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Abstract. In the commenced work, we establish some novel results concerning
graph contractions in a more generalized setting. Furthermore, we deliver some
examples to elaborate and explain the usability of the attained results. By virtue
of nontrivial examples, we show our results improve, extend, generalize, and unify
several noteworthy results in the existing state-of-art. We adopt computer simula-
tion validating our results. To arouse further interest in the subject and to show
its efficacy, we devote this work to recent applications which emphasize primarily
the applications for the existence of the solution of various models related to engi-
neering problems viz. fourth-order two-point boundary value problems describing
deformations of an elastic beam, ascending motion of a rocket, and a class of integral
equations. This approach is entirely new and will open up some new directions in the
underlying graph structure.
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1 Introduction

Differential equations and integral equations have many applications in science
and engineering, in this direction, for some elegant results we refer [17,18, 25].
Relevant literatures show that various investigations dealt with qualitative
properties of differential equations described above like, convergence, bound-
edness, the existence of solutions. Banach’s fixed point theory, popularly well
known as the Banach contraction principle (BCP), plays a vital role in the
theory of metric spaces [8, 15]. Employing an iteration process, one can lo-
cate the neighborhood of the fixed point. Therefore, it can be administered
on a workstation, and finding the related fixed point of the contraction map-
pings becomes easier. BCP is extended and generalized by numerous authors
in distinct ways. The ease of Banach’s fixed point theorem particularly, for
application point of view, made this theory more attractive. In this direc-
tion, researchers employed contraction mappings to establish the existence of
solutions of differential equations, integral equations etc.

Ran and Reuring’s extended the BCP to metric spaces equipped with a
partial order [19]. To find a solution to some special matrix equations was also
one of the great charms of the fixed-point theorists. To this end, the work of EL-
Sayed and Ran [9] was a pioneer one. Later on, Nieto and Rodriguez Lopez [16]
extended the work of [19] and applied their results to solve some differential
equations. In 2008, Jachymiski [12] initiated a novel idea in fixed-point theory,
where the author evoked graph structure on metric spaces instead of order
structure. Some noteworthy efforts done on this concept can be seen in [4, 23,
25]. Recently Younis et al. [22,23,24,25] took the Banach’s contraction principle
for giving an association with graph theory, and with this amalgamation, they
established some remarkable results in existing theory. In 1968, Kannan [14]
gave a breakthrough in fixed point theory, Kannan’s theorem was important
as this establishes the completeness of the metric space involved, i.e., a metric
space S is complete if and only if every mapping satisfying Kannan’s inequality
on S has a fixed point. The contraction in the sense of Banach does not
have this property, the class of Kannan mappings is independent of Banach
contraction.

Several fixed point theorists caught attention after the discovery of this
remarkable result by Kannan (one can see [2, 3, 10, 13, 20]). Another glam-
our of such mappings is the characterization of metric completeness via fixed
points. Several authors investigated Kannan mappings theoretically in differ-
ent ways, but interestingly its application part has not been worked out. This
article’s main objective is to enunciate such mappings with an entirely different
approach in a graph structure and then utilize the established results to the
existence of solutions of some nonlinear problems viz. deformations of an elas-
tic beam, first-order nonlinear differential equation representing the ascending
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motion of a rocket and some class of integral equations and ascending motion
of a rocket.
To start with some basic notions and fundamental definitions are necessary to
figure out.

For a non-void set S, ∆ denotes the diagonal S × S. The notions V (M)
and E(M) respectively denote the set of all vertices and edges for a digraph
M, where E(M) accommodates all the loops of M (i.e., ∆ ⊂ E(M)). We
represent the digraph by M = (V (M), E(M)). By M−1, we represent the
digraph M with reversed edges. Additionally the digraph M with symmetric
edges is denoted by M̆.

Unambiguously, we write E(M̆) := E(M−1)∪E(M). A sequence {κj}hj=0

consisting of (h + 1) vertices with r = κ0, r′ = κh and (κj−1,κj) ∈ E(M)
for j = 1, 2, . . . , h is called a directed path or simply a path. We say M to
be a connected graph if there is a path between any of its vertices. How-
ever if M is undirected and there endures a path joining every two of its
vertices, then call M to be a weakly connected graph. Moreover, a graph
M∗ = (V (M∗), E(M∗)) is termed as a subgraph of M = (V (M), E(M)) if
V (M) ⊇ V (M∗) and E(M) ⊇ E(M∗).

The following are some important notions that will be carried out through-
out the manuscript.

(i) [r]tM:={r′ ∈ S : ∃ a path directing from r to r′ with length t}.

(ii) (rRr′)M denotes the relation R describing that there exists a path start-
ing from r to r′.

(iii) If a point r lies on the path (rRr′)M, we denote it by r ∈ (rRr′)M.

(iv) A sequence {κh} ∈ S is called M-term wise connected (M-twc)
if (κhRκh+1)M for all h ∈ N.

Very recently, Younis et al. [23, 25] employed some fixed point results based
on graph structure to find the solutions of some nonlinear problems describing
some physical models from science and engineering. They introduced the notion
of graphical rectangular b-metric spaces [25] as an extension and generalization
of b-metric spaces and rectangular metric spaces by the amalgamation of graph
theory with metric spaces. Baradol et al. [6] discussed some open problems
enunciated in [25] in a novel way in setting of graphical rectangular b-metric
spaces. They went on to demonstrate how path length between two points in
graphical rectangular b-metric spaces is important. The reader is referred to
the notable publications [5, 6, 24,26] for additional synthesis on this topic.

The following is the formal definition of graphical rectangular b-metric
spaces.

Definition 1. [25] LetM be a graph endowing a non-void set S and letMbr :
S × S → [0,∞[ be such that for s ≥ 1, the following conditions are asserted:
(M1) Mbr (r, r

′) = 0 if and only if r = r′; (M2) Mbr (r, r
′) = Mbr (r

′, r) for
all r, r′ ∈ S; (M3) For (rRr′)M, p, q ∈ (rRr′)M, we have

Mbr (r, r
′) ≤ s [Mbr (r, p) +Mbr (p, q) +Mbr (q, r

′)]
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for all r, r′ ∈ S and all distinct points (distinct from r and r′) p, q ∈ S. Then
the doublet (Mbr ,S) is termed as a graphical generalized b-metric space or
graphical rectangular b-metric space (grbms) with coefficient s ≥ 1.

Remark 1. [25]

(i) It may be noted that graphical rectangular b-metric spaces generalize graph-
ical rectangular metric spaces because a graphical rectangular b-metric space
reduces to a graphical rectangular metric space for s = 1.

(ii) A graphical b-metric space with coefficient s is a graphical rectangular b-
metric space with coefficient s2.
However, the converse need not be true in general.

Definition 2. [25] Let {κh} be a sequence in a grbms:

(i) {κh} is said to be convergent if and only if there exists r ∈ S such that
Mbr (κh,κ)→ 0 whenever h→∞;

(ii) {κh} is said to be Cauchy if and only if Mbr (κh,κh′) → 0 as h, h′ → ∞.
In other words {κh} is a Cauchy sequence, if given µ > 0, there exists h0 ∈ N
such that Mbr (κh,κh′) < µ, for all h, h′ > h0.

Example 1. [25] Let Mbr be the rectangular metric endowing the set S =
{e, d, c, b, a}. Define the metric by the following

Mbr (r, r
′) =


0, r = r′,
√
β/5, r or r′ /∈ {b, a} and r 6= r′,

3
√
β r, r′ ∈ {b, a} and r 6= r′,

with β > 0. Then, (S,Mbr ) is a grbms with coefficient s = 5 equipped with
the graph M , where S = V (M) and E(M) describes all the edges shown in
the adjacent figure (Figure 1).

Figure 1. Graph M representing grbms (S,Mbr , s).

Definition 3. [25] Let (S,Mbr ) be a grbms . An open ball with center r ∈ S
and radius µ > 0 is defined by

BMbr
(r, µ) = {r′ ∈ S : (rRr′)Mbr

,Mbr (r, r
′) < µ}.

Math. Model. Anal., 27(3):492–509, 2022.



496 M. Younis, D. Singh, L. Chin and M. Metwali

2 New results concerning grbms

Let κ0 ∈ S be the starting value of the sequence {κh} with respect to the
weighted graph M. The sequence {κh} is said to be a J-Picard sequence
(J-Ps) for a self map J : S → S if

κh = Jκh−1 for all h ∈ N.

The following is the principal definition of this article.

Definition 4. Let (S,Mbr ) be a grbms. we call a map J : S → S to beMbr -
graph-Kannan (in shortMbr -gK) contraction on (S,Mbr ) if the following two
conditions are contended:

(♠1) for all p, q ∈ S if (p, q) ∈ E(M) implies (Jp, Jq) ∈ E(M);

(♠2) there exists µ ∈ [0, 12 [, for any p, q ∈ S with (p, q) ∈ E(M), we have

Mbr (Jp, Jq) ≤
µ

s
[Mbr (p, Jp) +Mbr (q, Jq)] . (2.1)

Remark 2. Every Kannan contraction is a Mbr -gK contraction equipped with
the graph M = (V (M), E(M)), but the converse need not be true.

Note that, in view of Remark 1 and Remark 2, the findings in this article are
useful extensions and generalizations of the corresponding results in various
metric spaces concerning Kannan type mappings.

Under this new scenario, we prove our main result concerning Mbr -gK
contraction in the context of graphical rectangular b–metric spaces as below.

Theorem 1. Let (S,Mbr ) be a M-complete grbms and J : S → S be a Mbr -
gK contraction with respect to the graph M. Suppose that the following condi-
tions are fulfilled:

(a) if there exists a limit r ∈ S of a converging M-twc J-Ps {κh} and h0 ∈ N
such that (κh, r) ∈ E(M) or (r,κh) ∈ E(M) for all h > h0;

(b) for odd positive integers t and t′, there exists κ0 ∈ S with Jκ0 ∈ [κ0]tM and

J2κ0 ∈ [κ0]t
′

M.
Then, there exists κ′ ∈ S such that the J-Ps {κh} with the starting value

κ0 ∈ S is M-twc and converges to κ′.

Proof. Let κ0 ∈ S such that for odd positive integers t and t′, we have Jκ0 ∈
[κ0]tM and J2κ0 ∈ [κ0]t

′

M. By the hypothesis, there exist paths {κ′j}tj=0 and

{vj}t
′

j=0 such that

κ0 = κ′0, Jκ0 = κ′t and (κ′j−1,κ′j) ∈ E(M), for all j = 1, 2, . . . , t,

κ0 = v0, J2κ0 = vt′ and (vj−1, vj) ∈ E(M), for all j = 1, 2, . . . , t′.

Since, (κ′j−1,κ′j) ∈ E(M), by (♠1) we have

(Jκ′j−1, Jκ′j) ∈ E(M) for j = 1, 2, . . . , t.
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Therefore, {Jκ′j}tj=0 is a path from Jκ′0 = Jκ0 = κ1 to Jκ′t = J2κ0 =

κ2 possessing length t. Similarly, for all h ∈ N, {Jhκ′j}tj=0 is a path from

Jhκ′0 = Jhκ0 = κh to Jhκ′t = JhJκ0 = κh+1 of length t. Thus, {κh} is
M-termwise connected sequence. Additionally, for j = 1, 2, . . . , t, and for all
h ∈ N, (Jhκ′j−1, Jhκ′j) ∈ E(M). Utilizing (♠2), for j = 1, 2, . . . t, we will prove

Mbr (J
hκ′j−1, Jhκ′j)≤ηMbr (J

h−1κ′j−1, Jh−1κ′j)≤. . .≤ηhMbr (κ′j−1,κ′j),
(2.2)

where η ∈
[
0, 1s
)
. Indeed, we deduce that

Mbr (Jhκ′j−1, J
hκ′j) =Mbr

(
J(Jh−1κ′j−1), J(Jh−1κ′j)

)
≤
µ

s

{
Mbr

(
Jh−1κ′j−1, J(Jh−1κ′j−1)

)
+Mbr

(
Jh−1κ′j , J(Jh−1κ′j)

)}
=
µ

s

{
Mbr

(
Jh−1κ′j−1, J

h−1κ′j
)

+Mbr

(
Jhκ′j−1, J

hκ′j
)}

.

That is, we have

Mbr (J
hκ′j−1, Jhκ′j) ≤

(
µ

s− µ

)
Mbr

(
Jh−1κ′j−1, Jh−1κ′j

)
. (2.3)

Put η = µ/(s− µ) and observe that η ∈ [0, 1/s) by assuming distinct values of
µ and s. Hence the inequality (2.3) is equivalent to

Mbr (J
hκ′j−1, Jhκ′j) ≤ ηMbr

(
Jh−1κ′j−1, Jh−1κ′j

)
; for all η ∈

[
0, 1/s

)
.

Repeating above process, we get

Mbr (J
hκ′j−1, Jhκ′j) ≤ ηMbr (J

h−1κ′j−1, Jh−1κ′j) ≤ . . . ≤ ηhMbr (κ′j−1,κ′j).
(2.4)

Thus our case of establishing the Equation (2.2) is set up. On the similar lines,
we have

Mbr (J
hvj−1, J

hvj) ≤ ηMbr (J
h−1vj−1, J

h−1vj) ≤ . . . ≤ ηhMbr (vj−1, vj).
(2.5)

By using graphical rectangular property, we acquire

Mbr (κ0,κ1) =Mbr (κ′0,κ′t) ≤ s[Mbr (κ′0,κ′1) +Mbr (κ′1,κ′2) +Mbr (κ′2,κ′t)]
≤ s[Mbr (κ′0,κ′1)+Mbr (κ′1,κ′2)]+s2[Mbr (κ′2,κ′3)+Mbr (κ′3,κ′4)+Mbr (κ′4,κ′t)]

...

≤ s[Mbr (κ′0,κ′1) +Mbr (κ′1,κ′2)] + s2[Mbr (κ′2,κ′3) +Mbr (κ′3,κ′4)] + . . .

+ s
t−1
2 [Mbr (κ′t−3,κ′t−2) +Mbr (κ′t−2,κ′t−1) +Mbr (κ′t−1,κ′t)] = Dtrb . (2.6)

Also

Mbr (κ0,κ2) =Mbr (v0, vt′) ≤ s[Mbr (v0, v1) +Mbr (v1, v2) +Mbr (v2, vt′)]

≤ s[Mbr (v0, v1)+Mbr (v1, v2)]+s2[Mbr (v2, v3)+Mbr (v3, v4)+Mbr (v4, vt′)]

Math. Model. Anal., 27(3):492–509, 2022.
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...

≤ s[Mbr (v0, v1) +Mbr (v1, v2)] + s2[Mbr (v2, v3) +Mbr (v3, v4)] + . . .

+ s
t′−1

2 [Mbr (vt′−3, vt′−2) +Mbr (vt′−2, vt′−1) +Mbr (vt′−1, vt′)]

= Dt
′

rb
(say). (2.7)

Proceeding in the same way and using the inequalities (2.4) and (2.6), we have

Mbr (κh,κh+1) =Mbr (J
hκ0, J

hκt) =Mbr (J
hκ′0, Jhκ′t)

≤ s[Mbr (J
hκ′0, Jhκ′1) +Mbr (J

hκ′1, Jhκ′2)] + s2[Mbr (J
hκ′2, Jhκ′3)

+Mbr (J
hκ′3, Jhκ′4)] + . . .+ s

t−1
2 [Mbr (J

hκ′t−3, Jhκ′t−2)

+Mbr (J
hκ′t−2, Jhκ′t−1) +Mbr (J

hκ′t−1, Jhκ′t)] = ηhDtrb . (2.8)

Also, using the inequalities (2.5) and (2.7), we have

Mbr (κh,κh+2) =Mbr (J
hκ0, J

hκ2) =Mbr (J
hv0, J

hvt′)

≤ s[Mbr (J
hv0, J

hv1) +Mbr (J
hv1, J

hv2)] + s2[Mbr (J
hv2, J

hv3)

+Mbr (J
hv3, J

hv4)] + . . .+ s
t′−1

2 [Mbr (J
hvt′−3, J

hvt′−2)

+Mbr (J
hvt′−2, J

hvt′−1) +Mbr (J
hvt′−1, J

hvt′)] = ηhDt
′

rb
. (2.9)

In order to prove {κh} is a Cauchy sequence, we consider the following cases:
Case-1: For an odd integer k, we have

Mbr (κh,κh+k)≤s[Mbr (κh,κh+1)+Mbr (κh+1,κh+2)]+s2[Mbr (κh+2,κh+3)

+Mbr (κh+3,κh+4)] + . . .+ s
k−1
2 [Mbr (κh+k−3,κh+k−2)

+Mbr (κh+k−2,κh+k−1) +Mbr (κh+k−1,κh+k)].

By using the inequality (2.8), we have

Mbr (κh,κh+k) ≤ s[ηhDtrb + ηh+1Dtrb ] + s2[ηh+2Dtrb + ηh+3Dtrb ]

+ . . .+ s
k−1
2 [ηh+k−3Dtrb + ηh+k−2Dtrb + ηh+k−1Dtrb ]→ 0 as h→∞.

Case-2: For an even integer k, we have

Mbr (κh,κh+k) ≤ s[Mbr (κh,κh+1) +Mbr (κh+1,κh+2)]

+ s2[Mbr (κh+2,κh+3) +Mbr (κh+3,κh+4)] + . . .+ s
k−2
2

× [Mbr (κh+k−4,κh+k−3)+Mbr (κh+k−3,κh+k−2)+Mbr (κh+k−2,κh+k)].

By using the inequalities (2.8) and (2.9), we have

Mbr (κh,κh+k) ≤ s[ηhDtrb + ηh+1Dtrb ] + s2[ηh+2Dtrb + ηh+3Dtrb ]

+ . . .+ s
k−2
2 [ηh+k−4Dtrb + ηh+k−3Dtrb + ηh+k−2Dt

′

rb
]→ 0 as h→∞.

From Case-1 and Case-2, we observe that {κh} is the Cauchy sequence in S.
Also, S beingM-complete, implies that the sequence {κh} is convergent in S.
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By virtue of (a), there exist some κ′ ∈ S, h′ ∈ N such that (κh,κ′) ∈ E(M)
or (κ′,κh) ∈ E(M) for h > h′ and

lim
h→∞

Mbr (κh,κ′) = 0,

which guarantees that {κh} converges to κ′. ut

Remark 3. Theorem 1 provides an answer to the open problem posed in [25].

Corollary 1. In addition to the hypotheses contained in Theorem 1, we suppose
M to be weakly connected, then J has a unique fixed point κ′.

We provide the following example to validate our findings.

Example 2. Consider a graphM endowing a set S =
{

3−h : h ∈ N
}
∪{0} with

V (M) = S and E(M) = ∆ ∪ {(b1, b2) ∈ S × S : (b1Rb2), b1 ≤ b2}. Let the
metric Mbr be defined by the following

Mbr (b1, b2) =

{
|b1 − b2|2 if b1 6= b2,

0 if b1 = b2.

For s = 2, (Mbr ,S, s) is a grbms. Now define the map J : S → S by

Jy∗ = y∗/3, for all y∗ ∈ S.

There exists b0 = 1
3 such that J( 1

3 ) = 1
9 ∈ [ 13 ]

1

M, i.e.,
(
1
3R

1
9

)
M. Similarly(

1
3R

1
27

)
and the contractive condition (2.1) is satisfied for µ = 3

7 . This endorses
that J is aMbr -gK contraction defined on the map J in the context of grbms.

Figure 2. Validation graph–Kannan mapping.

Figure 2 validates that the right hand side of Mbr -gK contraction (2.1)
controls its left hand side by taking µ = 3

7 in the framework of grbms de-
fined above. With easy computation, it follows that all the assertions of The-
orem 1 are fulfilled, and 0 is the required fixed point of J . The following
is the underlying weighted graph (Figure 3) for the set of vertices V ′(M) ={

0, 1
243 ,

1
81 ,

1
27 ,

1
9 ,

1
3

}
⊆ V (M), where the weight of edge (b1, b2)=Mbr (b1, b2).

Math. Model. Anal., 27(3):492–509, 2022.
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Figure 3. Related graph in which Mbr (b1, b2)= weight of edge (b1, b2).

Remark 4.

• In view of Example 2 and Remark 2, one can easily verify that main results
of Bojor [7] and Kannan [14] do not satisfy the contractive the condition (2.1).
Hence one can not apply the results of Bojor [7] and Kannan [14] on the map-
ping J .

• Thus the results obtained in this article are useful generalizations and exten-
sions of some celebrated results of Bojor [7] and Kannan [14], in the framework
of grbms.

3 Some applications

This section deals with some practicing of our results concerningMbr -gK con-
tractions in the structure of grbms. We establish the existence of solution to
some class of integral equations and fourth–order two–point boundary value
problem. For N > 0, consider the set of real-valued continuous functions
([0, N ])c. Let U = {f ∈ S : inf0≤h≤N f(h) > 0 and f(h) ≤ 1, h ∈ [0, N ], N >
0}. Let M be the graph with V (M) = S and

E(M)=∆ ∪ {(f,f∗)∈S × S : f,f∗∈U ,f(h) ≤ f∗(h), for all h ∈ [0, N ]}.

3.1 Existence of solution to two-point fourth-order boundary value
problem

The multi-point boundary value problems, especially two-point fourth–order
boundary value problems, are crucial in describing an expansive elastic deflec-
tion class. Such boundary value problems for ordinary differential equations
make an appearance in several distinct dimensions of applied physics and engi-
neering science. These nonlinear fourth-order two-point boundary value prob-
lems have been investigated by various researchers using different techniques,
for example, the Leray-Schauder Continuation theorem and coincidence degree
theory. Our aim is to illustrate sufficient conditions for the existence of solution
of the two–point fourth–order BVP portraying the deformations of an elastic
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beam, which plays a significant role to the problems related to mechanics and
engineering. More details on these problems, one can refer to [1, 11].

Consider the two–point fourth–order BVP governing the following func-
tional equation:{

f′′′′(h) = P(h,f(h),f′(h)), h ∈ [0, 1],
f(0) = f′(0) = f′′(1) = f′′′(1) = 0,

(3.1)

where P : [0, 1] × R2 → R is a function that is continuous, and employed in
the investigation of malleable beams. For convenience, we reduce the afore-
mentioned two-point BVP (3.1) via Green’s function to its equivalent integral
equation stated below:

f(h) =

∫ 1

0

L∗(h, d)P(d,f(d),f′(d))dd, h ∈ [0, 1], (3.2)

where the corresponding Green’s function L∗(h, d) is given by

L∗(h, d) =
1

6

{
d2(3h− d), if 0 ≤ d ≤ h ≤ 1;
h2(3d− h), if 0 ≤ h ≤ d ≤ 1.

Let the graphical b-rectangular metricMbr : S ×S → [0,∞[ be defined by the
following:

Mbr (f,f
∗) = sup

0≤h≤1
|f (h)−f∗(h)|2,

for all f,f∗ ∈ S. Clearly (S,Mbr ) is a M-complete graphical b-rectangular
space.
The next result furnishes us sufficient assertions for the uniqueness and exis-
tence of the solution of the two-point BVP (3.1).

Theorem 2. Consider the underneath assertions:

(1) γ(h) ≤
∫ 1

0
L∗(h, d)P(d, γ(d), γ′(d))dd, γ ∈ ([0, 1],R)c;

(2) Select κ > 0 suitably such that

inf
0≤h≤1

L∗(h, d) > 0, 0 ≤ sup
0≤h≤1

(Q(κ, h))
2
<

1

2
and P(d, 1, 0) ≤ 1,

where Q(κ, h) = h4−4h3+6h2

24κ .

(3) For each h ∈ [0, 1], f∗,f ∈ S, and J is defined in (3.3), we have

|P(h,f∗(h),f∗′(h))− P(h,f(h),f′(h))|

≤ 1

κ

√
|f∗(h)− J f∗ (h)|2 + |f(h)− J f (h)|2.

Then the integral equation (3.2) possesses a unique solution, and accordingly
there is a unique solution of the two point BVP depicting the deformation of
an elastic beam (3.1).

Math. Model. Anal., 27(3):492–509, 2022.



502 M. Younis, D. Singh, L. Chin and M. Metwali

Proof. Let J : S → S be the operator on the set S defined by

J f (h) =

∫ 1

0

L∗(h, d)P(d,f(d),f′(d))dd, for all f ∈ S. (3.3)

Obviously, J is well defined. Now, for (f∗,f) ∈ E(M) with f∗,f ∈ S, we
have

|J f∗ (h)− J f (h)|

=

∣∣∣∣∫ 1

0

L∗(h, d)P(d,f∗(d),f∗′(d))dd−
∫ 1

0

L∗(h, d)P(d,f(d),f′(d))dd

∣∣∣∣
≤
∫ 1

0

L∗(h, d) |P(d,f∗(d),f∗′(d))− P(d,f(d),f′(d))| dd

≤ sup
0≤h≤1

|P(d,f∗(h),f∗′(h))− P(d,f(h),f′(h))|
∫ 1

0

L∗(h, d)dd

≤ 1

κ
sup

0≤h≤1

√
|f∗(h)− J f∗ (h)|2 + |f(h)− J f (h)|2

∫ 1

0

L(h, d)dd

=

(
h4 − 4h3 + 6h2

24κ

)
sup

0≤h≤1

√
|f∗(h)− J f∗ (h)|2 + |f(h)− J f (h)|2.

From here we can write

sup
0≤h≤1

|J f∗ (h)− J f (h)|2

≤
{

sup
0≤h≤1

(Q(κ, h))
2

}
sup

0≤h≤1

{
|f∗(h)− J f∗ (h)|2 + |f(h)− J f (h)|2

}
.

In light of the given assertions, we take
{

sup0≤h≤1 (Q(κ, h))
2
}

=µ
s∈[0, 12 ), and

hence we have

Mbr (Jf
∗, Jf) ≤ µ

s
[Mbr (f

∗, Jf∗) +Mbr(f, Jf)] .

Consequently the assertion (♠2) of Theorem 1 is established. Next, consider
(f∗,f) ∈ E(M) with f∗,f ∈ S. We notice that f∗,f ∈ U and f∗(h) ≤ f(h)
for all h ∈ [0, 1]; and by condition 2, we obtain inf0≤h≤1 J(f∗)(h) > 0,

J(f∗)(h) =

∫ 1

0

L∗(h, d)P(d,f∗(d),f∗′(d))dd ≤
∫ 1

0

L∗(h, d)P(d, 1, 0)dd ≤ 1,

J(f∗)(h) =

∫ 1

0

L∗(h, d)P(d,f∗(d),f∗′(d))dd

≤
∫ 1

0

L∗(h, d)P(d,f(d),f′(d))dd = J(d)(h).

This adds up to state that J f∗ (h) ∈ U and
(
J(f∗)(h), J(f)(h)

)
∈ E(M). In

compliance with the assertion (♠1), there exists a solution say γ ∈ U such that
J(γ) ∈ [γ]1M and J2(γ) ∈ [γ]1M, and thus the goal that the condition (b) of
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Theorem 1 is checked. Subsequently, by elementary calculations, one can see
easily that the rest of the assertions of Theorem 1 and Corollary 1 are satisfied.
Consequently, J has a unique fixed point, and hence the two-point BVP (3.1)
has a unique solution in S. ut

3.2 An application to a class of integral equations

In this subsection we find the existence of solution to the integral equation of
the form

f(h) =

∫ N

0

L(h, d)F(d,f(d))dd + g(h), h ∈ [0, N ], (3.4)

where L : [0, N ] × [0, N ] → R is the Kernel of the given integral equation,
F : [0, N ]× R+ → R and g : [0, N ]→ R are continuous functions.
Define graphical metric Mbr : S × S → [0,∞) by

Mbr (f,f
∗) = sup

0≤h≤N
|f (h)−f∗(h)|2,

for all f,f∗ ∈ S. Then (S,Mbr ) is a M-complete grbms.
Let the operator J : S → S be given by the following

J f (h) =

∫ N

0

L(h, d)F(d,f(d))dd + g(h), for all f ∈ S.

Then f is a fixed point of J if and only if f is a solution of the IE (3.4).
Let the subsequent assertions take place:
(k1) β ∈ ([0, N ],R)c is a lower solution of the IE (3.4), i.e.,

β(h) ≤
∫ N

0

L(h, d)F(d,f(d))dd + g(h).

(k2) For every f ∈ [0, N ], F(d, .) is a nondecreasing function on ]0, 1], and pick
µ appropriately such that

inf
0≤h≤N

L(h, d) > 0, 0 ≤ sup
0≤h≤N

(W(µ, h))
2
<

1

2
and L(h, d)F(d, 1) ≤ N−1,

where W(µ, h) = 1+hµ−ehµ
µ2 .

(k3) For each h ∈ [0, N ] and f∗,f ∈ S, we have

|F(h,f∗(h))−F(h,f(h))| ≤
√
|f∗(h)− J f∗ (h)|2 + |f(h)− J f (h)|2.

Theorem 3. Under the assertions (k1)–(k3), the integral equation (3.4) pos-
sesses a unique solution.
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Proof. Using the theory of the hypothesis under consideration, for (f∗,f) ∈
E(M) and f∗,f ∈ S, we have

|J f∗ (h)− J f (h)| =
∣∣∣ ∫ N

0

L(h, d)F(d,f∗(d))dd + g(h)

−
∫ N

0

L(h, d)F(d,f(d))dd−g(h)
∣∣∣ ≤ ∫ N

0

L(h, d) |F(d,f∗(d))−F(d,f(d))| dd

≤
∫ N

0

L(h, d) sup
0≤h≤N

|F(h,f∗(h))−F(h,f(h))| dd

= sup
0≤h≤N

|F(h,f∗(h))−F(h,f(h))|
∫ N

0

L(h, d)dd

≤ sup
0≤h≤N

√
|f∗(h)− J f∗ (h)|2 + |f(h)− J f (h)|2

∫ N

0

L(h, d)dd

=

(
1 + hµ− ehµ

µ2

)
sup

0≤h≤N

√
|f∗(h)− J f∗ (h)|2 + |f(h)− J f (h)|2.

We can write

sup
0≤h≤N

|J f∗ (h)− J f (h)|2 ≤
{

sup
0≤h≤N

(W(µ, h))
2

}
× sup

0≤h≤N

{
|f∗(h)− J f∗ (h)|2 + |f(h)− J f (h)|2

}
.

In view of hypothesis, taking sup0≤h≤N (W(µ, h))
2

= µ
s ∈ [0, 12 ), we get

Mbr (Jf
∗, Jf) ≤ µ

s
[Mbr (f

∗, Jf∗) +Mbr (f, Jf)] .

Hence the assertion (♠2) of Theorem 1 is contended. Next, consider (f∗,f) ∈
E(M) with f∗,f ∈ S, we acquire f∗,f ∈ U and f∗(h) ≤ f(h) for all h ∈
[0, N ]. By condition (k2), we deduce inf0≤h≤N J(f∗)(h) > 0,

J(f∗)(h) =

∫ N

0

L(h, d)F(d,f∗(d)) dd ≤
∫ N

0

L(h, d)F(d, 1) dd ≤ 1,

and

J(f∗)(h) =

∫ N

0

L(h, d)F(d,f∗(d)) dd ≤
∫ N

0

L(h, d)F(d,f(d)) dd = J(f)(h).

It follows that J f∗ (h) ∈ U and
(
J(f∗)(h), J(f)(h)

)
∈ E(M). In consistence

with the affirmation (♠1), there exists λ ∈ U such that J(λ) ∈ [λ]1M and
J2(λ) ∈ [λ]1M, and hence the assertion (b) of Theorem 1 is contended. Other
assertions of Theorem 1 and Corollary 1 can easily be verified. Therefore, J
has a unique fixed point and hence the integral equation (3.4) has a unique
solution in S. ut
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4 An application of BCP in grbms

In [25], the authors instigated the concept of grbms along with its topological
properties, and proved analogous of the Banach’s theorem in this structure.
The result was further polished in [26], where the authors extend the range
of the Lipschitz constant ξ to the case

(
1
s , 1
]
. Before enunciating the appli-

cation part of this section, the following notations and definitions are worth
mentioning.

Definition 5. A graphM = (V (M), E(M)) is said to own the property (P),
if there exists a limit r ∈ S of a convergingM-twc J-Ps {κh} and h0 ∈ N such
that (κh, r) ∈ E(M) or (r,κh) ∈ E(M) for all h > h0.

The following definition is due to [26] where the range of the Lipschitz
constant ξ is extended to the case

(
1
s , 1
]
.

Definition 6. Let (S,Mbr ) be a grbms and M be the subgraph of a graph
M associated with (S,Mbr ) accommodating all the loops. We say J : S → S
is an M–Banach contraction (or graphical (M,M)-contraction) on S if the
following two conditions are contended:

(MbrC1) For all (κ1,κ2) ∈ E(M), we have (Jκ1, Jκ2) ∈ E(M);

(MbrC2) ∃ ξ ∈ [0, 1), for all κ1,κ2 ∈ S with (κ1,κ2) ∈ E(M), we have
Mbr (Jκ1, Jκ2) ≤ ξMbr (κ1,κ2).

Theorem 4. [26] Let J : S → S be an M–Banach contraction on an M-
complete graphical rectangular b-metric space. Suppose the underneath asser-
tions are satisfied:

(i) M holds the property (P);

(ii) For odd positive integers ` and ρ, there exists κ0 ∈ S with Jκ0 ∈ [κ0]`M
and J2κ0 ∈ [κ0]ρM.
Then, ∃ κ′ ∈ S so that the J-PicardSequence {κ℘} with initial value κ0 ∈ S is
M-Term wise connected and converges to both κ′ and Jκ′.

4.1 An application to the ascending motion of a rocket

In light of notions used in the Section 3, this subsection is devoted to estab-
lish the existence of solution of the equation representing ascending motion of
rocket.
Consider a rocket possessing an initial mass m0 (comprising propellant and
shell) operating in an ascending motion. The rocket ingests the fuel at a con-
stant rate r = −dm

dt . Relative to the motion of the rocket, fuel is expelled at a
constant speed u. The mass of the rocket at any instant time t is m(t) = m0 − rt.
During the driving stage, the equation of motion of the underlying rocket with
aerodynamic drag force Fd = ζv2 (ζ being the damping coefficient and v is
the velocity at time t) governing the upward motion at an excessive speed is
given by the following first-order nonlinear differential equation with variable
coefficients (see [21]).

m(t)
dv(t)

dt
+ ζv2(t) + m(t)g− qu = 0, (4.1)

Math. Model. Anal., 27(3):492–509, 2022.
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where g is the force of gravity acting on the system.

If we set the velocity v(t) = m(t)�(t)
ζ�(t) , where � is the converted velocity, and

substitute the derived equation into the equation of motion while altering the
time to the dimensionless variable η, then the Equation (4.1) reduces to the
following Bessel type differential equation:

η2
d2Λ(η)

dη2
+ η

dΛ(η)

dη
− P(η,Λ(η)) = 0, (4.2)

Λ(0) = 0, Λ(1) = 0,

where P : [0, 1]×R+ → R a function which is continuous.
In order to make our obtained fixed point results applicable, we reduce the

equation (4.2) via Green’s function to its equivalent integral equation stated
below:

Λ(η) =

∫ 1

0

A(η, b) P(b,Λ(b))db, η ∈ [0, 1], (4.3)

where the corresponding Green’s function A(η, b) is the following

A(η, b) =

{
η
2b (1− b2), 0 ≤ η < b ≤ 1;
b
2η (1− η2), 0 ≤ b < η ≤ 1.

Let the graphical b-rectangular metric Mbr : S × S → [0,∞[ be defined as in
the Subsection 3.1. Consider the operator J : S → S given by the following

JΛ(η) =

∫ 1

0

A(η, b) P(b,Λ(b))db, for all η ∈ S. (4.4)

Then Λ is a fixed point of J if and only if Λ is a solution of the integral
equation (4.3).

Succeeding theorem establishes the sufficient conditions for the existence of
solution of the equation constituting the ascending motion of a rocket.

Theorem 5. We suppose that the following assumptions take place:

(1) δ(η) =
∫ 1

0
A(η, b) P(b,Λ(b))db, δ ∈ ([0, 1],R)c;

(2) inf0≤h≤1A(η, b) > 0, 0≤ sup0≤h≤1

(
η log(1/16+η)

2

)2
<1 and P(b, 1)≤1;

(3) For each b ∈ [0, 1], Λ∗,Λ ∈ S, and J is defined in (4.4), we have

|P(b,Λ∗(η))− P(b,Λ(η))| ≤ |Λ∗(η)− Λ(η)|.

Then there is a unique solution of integral equation (4.3), and consequently the
first-order nonlinear differential equation (4.1) depicting the ascending motion
of the rocket has a solution.

Proof. Utilizing Theorem 4, maintaining the same procedure, as described in
the proof of the theorems in Section 3, we can easily get the desired result. ut
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Open Problems: 1) Can the results proved in this article be extended to
multivalued mappings?

2) Can Mbr -gK type contractions be employed to set up the existence of
solution of the following beam equation

f′′′′ (r)g(f)f′ +P(r,f,f′,f′′) = e(r), r ∈ [0, 1],

f (0) = f′(0) = 0,f′(1) = f′′′(1) = 0,

where P : [0, 1]× R3 → R is a continuous function and e(r) ∈ L1[0, 1].

5 Conclusions

Based on the graph structure, Mbr -gK contraction is established, which is a
generally new expansion to the current writing in the context of grbms. In
this structure, some novel results are established, from which several existing
results can be extracted. We propounded an appropriate example endowed
with a graph for the accuracy of this paper’s obtained results. Moreover, BCP
is enunciated with modified assertions in the setting of grbms. Adorning the
utilizations of the obtained results, some nonlinear problems having practical
significance are considered: two-point boundary value problem describing de-
formations of an elastic beam, ascending motion of a rocket and a class of
integral equations. The outcomes are significant both practically and hypo-
thetically for the researchers working on fixed point theory applications and
well as the scientists dealing with mechanical and engineering problems.
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