
Mathematical Modelling and Analysis

Volume 28, Issue 1, 71–90, 2023

https://doi.org/10.3846/mma.2023.15482

An Improved SIMPLEC Scheme for Fluid
Registration

Mohamed Alahyanea, Abdelilah Hakimb,
Amine Laghribc and Said Raghayb

aL2EP Laboratory, University of Lille

59000 Lille, France
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Abstract. The image registration is always a strongly ill-posed problem, a stable
numerical approach is then desired to better approximate the deformation vectors.
This paper introduces an efficient numerical implementation of the Navier Stokes
equation in the fluid image registration context. Although fluid registration ap-
proaches have succeeded in handling large image deformations, the numerical results
are sometimes inconsistent and unexpected. This is related, in fact, to the used nu-
merical scheme which does not take into consideration the different properties of the
continuous operators. To take into account these properties, we use a robust numer-
ical scheme based on finite volume with pressure correction. This scheme, which is
called by the Semi-Implicit Method for Pressure-Linked Equation-Consistent (SIM-
PLEC), is known for its stability and consistency in fluid dynamics context. The
experimental results demonstrate that the proposed method is more efficient and
stable, visually and quantitatively, compared to some classical registration methods.
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1 Introduction

Image registration is a widely used technique in image processing; its main
principle is to compute geometrical correspondences between two or more given
images [7]. It is considered as a useful tool in numerous applications: including
astronomy, robotics and especially in bio-medical imaging [19,25].

Generally, image registration problems can be classified into two types:
intensity-based methods and feature-based methods. The first type methods
are based on the image’s gray spaces [2, 3, 20], while the second ones exploit
the difference features existing between the given images, such as regions and
edges, to find the correspondences in the image’s feature spaces [23]. In most
cases, the image registration task is formulated as an optimization problem
involving a distance measure to evaluate the similarity. However, due to dif-
ferent illuminations (grey-levels) of the image regions, the pairing cannot be
achieved successfully, which makes the image registration an ill-posed prob-
lem. An additive regularization term is then added, motivated by the nature of
the transformation. In fact, each regularizer produces a different registration
model, and this choice is very vital for the solution’s existence and unique-
ness. One of the classical regularizers is the elastic regularization [4]. Even if
this model has been addressed in several image registration problems [24], it is
still limited, since it does not handle largely deformed data sets [25]. Another
weakness of the linear elasticity regularization is that it does not take in consid-
eration discontinuous displacement. A more convincing choice for preserving
discontinuities of the displacement was the total variation-based regularization
(TV), see [28]. The TV model regularizes the velocity/displacement/mapping,
in contrast, it gives unsatisfactory registration results when the displacements
are very smooth. A more robust regularization is proposed in [10], which takes
into account the advantages of the stopped diffusion of the total variation reg-
istration models. Recently, an improved discontinuity-preserving model was
proposed in [30] motivated by several regularization techniques used in vector-
valued image denoising, which gives promising results; but didn’t tackle large
deformations. In the context of non-parameteric registration, Christensen [6]
developed one of the most effective non parametric registration called the fluid
registration [8, 9]. The purpose of the fluid image registration is to compute
the deformation u(x, t) at time t for a given force field f , while the deformed
image is considered in a viscous fluid. The deformations are then governed by
the Navier Stokes equations for momentum conservation (where the pressure
is neglected). This equation is given by{

ν∆v(x, t) + (µ+ ν)∇(∇ · v(x, t)) = f(x, t, u(x, t)),
v(x, t) = ∂tu(x, t) + v(x, t) · ∇u(x, t).

(1.1)

The component ∆v is called the viscous term, while the component term ∇(∇·
v(x, t)) allows for contraction and expansion of the fluid. The second part of
(1.1) defining material derivative of the displacement u. The constants µ and
ν are the Lamé coefficients.

Although the fluid image registration appears easy to solve, in reality it
is quite complicated. One of the key complications is the choice of demons
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force [15]. Moreover, fluid image registration is not based on a direct optimiza-
tion approach. Also, since we deal with a set of nonlinear partial differential
equations (PDE), great care must be taken in the choice of the discretization
method. In addition, when displacement u is discontinuous, the fluid image
registration gives poor results since it skips the discontinuity regions. Another
well-known drawback of this method is the high computational cost. Indeed,
once the force field f is fixed, the first part of Equation (1.1) is solved for
v(x, t) using the successive over-relaxation (SOR) scheme [6], which computes
an accurate fluid model at the expense of a large computational time. Then,
an explicit Euler scheme is used to advance u in time t. The method requires
at each iteration the computation of the Jacobian matrix of the displacement
field, which is also computationally very expensive. This framework is thus
time-consuming, which motivates the search of faster implementations. Re-
cently, a new fluid approach was proposed using the Semi-Implicit Method for
Pressure-Linked Equation (SIMPLE) scheme, where the pressure is well defined
in the context of image registration [1]. However, if the registered images are
not with the same modalities and in the presence of noise, this method becomes
inconsistent with the apparition of some artefacts. Hence the introduction of
another more accurate scheme.

The contributions in this paper are summarized below.

Firstly, we define the pressure term, in the image registration context, as
the effect of each region with respect to the nearest one, which has not been
treated by Christensen in the previous model (1.1).

Secondly, we propose a stable, consistent and fast numerical implementa-
tion of the Navier Stokes equations for an incompressible fluid to resolve the
fluid image registration problem. Which allows to introduce ideas from com-
putational fluid dynamics in the image analysis context [29].

The use of the finite difference approximation in the image registration is
very limited since it does not take into account the continuous and discontin-
uous operator properties. An alternative and robust discretization scheme is
then needed. In this paper, we propose a finite volume scheme type to handle
different properties of the fluid registration in the discretization process of the
proposed Navier Stokes equation [13]. The use of this scheme can efficiently
take into account the defined pressure term in the registered image. After
the success of the Semi-Implicit Method for Pressure Linked Equations [26]
algorithm in solving the Navier Stokes equations and many other problems in
computational fluid dynamics (CFD) [14,18,26], the Semi-Implicit Method for
Pressure Linked Equations-Consistent (SIMPLEC) [12] is also proposed with
good consistency. However, no such attempt has been proposed to solve the
fluid image registration problem. Then, in this work we introduce the SIM-
PLEC algorithm as a discretization approach to solve the Navier-Stokes equa-
tion applied to image registration problems. We can see that the numerical
results confirm that our proposed scheme is more efficient compared with other
classical methods.

This paper is organized as follows: Section 2 explains the main concepts
of the image registration and introduces the proposed Navier Stokes equation
for solving the fluid registration problem. In Section 3, we propose the SIM-
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PLEC discretization scheme. Finally, numerical results and comparisons of our
approach with classical registration methods are presented in Section 4.

2 Mathematical model of fluid registration

The registration problem is usually based on a minimization problem between
two images, template image and reference image [21]. Given two images T , R :
Ω ⊂ Rn → R, compactly supported on Ω (a bounded convex domain), where
n denotes spatial dimension of the given images (in our case n = 2). The
purpose of registration is to look for a transformation u : Ω ⊂ Rn such that
ideally T (u(x)) looks like R(x) as much as possible for all x ∈ Ω. In summary,
the desired transformation u is achieved by minimizing a so-called distance
measure D. Since this problem is ill-posed, an appropriate regularization S is
used.
The variational formulation of the image registration problem consists of finding
a minimizer u of

J (u) = D(T ,R;u) + S(u) for u ∈ A, (2.1)

where A denotes the set of admissible transformations.
The regularization term S is in general based on the gradient of u, noted

∇u. There is in fact many choices of the regularization term, the widely used
are: diffusion registration [22] and elastic registration [21]. One of the more
successful regularization choices was the fluid one [11], which is formulated
such as an elastic potential of ∂tu. To solve this problem, the Euler-Lagrange
identity is used, which coincides with the resolution of the Navier-Lamé equa-
tion. There are also other regularizations derived from the diffusion one, such
as the curvature term and the hyperelastic energy [5], which do not have good
physical motivations.

Based on the proprieties of this fluid regularization, we propose a dynamic
equation for the incompressible Newtonian fluids (2.2), which are governed by
the Navier Stokes equations. This equation coupled the velocity vector field
v(x, t) to a scalar pressure p(x, t) such as{

∂v

∂t
(x, t) + v(x, t) · ∇v(x, t) = −∇p(x, t) + ν∆v(x, t) + f(x, t, u(x, t)),

∇ · v(x, t) = 0,
(2.2)

where the velocity v(x, t) is calculated according to the displacement u(x, t)
such as

v(x, t) = ∂tu(x, t) + v(x, t) · ∇u(x, t). (2.3)

The main analogy followed in this paper is the parallel between the incom-
pressible Newtonian fluid and the image velocity of each pixel v(x, t) under
the image registration concept. The introduced Navier Stokes equation (2.2) is
well posed in the image registration task. In fact, the parameter ν is supposed
to be the factor of the diffusion in the imaging problems. The pressure p is
also modelled in the imaging task, which represents the effect of each region on
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the nearest one in the image during the registration process. In fact, since the
pressure is given in gradient form, it may represent the contours. We suppose
in the following that p is an external force. The term ∇ · v = 0 is well posed
since the pixels are incondensable. Finally, f is supposed to be the external
forces obtained by the gradient of the distance D between the two images; T
and R. A classical choice for this distance is the sum square difference (SSD)
measure defined as

DSSD(T ,R;u) =

∫
Ω

(T (u(x))−R(x))
2
dx. (2.4)

Hence, the external forces are computed such as:

f(x, t, u(x, t)) = ∇T (u(x, t)) (R(x)− T (u(x, t))) .

For this choice, we can effectively assure the existence of a solution to the prob-
lem (2.1) using techniques in [11]. There are many advantages in the use of the
Navier Stokes equation. Firstly, we don’t have any problem with the existence
of a solution, since it is well-developed in the literature [29]. Secondly, there are
many and stable numerical approaches that we can use to resolve this equation
derived from a classical example of fluid dynamics.
For a mathematical transparency of the Navier Stokes equation (2.2), a con-
venient way is to consider it nondimensional form [16]. This is obtained by
introducing a reference length L∗ and a reference time T∗, then we set

v
′
=

v

V∗
, x

′
=

x

L∗
, t

′
=

t

T∗
, P

′
=

p

V 2
∗
, f

′
=

L

V 2
∗
f,

where V∗ is the reference velocity defined as V∗ = L∗
T∗

. By a substitution into

(2.2), we obtain for v
′
, P

′
, f

′
the following equation ∂v

′

∂t
+ (v

′ · ∇)v
′
= −∇P

′
+ 1

Re ∆v
′
+ f

′
( . , u( . )),

∇ · v′
= 0,

(2.5)

where Re is a nondimensional constant called the Reynolds number defined as
1
Re

= ν
L∗V∗

, and to avoid the complexity of the notations, we keep the same

notation in (2.2), i.e., we substitute v
′
, P

′
, f

′
by v, p, f . Then, we rewrite the

Equation (2.5) as follows:{
∂v

∂t
(x, t)+(v(x, t) · ∇)v(x, t)=−∇p(x, t)+ 1

Re ∆v(x, t)+f(x, t, u(x, t)),

∇ · v(x, t) = 0.
(2.6)

In the following section, we discuss the proposed discretization scheme for
the Navier Stokes equation (2.6), in the image registration context.

3 Discretization

To solve the Navier Stokes equation (2.6), we use a finite volume discretization
based on a staggered control volume illustrated in the Figure 1. To calculate the
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Figure 1. Control volume of v and p.

variables v1 (the horizontal component of velocity), v2 (the vertical component
of velocity) and p (Pressure), we use three staggered mesh [27]. The control
volumes for v1 and v2 are displaced with respect to the control volume for
the continuity equation. In the Figure 1, “P” denotes the node at which the
partial differential equation is approximated, and “E”, “W”, “N”, “S” are its
neighbours. Cell faces “e”, “w” for v1 and “n”, “s” for v2 are in the midway
between the nodes.

Firstly, we rewrite the momentum equation of (2.6) in a differential form
for both velocity components

∂v1
∂t

+
∂

∂x

(
v1v1−

1

Re

∂v1
∂x

)
+

∂

∂y

(
v2v1−

1

Re

∂v1
∂y

)
= −∂p

∂x
+f1(., u1(.), u2(.)),

∂v2
∂t

+
∂

∂x

(
v1v2−

1

Re

∂v2
∂x

)
+

∂

∂y

(
v2v2−

1

Re

∂v2
∂y

)
= −∂p

∂y
+ f2(., u1(.), u2(.)),

∂v1
∂x

+
∂v2
∂y

= 0. (3.1)

To solve this system, we discretize each equation separately and we use the
SIMPLE method. The discretization momentum equation for v1 is derived by
integrating the first equation of (3.1) over the control volume corresponding to
v1, using the points (E,P, n, s) shown in Figure 1 and over the time interval;
from t to t + ∆t. Thus, using the fact that the velocity v1 and v2 do not
depend on the vertical and horizontal components, respectively, under each
volume control face, we have then

vol

∆t

(
v1 − v01

)
+

∫ n

s

(
v1v1 −

1

Re

∂v1
∂x

)
E

−
(
v1v1 −

1

Re

∂v1
∂x

)
P

dy (3.2)

+

∫ E

P

(
v2v1 −

1

Re

∂v1
∂y

)
n

−
(
v2v1 −

1

Re

∂v1
∂y

)
s

dx = volf1 −∆y (pE − pP )

with vol = ∆x∆y and v01 is the previous iteration of v1 (in general it represents
v1 at t = 0). To simplify the study of this problem, we introduce some new
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entities defined as

JE =

∫ n

s

(
v1v1 −

1

Re

∂v1
∂x

)
E

dy, JW =

∫ n

s

(
v1v1 −

1

Re

∂v1
∂x

)
P

dy,

JN =

∫ E

P

(
v2v1 −

1

Re

∂v1
∂y

)
n

dx, JS =

∫ E

P

(
v2v1 −

1

Re

∂v1
∂y

)
s

dx.

If we substitute this new entities in the Equation (3.2), we have then

vol

∆t

(
v1 − v01

)
+ JE − JW + JN − JS = volf1 −∆y (pE − pP ) . (3.3)

Also, the integration of the third continuity equation in (3.1) over the corre-
sponding control volume and time gives∫ t+∆t

t

∫ E

P

∫ n

s

Re

(
∂v1
∂x

+
∂v2
∂y

)
dydxdt = 0,

which it is equivalent to

FE − FW + FN − FS = 0, (3.4)

where FE=∆y (Rev1)e, FW=∆y (Rev1)w, FN=∆x (Rev2)n, FS=∆x (Rev2)s.
Using the Equations (3.3) and (3.4), we find

(3.3)−v1P · (3.4)⇒vol

∆t
v1P+JE−FE · v1P−JW + FW · v1P + JN−FN · v1P

− JS + FS · v1P = volf1 −∆y (pE − pP ) +
vol

∆t
v01P . (3.5)

On the other hand, we suppose that the flow is unidirectional (since the regis-
tration is concentrated in a particular direction), laminar (since the pixels are
not mixed) with a constant pressure on each grid (the effect of the neighbors
pixels is neglected in a fixed grid). Thus, the first equation of (3.1) becomes

v1
∂v1
∂x

− 1

Re

∂2v1
∂x2

= 0. (3.6)

Also, the second equation representing the vertical direction becomes

v2
∂v1
∂y

− 1

Re

∂2v1
∂y2

= 0. (3.7)

To compute the entities (JE , JW , JN and JS ), we use the solution of the two
Equations (3.6) and (3.7). Firstly, we have to rewrite the Equation (3.6) under
each grid as follow  (v1)E

∂v1

∂x − 1
Re

∂2v1
∂x2 = 0,

x = 0, v1 = v1P ,
x = ∆x, v1 = v1E .

(3.8)
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Also, the expression of the Equation (3.7) in each grid is given by (v2)n
∂v1

∂y − 1
Re

∂2v1
∂y2 = 0,

y = 0, v1 = v1S ,
y = ∆y, v1 = v1N .

(3.9)

The solution of the Equation (3.8) is calculated using this expression

v1 = v1P + (v1E − v1P )

(
exp((Rev1)Ex)− 1

exp((Rev1)E∆x)− 1

)
. (3.10)

In addition, the solution of (3.9) is given by

v2 = v1P + (v1N − v1P )

(
exp((Rev1)ny)− 1

exp((Rev1)n∆y)− 1

)
.

We assume that Pe = (Rev1)E∆x, where Pe is called the Peclet number, rep-
resenting the local report on the boundary portion of the volume control for
inertial and viscous forces. The Equation (3.10) is now described as

v1 = v1P + (v1E − v1P )

(
exp((Rev1)Ex)− 1

exp(Pe)− 1

)
.

We can now calculate the expression of JE using the Equation (3.10)

JE = v1P
(Rev1)E exp(Pe)

exp(Pe)− 1
− v1E

(Rev1)E
exp(Pe)− 1

,

injecting the expression of JE in (3.5), we have

JE − v1PFE = ∆y

(
v1P

(Rev1)E exp(Pe)

exp(Pe)− 1
− v1E

(Rev1)E
exp(Pe)− 1

)
− v1PFE

= v1P
FE

exp(Pe)− 1
− v1E

FE

exp(Pe)− 1
= AE(v1P − v1E).

By the same way, we can find the others expressions (Ji−v1P ·Fi), i ∈ (W,N, S)
given as follow

−JW + v1PFW =v1P
FW exp(Pw)

exp(Pw)− 1
− v1W

FW exp(Pw)

exp(Pw)− 1
= AW (v1P − v1W ),

JN − v1PFN =v1P
FN

exp(Pn)− 1
− v1N

FN

exp(Pn)− 1
= AN (v1P − v1N ),

−JS + v1PFS =v1P
FSexp(Ps)

exp(Ps)− 1
− v1S

FSexp(Ps)

exp(Ps)− 1
= AS(v1P − v1S).

Therefore, (3.5) amounts to

vol

∆t
v1P+AE(v1P−v1E)+AW (v1P−v1W )+AN (v1P−v1N )+AS(v1P−v1S)

= volf1 −∆y (pE − pP ) +
vol

∆t
v01P .
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Finally, the discretization equation can be written as

AP v1P = AEv1E +AW v1W +ANv1N +ASv1S + b1 +∆y (pP − pE) , (3.11)

where

AE=
FE

exp(Pe − 1)
; Pe=(Rev1)E∆x; AW=

FW exp(Pw)

exp(Pw − 1)
; Pw=(Rev1)P∆x,

AN=
FN

exp(Pn − 1)
; Pn=(Rev2)n∆y; AS=

FSexp(Ps)

exp(Ps − 1)
; Ps = (Rev2)s∆y,

AP = AE +AW +AN +AS +
vol

∆t
, b1 = volf1 +

vol

∆t
v01P .

The momentum equations for the other direction is obtained with the same
way, see [26] for more details. So the discretization for v2 is given as

AP v2P = AEv2E +AW v2W +ANv2N +ASv2S + b2 +∆x (pP − pN ) , (3.12)

where b2 = volf2 +
vol
∆t v

0
2P . Since we have calculated the different momentum

equations, we need to correct the pressure in each step to verify that∇·v(x, t) =
0.

3.1 The pressure correction equation

The main idea of this step is to improve the guessed pressure p∗ such that
the velocity field will progressively converge to the solution of the continuity
equation (3.1). Generally, the correct pressure p is obtained using p = p∗ + p

′
,

where p
′
is the corrected pressure. Then, we have to compute the new velocity

components corresponding to the new corrected pressure p
′
. The two corre-

sponding velocity corrections, denoted by v
′

1 and v
′

2 respectively, are obtained
by

v1 = v∗1 + v
′

1, v2 = v∗2 + v
′

2. (3.13)

For any guessed pressure p∗, the velocities v∗1 and v∗2 , obtained by solving the
momentum equations (3.11)–(3.12), satisfy{

AP v
∗
1P =

∑
nb Anbv

∗
1nb + b1 +∆y (p∗P − p∗E) ,

AP v
∗
2P =

∑
nb Anbv

∗
2nb + b2 +∆x (p∗P − p∗N ) .

(3.14)

The velocities v1 and v2 are obtained through (3.11)–(3.12) using the correct
pressure p, which satisfy the continuity condition. The correction of the guessed
pressure by p

′
= p − p∗ is therefore necessary to correct the velocities v∗1 and

v∗2 by (3.13). The relation between p
′
and v

′
is then obtained by subtracting

the Equation (3.14) from (3.11)–(3.12) AP v
′

1P =
∑

nb Anbv
′

1nb +∆y
(
p

′

P − p
′

E

)
,

AP v
′

2P =
∑

nb Anbv
′

2nb +∆x
(
p

′

P − p
′

N

)
.

(3.15)

Math. Model. Anal., 28(1):71–90, 2023.
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In the SIMPLEC algorithm, the terms
∑

nb Anbv
′

1P and
∑

nb Anbv
′

2P are sub-
tracted from both sides of Equation (3.15). This yields (AP −

∑
nb Anb) v

′

1P =
∑

nb Anb

(
v

′

1nb − v
′

1P

)
+∆y

(
p

′

P − p
′

E

)
,

(AP −
∑

nb Anb) v
′

2P =
∑

nb Anb

(
v

′

2nb − v
′

2P

)
+∆x

(
p

′

P − p
′

N

)
.

(3.16)

To introduce a consistent approximation, the terms
∑

nb Anb

(
v

′

1nb − v
′

1P

)
and∑

nb Anb

(
v

′

2nb − v
′

2P

)
are neglected. Replacing v

′

1P and v
′

2P by v1P − v∗1P and

v2P − v∗2P respectively, the Equations (3.16) become{
v1P = v∗1P + d1(p

′

P − p
′

E),

v2P = v∗2P + d2(p
′

P − p
′

N ),
(3.17)

where

d1 = ∆y/
(
AP −

∑
nb

Anb

)
, d2 = ∆x/

(
AP −

∑
nb

Anb

)
.

Using the fact that v1P and v2P satisfy the Equation (3.17), if we replace
these expressions in Equation (3.4), we obtain the following correction pressure
equation:

AP p
′

P = AEp
′

E +AW p
′

W +ANp
′

N +ASp
′

S + bp, (3.18)

where

AE = ∆yRed1, AW = ∆yRed1, AN = ∆xRed2, AS = ∆xRed2,

AP=AE+AW+AN+AS , bp=∆yRe ((v
∗
1)w−(v∗1)e)+∆xRe ((v

∗
2)s−(v∗2)n) .

To solve these equations we use the algebrical equation form to obtain the fields
verifying the conservation equations [26]. Finally, we summarize the proposed
method in the Algorithm 1.

Algorithm 1 The proposed finite volume algorithm for image registration

Input: v∗1 , v
∗
2 and the pressure field p∗, the Reynolds number.

Output: The velocities v1, v2 and the pressure p.

1: procedure
2: Solve the momentum equations (3.14) to obtain v∗1 and v∗2 .
3: Solve the Equation (3.18) for p

′
.

4: Calculate p by adding p
′
to p∗.

5: Calculate v1 and v2 from their previous values using the velocity-
correction formula (3.17).

6: Treat the corrected pressure p as a new guessed pressure p∗, return to
step 2.

7: Repeat the whole procedure until convergence is reached.
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3.2 Approximation of displacement u

The next step is to compute the displacement u = (u1, u2) from the associated
velocities v1 and v2, calculated through Algorithm 1, based on (2.3) and an
Euler scheme [1]. For each grid point xi ∈ R2 with a fixed index i = (i1, i2) ∈ N2

we have uk(xi) ∈ R2, and we set

uk
i =

(
uk,1
i , uk,2

i

)
∈ R2,

where uk,1
i and uk,2

i are, respectively, the first and second component approxi-
mations of u. We also set

vki =
(
vk,1i , vk,2i

)
∈ R2,

which is the velocity approximation, where vk,1i is the first component and vk,2i

is the second one.
As the first step, to approximate the ∇u term, a centred finite difference

approximation is used to compute the Jacobian matrix Jk
i of uk

i . Secondly, for
the partial time derivative ∂tu, we use a forward finite difference approxima-
tion. Therefore, the displacement and the velocity are connected through the
following Euler scheme which is performed for all i

uk+1
i − uk

i

τ
=

(
Id − Jk

i

)
vki . (3.19)

The proposed algorithm to compute the transformations u is finally summarized
in Algorithm 2.

Algorithm 2 The proposed algorithm for displacement u computation

Input: vk1 , v
k
2 , u

k
1 , u

k
2 , the time-step τ = 0.001.

Output: The displacements uk+1
1 , uk+1

2 .

1: procedure
2: Compute of the Jacobian Matrix Jk

i .
3: Solve the Equations (3.19) to obtain uk+1

1 and uk+1
2 .

4: If the relative change of the distance measure is brought below a user
supplied tolerance tol = 10−5, the iteration is stopped,∥∥R− T k

∥∥
F
−
∥∥R− T k+1

∥∥
F

∥R− T k+1∥F
≤ tol.

5: If else, calculate the new vk+1
1 and vk+1

2 from the Algorithm 1, then
return to step 2.

4 Results and discussion

In this section, we test the performance of the proposed image registration
model. In fact, we have tested our algorithm on a large image registration

Math. Model. Anal., 28(1):71–90, 2023.
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Left: Example 1 (64 x 64) and right: Example 2 (256 x 256)

Left: Example 3 (256 x 256) and right: Example 4 (512 x 512)

Figure 2. Four representative data sets of registration problems. Left column: Reference
image, right column: Template image.

benchmark. We present only four tests chosen with different size and defor-
mation. To measure the robustness of the proposed algorithm, we compare
it with some competitive approaches, including the fluid registration model
RFluid [11], the modified total variation (TV) regularization RMTV [17], the
SIMPLE model [1] and also the improved discontinuity-preserving model RIDP

proposed in [30]. In the Figure 2, we present the reference and template image
for the four used tests.

Our aim is to find the deformation between the template and the reference
images, and recovering the reference image by registering the template one. In
Figures 3–6, we represent the registered template image using the proposed
approach compared with the other methods using the difference between the
reference and template images and also the deformed grid for each test.

If we focus on what happens in the error between the template image and
the reference one, in all examples, we can see that the proposed method is
more efficient than the other image registration methods. To evaluate the
performance of the proposed approach with respect to noise reduction, we use
two measures such as peak signal to noise ratio (PSNR) and the structural
similarity (SSIM). The PSNR is a popular metric used to measure the quality of
the estimated image, while the SSIM is a complementary measure, which gives
an indication of image quality based on known characteristics of the human
visual system [31]. The PSNR measures signal strength relative to noise in the
image and is defined by

PSNR = 10 log10

(
2552

MSE

)
,

where the MSE is the mean squared error defined by

MSE =
1

MN
ΣM

i=1Σ
N
j=1(Y (i, j)−X(i, j))2.
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The proposed approach

The SMPLE model [1]

RFluid [11]

RIDP [30]

RMTV [17]

Figure 3. In each row we present the obtained result by each method for Example 1 ; left:
the registered template image; the middle: difference between reference and obtained image

and in the right column we plot the deformation field.

Math. Model. Anal., 28(1):71–90, 2023.
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The proposed approach

The SIMPLE model [1]

RFluid [11]

RIDP [30]

RMTV [17]

Figure 4. In each row we present the obtained result by each method for Example 2 ; left:
the registered template image; the middle: difference between reference and obtained image

and in the right column we plot the deformation field.
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The proposed approach

The SIMPLE model [1]

RFluid [11]

RIDP [30]

RMTV [17]

Figure 5. In each row we present the obtained result by each method for Example 3 ; left:
the registered template image; the middle: difference between reference and obtained image

and in the right column we plot the deformation field.

Math. Model. Anal., 28(1):71–90, 2023.
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The proposed approach

The SIMPLE model [1]

RFluid [11]

RIDP [30]

RMTV [17]

Figure 6. In each row we present the obtained result by each method for Example 4 ; left:
the registered template image; the middle: difference between reference and obtained image

and in the right column we plot the deformation field.
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The SSIM is calculated on multiple windows of given image, i.e. the measure-
ment between two windows x and y of size N ×N is defined by

SSIM(x, y) =
(2µxµy + c1)(2σxσy + c2)(2 covxy + c3)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)(σxσy + c3)
,

where the variables, respectively, defined for x and y as follows: µx and µy,
mean; σ2

x and σ2
y, variance; covxy, covariance; c1 = (k1L)

2, c2 = (k2L)
2 are

two stabilizing constants; and L the dynamics of the pixel values, 255 for
8-bit encoded image. This metric gives an indication on the quality of the
image based on the known characteristics of human visual system. Moreover,
to measure the quality of the registered images, the relative reduction of the
dissimilarity rel · SSD is used

rel · SSD =
D(u)

Dstop
× 100%,

where u is the current optimal value and Dstop is the value of D(u) at u = 0.
In Table 1, the SSIM, PSNR and rel · SSD values are calculated for all the

used images. The best results are represented by a bold number. Always, the
proposed method outperforms the other in terms of both PSNR and SSIM.

Table 1. PSNR, SSIM and rel · SSD results obtained using the fluid image registration
and proposed approach to the four above examples. In bold the highest value of each row is
shown.

Image Method

Metric RMTV RIDP RFluid Model [1] proposed

Example 1 PSNR 22.7103 27.4564 26.1098 32.1215 32.5905
64× 64 SSIM 0.7782 0.9027 0.9003 0.9482 0.9542

rel.SSD 88.14% 59.43% 88.98% 9.20% 2.81%

Example 2 PSNR 22.6853 21.3302 27.2033 34.8440 27.5385
256× 256 SSIM 0.9470 0.9458 0.9568 0.9899 0.9583

rel.SSD 80.56% 55.92% 12.54% 7.02% 4.32%

Example 3 PSNR 20.4743 22.5388 30.0480 28.8180 30.3619
256× 256 SSIM 0.6765 0.8408 0.9470 0.9544 0.9527

rel.SSD 87.40% 62.61% 16.78% 16.60% 6.42%

Example 4 PSNR 21.3706 32.3857 33.4616 33.5446 33.5525
512× 512 SSIM 0.6912 0.9297 0.9478 0.9483 0.9486

rel.SSD 73.16% 22.14% 18.47% 18.45% 16.89%

The full code for the proposed model is implemented in the MATLAB 2013.
Typically, the execution of the main implemented programme requires an av-
erage of 1 ∼ 5 minutes on a 3 GHz Pentium Quad core computer for 256× 256
grey-scale images; the runtime increases for larger image sizes. While the ex-
ecution of the fluid image registration takes about 2 ∼ 7 minutes in the same

Math. Model. Anal., 28(1):71–90, 2023.
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conditions. However, for the two other regularizations : RIDP and RMTV , the
execution time is sometimes less compared to that recorded by our method.

Finally, we want to check the speed of the convergence during time iterations
of the proposed approach compared to the SIMPLE model [1]. To do that, we
run the two codes for 500 time iterations for the Example 3 registration process
and we compute the relative error in each iteration. The obtained results
are presented in Figure 7 which shows that the approach based on SIMPLEC
algorithm converge faster than the one based on SIMPLE [1].
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Figure 7. The relative error for the registration process of the Example 3 using the
proposed approach and compared to the SIMPLE model [1].

5 Conclusions

A consistent numerical scheme for the fluid image registration based on Navier
Stokes equation was introduced in the image registration context. A finite
volume-based scheme using the SIMPLEC algorithm was performed to avoid
the errors arising from the discretization part. The performance of this ap-
proach has been tested using different examples. The proposed approach out-
performs some competitive ones both visually and using different criteria.
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