
fined as [37]

{dσ} = [Dep]{eϵ} − [Dep]

(
{a}dT +

∂[De]−1

∂T
{σ}dT +

∂[De]−1

∂ϵ̄
{ϵ}dϵ̄

)
− [De]{σ́

S

(
∂F

∂T
dT +

∂F

∂ϵ̄
dϵ̄

)
,

where {α} is the linear thermal expansion coefficient matrix, ϵ̄ is the rate of
strain, σ́ is the effective stress and F is the yield function.

3 Isogeometric analysis numerical method

3.1 NURBS basis functions

The B-spline basis functions are basic concepts of the IGA method, that can be
defined using a knot values wich called knot vector, Ξ = {ξ1, ξ2, . . . , ξn+p+1}
(ξ ∈ R), where n is the number of the basis functions and p is the order of the
polynomial. The B − spline functions define as [2]

Ni,0 =

{
1, ξi ≤ ξ < ξi+1 for p = 0,
0, otherwise,

and

Ni,p(ξ) =
ξ − ξi

ξi+p−1 − ξi
Ni,p−1(ξ) +

ξi+p − ξ

ξi+p − ξi+1
Ni+1,p−1(ξ) for p > 0.
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The NURBS surfaces are defined as

S(ξ, η) =

n∑
i=1

m∑
j=1

Ri,p(ξ, η)Pi,j ,

where Pi,j forms an n×m set of control points and R(ξ, η) represents NURBS
basis function defined as

R(ξ, η) =
Ni,p(ξ)Mj,q(η)wi,j

n∑
i=0

m∑
j=0

Ni,p(ξ)Mj,q(η)wi,j

,

where wi,j,k represents the weights corresponding to the control point.

3.2 Bézier extraction of NURBS

The traditional spans of Bézier element are [0, 1] (in each direction) created by
a knot vector without the internal value. This knot vector contains (p+1) zeros
and ones, where p is the order of the polynomial. The basis functions created
by this kind of knot vector are named the Bernstein functions and have many
similarities to the Lagrange basis functions that are used in the finite element
method. The Bernstein functions can be defined as [27]

Bi,P (ξ) = (1− ξ)Bi,P−1(ξ) + ξBi−1,P−1(ξ),

B0,P (0) = BP,P (1) = 1, Bi,P (ξ) = 0 if i < 0, i > p.

These Bernstein functions, similar to the B − splines and NURBS functions,
constitute the partition of unity and are nonnegative over the entire domain.
In addition, the Bernstein functions identical to the Lagrange functions are
symmetric and interpolator at the endpoints of the domain.

The ith derivatives of Bernstein functions are defined in Equation (3.1):

Bi,P (ξ)

dξ
= p [Bi−1,P−1(ξ)−Bi,P−1(ξ)] B−1,P−1(ξ) = BP,P−1(ξ) = 0. (3.1)

Similar to the B − spline and NURBS curve, a Bézier curve can be evaluated
by a linear combination of Bernstein functions and the set of control point
coordinates as

C(ξ) =

p∑
i=0

Bp
i (ξ)Pi = PTB(ξ).

The Bézier extraction operator maps linear combinations of Bernstein functions
(Bézier basis functions) into NURBS basis functions. So, it is possible to use
piecewise C0 -continuous Bézier elements in IGA analysis similar to FEM. To
decompose NURBS basis functions to Bézier elements (Bézier decomposition)
all internal values of the knot vector must be repeated until multiplicity be-
comes equal to p. The Bézier extraction operator defined using the equations
between the new control points and the original control points when a knot is
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repeated. Assuming that ξ̄ ∈ [ξk, ξk+1] (k > p) is a new knot that inserts into
the existing knot vector Ξ = {ξ1, ξ2, . . . , ξn+p+1}, a new set of control points
can be created as [6]

P̄i =

 P1, i = 1,
αiPi + (1− αi)Pi−1, 1 < i < m,m = n+ 1,
Pn, i = m,

(3.2)

αi =


1, i ≤ K − P,
ξ̄ − ξk
ξi+p − ξi

, K − P + 1 ≤ i ≤ K,

0, i ≥ K + 1,

where P̄ and Pii are the new and the existing control points, respectively. Based
on the operation of knots insertion, given a new set of knots {ξ̄1, ξ̄2, . . . , ξ̄m}, the
Bézier extraction operator Cj(j = 1, 2, . . . ,m) can be determined in a matrix
form as

Cj =


α1 1− α2 0 0
0 α2 1− α3 . . . 0
0 0 α3 0

...
. . .

...
0 0 0 . . . α(n+j−1)(1− α(n+1))

 .

Consequently, Equation (3.2) can be recast in a matrix form to present the
sequence of control points created by the knot insertion operation.

P̄i+1 = (Cj)
T P̄j , where P̄1 = P.

The final control points P̄m+1 = Pb are explained as:

CT = (Cm)T (Cm−1)
T . . . (C1)

T .

The equation between the original NURBS control points and the new Bézier
control points is defined as P̄ = CTP. Given that the insertion of a node
does not change the parametric or geometric nature of the curve, so it can be
written,

C(ξ) = (P̄ )TB(ξ) = (CTP )TB(ξ) = PTCB(ξ) = PTN(ξ),

therefore, the equation between the B-spline basis functions and the Bernstein
functions defined as N(ξ) = CB(ξ), where, C is called the Bézier extraction
operator. The surfaces created by the NURBS basis functions and the Bézier
basis functions are entirely similar

The bivariate Bézier extraction operator is defined as Ce
A = Ci

ξ ⊗Ci
η.

4 Thermal and residual stress analysis in welding process

To calculate the welding-residual stress distribution, the temperature distribu-
tion due to welding must first be calculated. For thermal analysis of the part
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during welding it can be considered as a finite volume with the surface S. The
heat transfer equation for the mentioned boundary volume explained as

−∇ · q⃗(x, y, z, t) +Q(x, y, z, t) = ρC
∂T (x, y, z, t)

∂t
, (4.1)

where q⃗ is the heat flux vector, Q is the generated heat by the internal heat
source, ρ is the density, C is the special heat capacity and T is the temperature
at any moment. The Fourier law for heat flux is as follows:

q⃗ = k∇T, (4.2)

where k is the heat conductivity coefficient. By combining Equation (4.1) and
Equation (4.2), the following equation is obtained,

ρC
∂T

∂t
= Q+

[
∂

∂x

(
Kx

∂T

∂x

)
+

∂

∂y

(
Ky

∂T

∂y

)
+

∂

∂z

(
Kz

∂T

∂z

)]
. (4.3)

If the part is in contact with a fluid and there is a temperature difference
between them, there will also be convection heat transfer and Equation (4.3)
will be written as follows:

ρC
∂T

∂t
+
hP

A
(T − T∞)=Q+

[
∂

∂x

(
Kx

∂T

∂x

)
+

∂

∂y

(
Ky

∂T

∂y

)
+

∂

∂z

(
Kz

∂T

∂z

)]
,

where P is the perimeter of area A and h is the heat convection coefficient.
This equation is a nonlinear equation and is solved using initial and boundary
conditions. The temperature-dependent physical properties of the material are
also required.

In order to achieve the element weak form differential equation of thermal
problems instead of minimizing potential energy function, a similar function
will be minimized and the same force vector and stiffness matrix will be ob-
tained.

KT(t) +mṪ(t) = f(t), f(t) = fQ + fq + fh, (4.4)

where

k =

∫
BTDthBdΩ +

∫
hRTRdS, m =

∫
CρRTRdΩ,

fQ =

∫
RTQdΩ, fq

∫
RTqdS, fh =

∫
RThT∞dS.

Using the backward difference technique to approximate time, for each time
step, Equation (4.4) written as:(

m+
1

2
k∆t

)
Tn+1 = f∆t+

(
m− 1

2
k∆t

)
Tn.

The initial (thermal) strain can be calculated as follows: εth11
εth22
2εth12

 =

 α11

α22

0

∆T,

Math. Model. Anal., 27(4):629–651, 2022.



636 M.M. Shoheib, S. Shahrooi, M. Shishehsaz and M. Hamzehei

where ℵij and ∆T denote the thermal expansion coefficient and temperature
gradient, respectively.

After obtaining the temperature field of welding, this temperature field is
applied as a loading and the welding residual stress is calculated from the
mechanical analysis. The force vectors and stiffness matrix will be obtained as

ku = P+ F+R,

where K (the local elastic-plastic stiffness matrix) and thermomechanical load
vectors are obtained as:

k =

∫
Ωq

VT
I D

epBdudΩ −
∫
Γqu

WT
I nD

epBdudΓ,

P =

∫
Ωq

VT
I D

thdTdΩ & F =

∫
Γqt

WI(t̄i + dt̄i)dΓ & R =

∫
ΩQ

VT
I σdΩ.

5 Extended isogeometric analysis

5.1 Level set technique

The level set technique is used in the cracked models to identify the crack line
and crack tip, in which a crack is defined by two orthogonal level set fields [30].
The first field defines the crack line {x : ϕ(x)=0 and ψ(x)≤0}, and other one
defines the crack tip {x :φ(x)=0 and ψ(x)=0}. The local enrichment function
is then used to describe crack geometry independently of the mesh without
the need for a re-meshing process for the crack growth analysis. This implicit
definition of crack line and crack tip by the level set is illustrated in Figure 1.

Figure 1. Crack line function φ and crack tip function Ψ .

In this technique, φ denotes the distance to the extended crack line, and ψ
denotes the distance to the line that intercross the crack line at the crack tip
and is perpendicular to the crack line.

In the given control point, the amount of φ is the minimum interval between
the control points and the crack line. Considering that (x0, y0) and (x1, y1)
represent the coordinates of the starting point and end point of a crack, and
p = (x, y) is a control point where the minimum interval is calculated, and n
is the unit vector that is normal to the element that containing this control



Bézier Base Extended Isogeometric Numerical Method 637

point, φ is defined as:

φ = (x− y) · n =
(y0 − y1)x+ (x1 − x0)y + (x0y1 − x1y0)√

(x1 − x0)2 + (y1 − y0)2
,

where φ is calculated for each control point to recognize the elements that are
cuted by the crack line. Also, the crack tip function, ψ, defined as:

ψ = ([xy]− [x1y1]) ·

(
(x1 − x0)⃗l + (y1 − y0)J⃗∣∣(x1 − x0)⃗l + (y1 − y0)J⃗

∣∣
)
.

Similarly, the amount of ψ is the minimum distance between each control point
and the crack tip. ψ is calculated for each control point of the model to
recognize the element around the crack tip. On the other hand, max(φ) ×
min(φ) < 0 and max(ψ) < 0 is valid for the split knot span (element) and
max(φ)×min(φ) < 0 and max(ψ)×min(ψ) < 0 is valid for the crack tip knot
span (element).

5.2 XIGA approximations for crack problems

In the XIGA method, the approximation of displacement is locally enriched by
asymptotic enrichment function to simulate discontinuities. For this purpose,
several number of fictitious nodes (and their degrees of freedom) are added to
the control points of the elements consisting of the crack line and the crack
tip. The basic concept of XIGA is the extent of approximation of the basis
functions by special enrichment functions selected according to the behavior of
the crack problem. In the cracked model, the elements divided by the crack
line and the crack tip are recognized as enriched elements.

(a) (b) (c)

Figure 2. Crack geometry and enriched control points, (a) basis functions of order 1,
(b) basis functions of order 3, (c) Heaviside enriched control points and crack tip enriched

control points.

Furthermore, in XIGA, cracks independent of the meshing process are
shown, and hence, re-meshing process is not required for the analysis of crack
propagation. The level set technique is used to identify the enriched and non-
enriched elements as well as their control points. The XIGA discretization with

Math. Model. Anal., 27(4):629–651, 2022.
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the enriched control points is shown in Figure 2. The typical XIGA discretiza-
tion with the enriched control points is shown in Figure 2(a), and Figure 2(b)
for basis functions of orders 1 and 3, respectively.

The control points associated with the split elements are enriched with the
Heaviside function whilst the control points associated with the tip elements are
enriched with the crack tip enrichment functions. The XIGA approximations
in the two-dimensional continuum formulation for cracks are given as [4, 35]

u(ξ) =

nel∑
i=1

Ri(ξ)ui+

nh∑
j=1

Ri(ξ)[H(ξ)−H(ξi)]aj

+

nt∑
k=1

Rk(ξ)

{
4∑

α=1

[Qα(ξ)−Qα(ξi)]b
α
k

}
. (5.1)

The first term in Equation (5.1) represents the standard isogeometric analysis
approximation. Additionally, Ri(ξ) is the basis function and ui is the standard
(without enrichment) degrees of freedom related to a special control point.
Other terms in the displacement field are used to represent the discontinuous
behavior by enrichment function. Where H(ξ)s are the Heaviside functions
and Qα(ξ)s are the asymptotic enrichment functions for crack tip. Moreover,
aj and bℵk are the additional degrees of freedom related to the modeling crack
line and the crack tip, and nt and nh are the number of enriched control points
with asymptotic enrichment functions of crack tip and Heaviside functions,
respectively.

The H(ξ) function is equal to +1 or −1 based on on the location of the
control point concerning the crack lines. For each individual control point, the
H(ξ) is equal to +1 if this control point lies above the crack line, otherwise it
will be −1. The asymptotic enrichment functions of crack tip are defined as

Qα(ξ) =

{√
r cos

θ

2
,
√
r sin

θ

2
,
√
r cos

θ

2
sin θ,

√
r sin

θ

2
sin θ

}
.

In these functions, r and θ are the polar coordinates of a point concerned with
the crack tip.

Due to the fact that in the residual weighting method, the spline function
is also used as a weight function, the same enrichment function has been used
to enrich these functions. In fact, the basis function and the weight function
in this method are considered the same as the basis function and the shape
function in the isogeometric method. The discrete system of the following
equations is obtained as

[k]{a} = {F},

where, [K] is the global stiffness matrix, {a} is the vector of nodal unknowns
and {f} is the vector of external force. The displacement control variables and
the additional enrichment degrees of freedom are as follows:

U = {u a b1 b2 b3 b4}T .
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The global stiffness matrix K is explained as:

ke =

∫
(Br

i )
TDBs

jdΩ, r, s = u, a, b.

The global force vector F is expressed as:

Fi = {Fu
i F

a
i F

b1
i F b2

i F b3
i F b4

i }T ,

Fu
i =

∫
[BT

i Dε0dΩ −
∫
[BT

i σ
0dΩ +

∫
[RT

i bdΩ +

∫
[RT

i s]dS,

F a
i =

∫
[BT

i Dε0dΩ −
∫
[BT

i Hσ0dΩ +

∫
[RT

i HbdΩ +

∫
[RT

i Hs]dS,

F b
i =

∫
[BT

i QαDε0]dΩ −
∫
[BT

i Qασ
0dΩ +

∫
[RT

i QαbdΩ +

∫
[RT

i Qαs]dS.

6 Interaction integral method

The present interaction integral approach for computing SIF is a two-state
integration method with superposition of auxiliary and actual fields. In this
method, small kinematic strain is assumed and the material is limited to linear
elastic and isotropic. The interaction integral (M -integral) equation is derived
from the J-integral equation. The J-integral [7] is explained as

J = lim
Γ→0

∫
Γ

(wδ1j − σijui,1)njdΓ,

where w is the density of strain energy that defined as follows: w =
∫ εkl

0
σijdεij ,

and nj is the outward vector that is normal to the contour Γ , as shown in Figure
3, where ū is the displacement and τ̄ is the traction.

Figure 3. Coordinate systems and integration path.

If two supportable and independent fields are considered in a condition that
the displacement, strain, and stresse of the actual field and the auxiliary field

Math. Model. Anal., 27(4):629–651, 2022.
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are denoted by (u, ε, σ) and (uaux, εaux, σaux), respectively, then the J-integral
of these fields defined as

Js=

∫
Γ

{
1

2
(σik+σ

aux
ik )(εik+ε

aux
ik )σ1j−(σij+σ

aux
ij )(ui,1+u

aux
i,1 )

}
njdΓ. (6.1)

The integral Equation (6.1) is not the appropriate form for further evaluations.
Thus, it is necessary to recast this integral into a similar domain form. This task
would be done by multiplying the integrand by a sufficiently smooth weighting
function q. This weighting function takes a value of unity on an open set
including the crack front and losses on an outer prescribed contour. Based on
this principle, M̄ can be defined as

M̄ = −
∫
v

(
ui,lσ

aux
ij ql,j + uauxi,l σijal,j
−σaux

ij ϵijql,l

)
dV +

∫
v

(
ui,lσ

aux
ij,j + uauxi,lj σij

+uauxi,l fi − σaux
ij,l ϵij

)
qqdV.

By superposing the actual and auxiliary fields the interaction integral M(s)
take the value as

M(S) =
2

E′ (KIK
aux
I +KIIK

aux
II ) +

1

µ
KIIIK

aux
III ,

where µ is the shear modulus and E′ is defined using material parameters.
KI is calculated by substituting the auxiliary field SIFs Kaux

I = 1 and
Kaux

II = Kaux
III = 0 as [35]:

KI =
E′

2
M(S)(Kaux

I = 1,Kaux
II = Kaux

III = 0).

7 Effective stress intensity factor

In the presence of residual stresses, the effective stress intensity factor is calcu-
lated based on the superposition principle. The effective stress intensity factor
is mathematically explained as

keff = kther + kres,

where Kther and Kres are the thermal SIF and residual stress SIF, respectively.

8 Fatigue crack growth

The cycle ratio is defined as R = kmin/kmax, where Kmax and Kmin are the
minimum and maximum of SIF, respectively. When the cycle ratio is not zero,
crack propagation is a function of both the cycle ratio changes and the SIF
changes as follows:

da

dN
= f(∆k,R).

The Walker equation is defined as [10]

da

dN
=c(∆k)m, ∆k = kmax(1−R)µ,
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where µ is also dependent on the material properties.
In the presence of residual stress in the material, based on the superposition

principle, the total SIF can be defined as follows:

∆ktotal = ∆kmax
eff −∆kmin

eff = (kmax
ther + kres)− (kmin

ther + kres) = ∆kther.

Therefore, the Walker equation should be used, as defined below:

da

dN
= c

{
(kmax − kmin)(1−Reff )

µ−1
}m

,

where the effective cycle ratio is defined as

Reff = (Kmin
ther + kres)/(K

max
ther + kres).

Therefore, the Walker equation is modified based on Reff as follows:

da

dN
= c

{
(kmax − kmin)

(
∆kther

kmax
ther + kres

)µ−1}m

. (8.1)

9 Numerical results and discussion

9.1 Analysis conditions

The analyzed structure is a plate with a length and width of 300mm and a
thickness of 2mm. The material of the plate is SUS304. The welding direction
and the shape of the joint are schematically shown in Figure 4. Moreover, the
thermal load and boundary conditions are specified in Table 1.

Figure 4. Dimension and welding details.

The gas tungsten arc welding process (GTAW) is used as the welding
method. Welding time and heat input are considered t = 90s and Q = 110 J

mm ,
respectively. In this study, the physical, mechanical and thermal properties of
materials are temperature dependent [9].

9.2 Residual stress analysis by XIGA method

The analysis includes two steps. In first step, the temperature history of weld-
ing process is calculated. Then, in the second step, the temperature history is
applied on the mechanical model to calculate the welding residual stress. The
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Table 1. Dimensions and boundary condition of the plate.

Plate length 300 mm
Plate width 300 mm
Plate thickness 2 mm
Initial crack length 10 mm
Welding heat input 110 J/mm
Left edge(heat flux) 1000 KW/m2

Right edge(constant) 300◦C
Top edge insulated
Bottom edge insulated

mechanical solution is continued until all nodes reach ambient temperature.
Also, due to the geometric symmetry and reduced computational cost, half of
the model has been analyzed.

Thermal boundary condition is assumed for all plate boundaries. Also,
radiation losses are considered for the weld zone, and convection losses are
considered for parts far from the weld zone. In this study, the moving heat
source is modeled and the same model and basis function are used in thermal
and mechanical analysis. To display analysis result, several paths and points
have been considered [22]. These paths are illustrated in Figure 5.

Figure 5. The considered path.

Also, the coordinates of the considered point are presented in Table 2.

Table 2. Coordinates of the considered point (mm).

Point A B C D E F G H I J

X 150 150 150 150 150 150 150 150 150 150
Y 0 5 10 20 25 30 60 90 120 150

The history of temperature at points A–J in the vertical direction on the
welding line is presented in Figure 6 from the beginning of the welding process
up to 300s later [22].

Table 3 shows the transverse and longitudinal welding residual stress along
the lines 2, 3, 4 and the welding line. This table shows that in the direction
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Figure 6. Temperature distribution on line 3 from 0 to 300s.

perpendicular to the welding line, the transverse residual stresses are signifi-
cantly less than the longitudinal residual stresses. Also, the maximum value of
welding residual tensile stress occurs in the line 2 and then reduces quickly to
the residual compressive stress.

Table 3. Longitudinal and transverse residual stresses.

Welding line (line 1) line 2 line 3 line 4

X Long. Transv. Y Long. Transv. Y Long. Transv. Y Long. Transv.

0 5.1 -200.3 0 251.7 35.3 0 245.7 31.6 0 239.3 30.7
20 150.4 -70.5 10 250.2 37.2 10 245.3 32.1 10 240.7 34.2
40 240.7 25.1 20 249.4 37.4 20 245.2 32.3 20 241.2 35.1
60 258.2 26.6 30 248.3 37.5 30 245.4 32.4 30 180.4 34.5
80 261.1 22.7 40 -100.1 35.8 40 -110.7 29.7 40 -130.3 30.5
100 259.3 20.4 50 -180.8 25.4 50 -146.2 24.6 50 -126.2 24.5
120 257.2 18.2 60 -125.5 15.3 60 -105.3 18.5 60 -92.5 17.2
140 255.3 16.5 70 -90.2 5.2 70 -78.5 14.5 70 -67.4 11.3
160 254.4 16.4 80 -65.1 0.4 80 -58.4 11.4 80 -48.9 7.6
180 255.6 18.6 90 -47.9 -2.9 90 -43.5 8.3 90 -35.7 4.5
200 257.7 21.4 100 -30.5 -3.5 100 -30.2 5.8 100 -24.2 2.4
220 257.4 23.8 110 -17.4 -2.7 110 -20.1 3.8 110 -17.3 1.5
240 253.9 27.2 120 -8.6 -2.0 120 -12.6 2.1 120 -12.5 0.9
260 230.8 26.9 130 -2.1 -1.1 130 -6.9 1.2 130 -6.3 0.5
280 105.2 -40.8 140 0.3 -0.5 140 -4.7 0.5 140 -4.1 0.2
300 2.7 -210.2 150 4.1 0 150 -1.2 0.1 150 -0.9 0

The Hole-Drilling method determines residual stresses based on the mea-
sured strains [1]. Table 4 shows the longitudinal and the transverse welding
residual stresses along the lines 3 calculated by the IGA method and the Hole-
Drilling method. This figure shows that the residual stresses results calculated
by the presented method are obtained with acceptable accuracy.

9.3 Crack propagation in the residual stress field

Redistribution of the welding residual stress and strain during crack propaga-
tion was calculated by the XIGA method. Welding residual strain and stress
were calculated for different crack lengths from 10mm to 25mm. Table 5 and
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Table 4. Comparison of the results of residual stress distribution by Hole-Drilling method
and IGA method.

Distance from Longitudinal (MPa)
Error (%)

Transverse(MPa)
Error (%)

Weld Line (mm) IGA Hole Drilling IGA Hole Drilling

0 245.7 252.1 2.54 31.6 29.9 5.69
10 245.3 249.7 2.51 32.1 31.2 2.89
20 245.2 248.2 1.21 32.3 31.8 1.57
30 245.4 246.9 0.61 32.4 31.7 2.21
40 -110.7 -113.2 2.21 29.7 30.4 2.31
50 -146.2 -147.5 0.89 24.6 25.7 4.28
60 -105.3 -103.4 1.84 18.5 17.9 3.35
70 -78.5 -77.1 1.82 14.5 13.7 5.84
80 -58.4 -60.2 2.91 11.4 10.6 7.53
90 -43.5 -45.1 3.73 8.3 7.9 7.61
100 -30.2 -31.4 3.82 5.8 5.3 9.43
110 -20.1 -20.9 3.83 3.8 4.1 7.31
120 -12.6 -13.1 3.78 2.1 2.3 8.69
130 -6.9 -6.7 2.98 1.2 1.4 14.28
140 -4.7 -4.5 4.45 0.5 0.6 16.67
150 -1.2 -1.1 9.10 0.1 0.122 18.01

Figure 7 show the redistribution of transverse and longitudinal welding residual
strain and residual stresses for various crack lengths during crack propagation.
Crack growth induced considerable change in longitudinal residual stress rel-
ative to transverse residual stress. Also, Kres for each crack length can be
calculated from the stress redistribution in the same crack length according to
the interaction integral method.

Figure 7. Von Mises stress for different crack lengths.

9.4 Stress field of thermal load around the crack

The temperature and stress distributions of thermal load in the welded plate
were calculated by XIGA method. The stress redistribution in the x and y
directions due to crack growth is presented in Figures 8 and 9, respectively.
These figures show the stress distribution perpendicular to the weld line for
different crack lengths along y = 0 to y = 150 mm as a function of distance
from the weld line. There are considerable change in the stress field around the
crack due to crack growth.
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Table 5. Longitudinal and transverse strain for different crack lengths.

Distance No Crack a= 10 mm a= 15 mm a= 20 mm
Longit. Transv. Longit. Transv. Longit. Transv. Longit. Transv.

0 0.00115 -0.0002 0.00018 -0.00071 0.0002 -0.00071 0.0001 -0.0076
10 0.001184 -0.0002 0.00134 0 0.000035 -0.0005 0.00009 -0.00069
20 0.0011801 -0.00019 0.00129 0 0.00129 0.0001 0.001281 0
30 -0.00004 0 0.00045 0.0001 0.00125 0.00016 0.00128 0.00025
40 -0.00082 0.00035 -0.00077 0.00041 -0.00069 0.00045 -0.00057 0.00049
50 -0.000665 0.00036 -0.00061 0.00039 -0.00054 0.00043 -0.00048 0.00046
60 -0.00048 0.00028 -0.00044 0.00031 -0.0004 0.00034 -0.00035 0.00036
70 -0.00035 0.00022 -0.00032 0.00024 -0.00029 0.00026 -0.00026 0.00028
80 -0.00026 0.00016 -0.00024 0.00018 -0.00022 0.0002 -0.0002 0.00021
90 -0.0002 0.000115 -0.00019 0.00013 -0.00017 0.000145 -0.00015 0.000155
100 -0.00016 0.00008 -0.00015 0.000095 -0.00013 0.00011 -0.00012 0.000115
110 -0.000122 0.000055 -0.00011 0.000067 -0.00011 0.000075 -0.0001 0.000085
120 -0.0001 0.000037 -0.00005 0.00005 -0.00009 0.00005 -0.00009 0.000055
130 -0.00008 0.000021 -0.00008 0.000022 -0.000075 0.000025 -0.000075 0.00003
140 -0.000066 0.00001 -0.00007 0.00001 -0.00007 0.00001 -0.00007 0.000012
150 -0.00006 0.000005 -0.00006 0.000005 -0.000055 0.000005 -0.000071 0.000004

Figure 8. Evolution of σx at
different crack lengths.

Figure 9. Evolution of σy at
different crack lengths.

9.5 Calculation of SIF of thermal load by XIGA method

The study of convergence and comparison of the values for SIF based on the
XIGA method, FEM method and the exact solution [21] are shown in Table 6
and Figure 10. In this figure, the exact solution is equal to 1.8421. The
accuracy of all results is excellent, there is less than 2 percent variation in all
configurations tested in the convergence range.

The calculation of the stress intensity factor in the present problem for dif-
ferent crack lengths is solved by the XIGA method and finite element methods,
and the results are compared with those obtained from the exact solution. The
results and comparisons are presented in Figure 11. The Bézier XIGA analysis
is done for 2025 elements and the finite element analysis is performed for 42475
elements.
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Figure 10. Study of
convergence and comparison of

SIF.

Figure 11. Comparison of SIF
at different crack lengths.

Table 6. Stress intensity factor (K1), (pa
√
m)× 107.

FEM Bézier XIGA Bézier XIGA Bézier XIGA
(p = q = 1) (p = q = 2) (p = q = 3)

No of
K Error

No of
K Error

No of
K Error

No of
K Error

elem. elem. elem. elem.

129 1.0333 %43.91 1600 1.6217 %12.0 1225 1.6527 %10.4 900 1.6578 %10.0
191 1.1203 %39.18 2025 1.7507 %4.96 1600 1.7174 %7.66 1225 1.6927 %8.01
344 1.2504 %32.12 3600 1.8071 %1.91 2500 1.7649 %4.28 1600 1.7521 %4.89
639 1.3582 %26.27 4900 1.8152 %1.46 3600 1.8101 %1.59 2025 1.8134 %1.56
2356 1.5686 %14.85 10000 1.8234 %1.02 4900 1.8193 %1.14 2500 1.8276 %0.79
42474 1.8123 %1.61 16900 1.8279 %0.77 6400 1.8252 %0.92 3025 1.8304 %0.64
166216 1.8241 %0.98 22500 1.8294 %0.68 8100 1.8289 %0.71 3600 1.8309 %0.63

9.6 Using effective SIF (Keff) in crack propagation rate

Table 7 shows howKther, Kres andKeff changes during the crack propagation.
The effects of residual stress on SIF and the crack propagation rate are calcu-
lated by the modified Walker method according to Equation (8.1). The results
showed that in a specified crack length, the welding residual stress considerably
increases the SIF.

9.7 Fatigue crack propagation

Now, the fatigue life of a welded plate with an edge cracked is evaluated by the
proposed method. The thermal load, boundary conditions, welding condition
and control net are kept the same.

The material constant numbers that used in the walker equation are c =
6 × 10−12 mm

cycle (MPa
√
m)−m, m = 3.067 and µ = 0.5 [39]. In this study, the

initial crack length is considered to be 10 mm and the crack length increment
coefficient for each iteration is c = 1.1(an = an−1 + (0.1 × a0)) until reaching
the critical stress intensity factor. For SUS304 plate KIC = 219(MPa

√
m).

As shown in the above figures, the stress intensity factor is converged in the
extended IGA method for a uniform control net with 2025 elements. Therefore,
the domain is discretized with this control net. This problem is also solved
by the finite element method using uniform quadrilateral mesh with 42475
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Table 7. Result of keff and crack propagation rate

a(mm) kres(MPa
√
m) kther(MPa

√
m keff (MPa

√
m

da

dN

(
m

cycle
× 10−6

)
10 39.54 1.81 41.35 1.4111
12.5 42.42 2.03 44.45 1.3026
15 44.17 2.22 46.39 1.5316
17.5 44.89 2.24 47.13 1.7059
20 44.69 2.57 47.26 1.9183
22.5 43.67 2.74 46.41 2.0927
25 41.92 2.89 44.81 2.0942
27.5 39.55 3.04 42.59 1.6493
30 36.66 3.18 39.84 1.3984
32.5 33.38 3.32 36.70 1.1526
35 29.76 3.46 33.22 0.7896
37.5 25.31 3.67 28.98 0.5604
40 20.63 3.86 24.49 0.3824

elements. A comparison of crack propagation rate obtained by the XIGA and
finite element methods is shown in Figure 12. The crack growth paths obtained
by both methods are almost a straight path.

Figure 12. Fatigue life variation at different crack lengths

10 Conclusions

In this study, an extended isogeometric numerical analysis based on Bézier
extraction of NURBS is developed to analyze the temperature distributions due
to welding, the welding residual stress fields, the crack propagation rate and
the fatigue life for the cracked plate under thermal load based on the thermo
elastic-plastic equation and minimum potential energy principle. Also, the
application of asymptotic enrichedment functions was investigated to compute
the SIF during crack growth. By comparing the obtained results, it has been
proved that the presented method is an effective method for predicting these
quantities. The following results are obtained:

Using the Bézier extraction operator eliminates the parametric space in the
isogeometric method and mapping is done directly from the parent element to

Math. Model. Anal., 27(4):629–651, 2022.
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the physical space. This will reduce the computational cost despite increasing
the control points in the Bézier decomposition process. Also, the parent element
used in this method, like the isoparametric element, is very similar to the
element used in the Gauss quadrature integration method, which increases the
accuracy of the results.

Due to the possibility of defining basic functions in each element instead of
a knot span, the presented approach is more effective and accurate to analyze
problems with discontinuities. This feature allows the enrichment functions
correctly and only add to the basis function corresponding to the enriched
element identified by level set technique

The IGA method is used to develop the thermo elastic-plastic equation, the
minimum potential energy principle and the enrichment function to calculate
the welding residual stress in the cracked plate. The obtained result showed an
increase in accuracy and a decrease in computational cost.

Using the proposed approach, the effective SIF evaluated with acceptable
accuracy and correctness by considering the concurrent effects of residual stress
and thermal loading by the superposition principle, without the need for a re-
meshing process around the crack.

The obtained result shows the accuracy of the modified Walker method for
calculating SIF to predict crack propagation rate.
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Bézier Base Extended Isogeometric Numerical Method 651

representation for three-dimensional fatigue crack growth and life pre-
dictions. Engineering Fracture Mechanics, 77(14):2840–2863, 2010.
https://doi.org/10.1016/j.engfracmech.2010.06.009.

[31] A.K. Singh, A. Jameel and G.A. Harmain. Investigations on crack tip plastic
zones by the extended iso-geometric analysis. Materials Today: Proceedings,
5(9):19284–19293, 2018. https://doi.org/10.1016/j.matpr.2018.06.287.

[32] J. Sladek, P. Stanak, Z.D. Han, V. Sladek and S.N. Atluri. Applications of the
MLPG method in engineering & sciences: a review. CMES: Computer Modeling
in Engineering & Sciences, 92(5):423–475, 2013.
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