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Abstract. The current article presents a degenerating diffusion-precipitation model
including vanishing porosity and focuses primarily on uniqueness results. This is ac-
complished by assuming sufficient conditions under which the uniqueness of weak
solutions can be established. Moreover, a proof of existence based on a compactness
argument yields rather regular solutions, satisfying these unique conditions. The re-
sults show that every strong solution is unique, though a slightly different condition is
additionally required in three dimensions. The analysis presents particular challenges
due to the nonlinear structure of the underlying problem and the necessity to work
with appropriate weights and manage possible degeneration.
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1 Introduction

The research of transport in porous media is motivated by a variety of ap-
plications. Recently, there has been a surge of interest in the study of an
evolving porous matrix caused by various reactions, such as crystal precipita-
tion or biofilm growth. Such precipitants or biofilms attach to the surface of the
solid matrix, occupying pore space. Thus, these attachments cause geometri-
cal changes in the microstructure, which significantly impact the hydrodynamic
properties of the porous medium and hence impede the mass transport of dis-
solved substances within the pores. Substrate transport, in turn, strongly im-
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pacts interface reactions, altering the microstructure. Modeling such processes
generally results in a strongly coupled system of nonlinear partial differen-
tial equations (PDE). From a practical point of view, e.g. for computational
feasibility, an upscaled (averaged) model at the macro-scale is of major impor-
tance compared to a pore-scale model. [12] introduced an extension of formal
two-scale asymptotic expansion to a level set framework capable of capturing
the evolving solid-liquid interface. This method has recently been applied to
crystal precipitation [10, 12], locally-periodic porous media [13], drug delivery
systems [5], non-isothermal media [2], and biofilm growth [8, 9].

However, little attention has been paid to the investigation of degenerate
transport equations in evolving porous media due to clogging effects, which are
rarely studied analytically. Clogging phenomena in porous media, on the other
hand, appear and thus are of particular interest. In [1], degeneracies arising in
linear elliptic equations describing two-phase mixtures, such as partially melted
materials, were managed by scaling the unknowns appropriately. Additionally,
a stabilized variational formulation was used to show existence and unique-
ness of a solution over the entire domain. In [6], the porous medium’s porosity
θ : Ω×(0, T )→ [0, 1) was assumed to be a given function, where the degenerate
case θ(x, t) = 0 was of particular interest and thus explicitly admissible. The
degeneracy was handled and analytical results were obtained by introducing
appropriate weighted function spaces and including the degenerate parameters
as weights. Specifically, the non-vanishing parts of the hydrodynamic parame-
ters were proposed to belong to the Muckenhoupt class A2.

The present study considers a model of [7, 10] that describes the diffusive
transport of a reactive substance in a saturated porous medium, including vari-
able porosity described by a system of coupled (partial) differential equations.
In [10], a two-scale asymptotic expansion in a level set framework was used
to derive an effective, nonlinear diffusion equation coupled to an ordinary dif-
ferential equation (ODE) for porosity change. This modeled system of PDEs
was also analyzed in [10], though clogging effects were excluded. Recently, the
analysis of degenerating equations due to vanishing porosity was included in [7].
Let Ω ⊂ Rn, n = 2, 3, be an open and bounded domain. In the current article,
we reconsider this diffusive transport equation, cf. [7, 10]:

θ∂tc−∇ · D(θ)∇c = ( cρ − 1)f(c, θ) in Ω × (0, T ),

c = 0 on ∂Ω × (0, T ),

c( . , 0) = c0 in Ω (1.1a)

with the substrate concentration c, porous medium’s porosity θ ∈ [0, 1), con-
stant density ρ > 0 of the precipitation, the reaction rate f , and the effective
diffusivity D (depending on θ). Here, the homogeneous boundary condition
and the initial data c0 are assumed. The precipitation reaction rate is given
by f(c, θ) := θσc with σ ≥ 2. In contrast to the models considered in [8,10,12],
where for a reasonable shape of the microstructure the specific grain’s surface
behaves like θ

1
2 , we assume a larger exponent and hence a faster decay of the

reaction rate with respect to the porosity for analytical feasibility.
We assert that the microstructure’s geometry is parametrized by a single pa-

rameter, which is represented by the porosity. In this case, the hyperbolic level
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set equation (which generally describes the evolving microstructure) reduces
to an ordinary differential equation describing the change of this parameter,
cf. [10, 12]. In the current underlying situation, such an assumption is rea-
sonable since the reaction rate f causing the microstructure change does not
depend on microscopic values, i.e., it occurs uniformly along the fluid-solid in-
terface. Therefore, the evolution of the porosity θ caused by precipitation is
given via the following ODE:

∂tθ = − 1
ρf(c, θ) in Ω × (0, T ),

θ( . , 0) = θ0 in Ω . (1.1b)

In addition to the changeable properties of the porous medium in principle,
the possibility of degenerating transport equations due to clogging complicates
the analytical study of the present model (1.1) significantly.

Although, it is generally difficult to characterize, the effective diffusivity
D is essential for modeling the substrate transport in porous media. Conse-
quently, porosity-diffusivity models such as linear relations or power-laws are
typically used, cf. [4]. It is often assumed that diffusivity satisfies the constitu-
tive law D(θ) = αθd. For instance, Penman (1940) suggests d = 1 and α = 0.66,
while for α = 1, Marshall (1959) suggests d = 3

2 , and Millington (1959) d = 4
3 .

However, the case d < 1 is not of interest for applications since there exist
the following analytically derived bounds: the Voigt-Reiss bound D(θ) . θ
and the n-dimensional Hashin-Shtrikman bound D(θ) . n−1

n−θ θ for the effective
diffusion, cf. [4]. In particular, for small porosities, the three-dimensional up-
per Hashin-Shtrikman bound 2

3−θ θ is approximated linearly by 2
3θ ≈ 0.66θ,

which is exactly the relation proposed by Penman. Hence, the specific choice
of d = 1 provides a reasonable relation for small porosities. This is exactly the
focus of the present research since, at the limit of clogging, the porosity θ van-
ishes. Thus the diffusivity D : [0, 1)→ [0,∞) is assumed to be a scalar-valued,
monotonously increasing map depending on the porosity θ. For readability, it
is reasonable to assume that the diffusivity satisfies D(θ) = θd for some d ≥ 1,
i.e., α = 1, cf. [7].

In [7], the author has already analyzed the coupled degenerating PDE–ODE
model (1.1). An adjusted Rothe method was used to verify the existence of
weak solutions in weighted function spaces. In particular, the decay behavior
of the concentration c with respect to the porosity θ was studied. However,
in contrast to [10], the model (1.1) was solved in [7] even for substantially
degenerating hydrodynamic parameters. In this respect, the obtained results
in [7] extended the knowledge of the model introduced in [10] and actually
allowed the investigation of clogging processes.

Nevertheless, proof of uniqueness of weak solutions to (1.1) was missing
in [7] since it can not be done by a simple argument. Due to nonlinearity and
degenerating θ-weights in (1.1a), a more skillful approach is necessary. In this
article, the analysis of the degenerating diffusion-precipitation model (1.1) was
continued and sufficient conditions under which uniqueness of weak solutions
can be established were formulated. Moreover, another proof of existence,
which is based on a compactness argument, yields rather regular solutions
to (1.1), satisfying these uniqueness conditions in the two-dimensional case.

Math. Model. Anal., 27(3):471–491, 2022.
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As a result, in two dimensions every strong solution is unique. In contrast,
three-dimensional solutions satisfy these sufficient conditions at least partially,
however, as a consequence it is open whether uniqueness holds.

The particular challenges of the following analysis arise due to the nonlinear
structure of the underlying problem and the necessity to work with appropriate
θ-weights and manage possible degeneration.

This article is organized as follows: Section 2 summarizes the main re-
sults and discusses the central topic. The more comprehensive proofs of the
uniqueness (Theorem 2) and regularity properties (Lemma 2) are discussed in
Sections 3 and 4, respectively. Theorem 3 establishes the existence of solutions
to (1.1). Finally, this article completes with a brief conclusion. The norm of
the Banach space Lp, p ∈ [1,∞], is denoted by ‖ . ‖p throughout the paper. All
subsequent norms are intuitively denoted, e.g. ‖u‖L∞(Lp) = supt∈(0,T ) ‖u(t)‖p
for u ∈ L∞(0, T ;Lp(Ω)), p ≥ 1. Furthermore, C describes positive constants,
where the value may differ from one occasion to another. Furthermore, the
notation a . b for real numbers a, b ∈ R denotes that a ≤ Cb for some constant
C > 0.

2 Main results

To investigate the transport equation (1.1a) for clogging scenarios, it is reason-
able to define an appropriate θ-weighted linear space for given θ:

Vθ(Ω) := {u ∈ L2(Ω) : D(θ)
1
2∇u ∈ (L2(Ω))n and u = 0 on ∂Ω}

with the corresponding inner product

(u, v)Vθ := (u, v)2 + (D(θ)
1
2∇u , D(θ)

1
2∇v)2 .

Here ( . , . )2 denotes the inner product of L2(Ω). If the gradient of the unknown
porosity θ : ΩT → [0, 1) with ΩT = Ω × (0, T ) satisfies

θ
d
2 ∈ L∞(0, T ;H1(Ω)) , (2.1)

the linear space Vθ(Ω) equipped with the above inner product is a Hilbert
space, cf. [1, 7]. Let us further introduce

Xθ:={L2(0, T ;Vθ(Ω)) | θ∂tc ∈ L2(0, T ; (Vθ(Ω))∗)} andY:=H1(0, T ;L2(Ω)),

where (Vθ(Ω))∗ denotes the dual space of Vθ(Ω). In general there hold the
following inclusions for a bounded porosity weight θ : ΩT → [0, 1):

H1
0 (Ω) ⊂ Vθ(Ω) ⊂ L2(Ω) ⊂ (Vθ(Ω))∗ ⊂ H−1(Ω) ,

i.e., L2(0, T ;Vθ(Ω)) is interpreted as a subspace of the rigid Bochner space
L2(0, T ;L2(Ω)). With respect to this θ-weighted function space we define weak
solvability of our underlying diffusion-precipitation model (1.1) with homoge-
neous Dirichlet boundary condition, diffusion parameter D(θ) = θd and reaction
rate f(c, θ) = θσc as follows:
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Definition 1. A pair (c, θ) ∈ Xθ × Y is called a weak solution to the coupled
system (1.1) if for all test functions (ϕ1, ϕ2) ∈ H1

0 (Ω) × L2(Ω) and a. e. t ∈
(0, T ) there holds

〈θ∂tc , ϕ1〉V ∗θ ,Vθ = −
∫
Ω

D(θ)∇c∇ϕ1 +

∫
Ω

( c
ρ
− 1
)
f(c, θ)ϕ1 , (2.2a)∫

Ω

(∂tθ)ϕ2 = −1

ρ

∫
Ω

f(c, θ)ϕ2, (2.2b)

and if (c, θ) takes the initial value (c0, θ0) ∈ L2(Ω)2 in the sense

|(c(t)− c0, φ)2|+ |(θ(t)− θ0, φ)2|
t→0−→ 0

for all φ ∈ L2(Ω).

This weak formulation was already considered in [7]. There it was of par-
ticular interest whether the substrate concentration c remains bounded within
clogged regions. Depending on the density ρ of the precipitant, solution c may
even vanish with respect to θ. More precisely, for some parameter p > 0, the
concentration c decays at least as θp. In [7] the following existence result was
shown by an adjusted Rothe method:

Theorem 1. Let the parameters σ ≥ 1, p ≥ 0 and d ∈ [1, 1 + 2p] satisfy
d−3
2 ≤ σ + p. Moreover, the nonnegative initial data c0, θ0 ∈ L∞(Ω) are

assumed to fulfill

‖c0‖∞ ≤
ρ

1+p ,
∥∥θ−p0 c0

∥∥
2
<∞, θ0 ∈ [0, 1) and

∥∥∥θ−1− 2p+1−d
2

0 ∇θ0
∥∥∥
2
<∞.

Then for all T > 0 there exists a nonnegative solution (c, θ) ∈ Xθ × Y to (2.2)
with

sup
t∈(0,T )

‖c(t)‖∞ ≤ ‖c0‖∞ and sup
t∈(0,T )

‖θ(t)‖∞ ≤ ‖θ0‖∞ .

In particular, in the L2-norm the solution c and the gradient of θ are decaying
of order p and 1 + 2p+1−d

2 , respectively, with respect to θ.

Proof. See [7, Theor. 4.2]. ut

It should be noted that the preceding terms are well-defined, although θ0 = 0
is explicitly allowed. The reciprocal initial data θ−10 never appears on its own,
but always in combination with a multiplicative partner compensating for the
bad behavior of this weight.

This theorem reads less technical if only boundedness of the solution c is
aimed at and the decay property is neglected, i.e., p = 0. In such a situation the
behavior of c in the region of vanishing porosity Ωθ(t) = {x ∈ Ω : θ(x, t) = 0}
is not clear. Therefore, we assume at least slight decay, ensuring that besides
θ, c also vanishes in this region.

In [7], the difficulty of proving uniqueness of weak solutions was already
mentioned. In fact, this is beside the strong nonlinear structure of (2.2) with

Math. Model. Anal., 27(3):471–491, 2022.
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respect to (c, θ) also due to degenerating θ-weights. In contrast to the non-
clogging case [10] (i.e. θ ≥ δ > 0), in the present situation of vanishing porosity,
we need to control adequately θ-weighted norms.

Besides a stronger restriction on the parameter σ, the conditions

‖θ∇c‖L2(L2n) <∞ and
∥∥θ−1∇θ∥∥

L∞(L2n)
<∞ (2.3a)

and additionally ∥∥∥θ d−3
2 ∇θ

∥∥∥
L

6+κ
3+κ (L2n+κ)

<∞ for some κ > 0 (2.3b)

entail uniqueness in the following main result.

Theorem 2 [Uniqueness]. Let σ ≥ 2, d ≥ 1 and (c, θ) ∈ Xθ×Y be a bounded
and nonnegative weak solution to (2.2) fulfilling (2.3) such that c vanishes in
the clogged region Ωθ and θ(x, t) ∈ [0, 1) for a.e. (x, t) ∈ ΩT . Then (c, θ)
coincides with any weak solution also satisfying the property (2.3a).

Proof. See Section 3. ut

In comparison to (2.3a), the condition (2.3b) includes a weaker θ-weight with
an exponent d−3

2 ≥ −1 and requires less time integrability. However, it is
a slightly stronger assumption with respect to spatial integrability. Besides,
condition (2.3a) involves (2.1) such that Vθ is, in fact, a Hilbert space.

To establish solutions to (2.2) that satisfy the conditions (2.3), more reg-
ularity of such solutions is required. The proof of Theorem 1 was based on
an adjusted Rothe method, and showing regularity rigorously with the dis-
cretization technique of the Rothe method would be unnecessarily technical.
Therefore, in contrast to [7], the present study used a more elegant compactness
argument yielding the existence of rather regular solutions. Thus, for ε > 0 we
consider the non-degenerating modification of (1.1)

θε∂tcε −∇ · D(θε)∇cε = (cε/ρ− 1)fε(cε, θε) in Ω × (0, T ),

cε = 0 on ∂Ω × (0, T ),

cε( . , 0) = c0 in Ω,

∂tθε = −fε(cε, θε)/rho in Ω × (0, T ),

θε( . , 0) = θ0,ε in Ω. (2.4)

As demonstrated below, these solutions also satisfy (2.3a) (cf. Lemma 2)
and thus give this property to the limit satisfying (1.1). Theorem 2 then implies
the equality of this limit to any strong solution satisfying (2.3b) or any weak
solution satisfying (2.3). However, since the limit solves a degenerating system,
it is necessary to derive uniformly bounded estimates in appropriate θ-weighted
norms.

In (2.4), the initial data θ0, as well as the right-hand side f , are replaced
by θ0,ε ∈ H2(Ω) with θ0,ε(x, t) ∈ [ε, 1) for a.e. (x, t) ∈ ΩT and

fε(cε, θε) :=

{
f(cε, θε) for θε > ε,

0 else,
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respectively, avoiding the porosity from falling below ε > 0. According to the
existence theorem of Caratheodory, there exists a unique, absolutely continuous
solution θε ∈ Y. Obviously, testing the evolution equation of the porosity in
(2.4) with min{θε − ε, 0} implies that this system does not degenerate since
θε ≥ ε remains valid during the evolution. Thus, standard parabolic theory [3,
Chap. III] can be applied with respect to the usual function space

X := L2(0, T ;H1
0 (Ω)) ∩H1(0, T ;H−1(Ω)) . (2.5)

In this case of non-vanishing porosity θε ≥ ε > 0, the Sobolev space H1
0 (Ω)

is isomorph to Vθε(Ω) and Definition 1 coincides with the typical definition of
weak solvability with respect to (2.5). Therefore, for each ε > 0, we obtain a
unique solution (cε, θε) ∈ X × Y, cf. [8]. Nevertheless, the norms of cε in X
would blow up as ε → 0. For this reason, uniformly bounded estimates in θ-
weighted norms are needed. The following results concern additional regularity
properties that are satisfied by (cε, θε)ε>0 in such norms and that are actually
given to the limit (c, θ) solving (1.1).

Let c0 ∈ L∞(Ω) such that ‖c0‖∞ ≤ ρ and θ0,ε(x) ∈ [ε, 1) for a.e. x ∈ Ω
and ε > 0 be nonnegative initial data. Then, similar to [7, Theorem 2.3], the
solution (cε, θε) ∈ X × Y to (2.4) is nonnegative and bounded:

sup
t∈(0,T )

‖cε(t)‖∞ ≤ ‖c0‖∞ and θε(x, t) ∈ [ε, θ0,ε(x)] (2.6)

for a.e. (x, t) ∈ ΩT . If sufficient regularity on the data is additionally assumed,
i.e., c0 ∈ H1

0 (Ω), the unique weak solution cε even belongs to

cε ∈ L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω)) , (2.7)

cf. [3, Chap. III]. However, since we are interested in the limiting solution of
(1.1) for ε→ 0, regularity results with respect to appropriate θ-weighted func-
tion spaces are needed, such that corresponding norms are uniformly bounded
in ε.

Lemma 1. Let the initial data be given as above with ε > 0, ‖c0‖∞ ≤ ρ,

θ0,ε(x) ∈ [ε, 1) for a.e. x ∈ Ω and D(θ0,ε)
1
2∇c0 ∈ L2(Ω). Then the solution cε

fulfills also the following properties:

θ
d
2
ε ∇cε ∈ L∞(0, T ;L2(Ω)) and θ

1
2
ε ∂tcε ∈ L2(0, T ;L2(Ω)) . (2.8)

Moreover, the corresponding norms are uniformly bounded with respect to ε > 0.

Proof. In fact, the assertion (2.8) follows directly from (2.7) and the bound-
edness of θε. However, the uniform boundedness of the norms is the principal
point of this Lemma. Testing (2.4)1 with ∂tcε leads to∫ t

0

(θε∂tcε, ∂tcε)2 =

∫ t

0

∥∥∥θ 1
2
ε ∂tcε

∥∥∥2
2
,∫ t

0

∫
Ω

D(θε)∇cε∇(∂tcε)=− 1
2

∫ t

0

∫
Ω

∂t(D(θε))|∇cε|2+ 1
2

[ ∫
Ω

D(θε)|∇cε|2(τ)
]t
τ=0

Math. Model. Anal., 27(3):471–491, 2022.
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= −d
2

∫ t

0

∫
Ω

θd−1ε ∂tθε|∇cε|2 + 1
2

∥∥∥D(θε)
1
2∇cε(t)

∥∥∥2
2
− 1

2

∥∥∥D(θ0,ε)
1
2∇c0

∥∥∥2
2

and further by (2.6) and Young’s inequality∫ t

0

∫
Ω

( cερ − 1)fε(cε, θε)∂tcε ≤ 1
2

∫ t

0

∥∥∥θσ− 1
2

ε cε

∥∥∥2
2

+ 1
2

∫ t

0

∥∥∥θ 1
2
ε ∂tcε

∥∥∥2
2
. (2.9)

Thereby, the second term of the right-hand side in (2.9) can be absorbed.
Furthermore, we note the non-positivity of the integrand θd−1ε ∂tθε|∇cε|2 due
to ∂tθε ≤ 0 such that the corresponding integral can be omitted and finally we
have∥∥∥D(θε)

1
2∇cε(t)

∥∥∥2
2

+

∫ t

0

∥∥∥θ 1
2
ε ∂tcε

∥∥∥2
2
≤ D0 +

∫ t

0

∥∥∥θσ− 1
2

ε cε

∥∥∥2
2
≤ D0 + |Ω|Tρ2

with an appropriate uniform upper bound D0 ≥
∥∥D(θ0,ε)

1
2∇c0

∥∥2
2
. ut

Remark 1. Since the weighted time derivative θ
1
2
ε ∂tcε belongs to

L2(0, T ;L2(Ω)), testing (2.4)1 with θ−1ε ∇ · (D(θε)∇cε) yields

1
2

∫ t

0

∥∥∥θ− 1
2

ε ∇ · (D(θε)∇cε)
∥∥∥2
2
≤ C

∫ t

0

(∥∥∥θ− 1
2

ε fε(cε, θε)
∥∥∥2
2

+
∥∥∥θ 1

2
ε ∂tcε

∥∥∥2
2

)
<∞ ,

(2.10)

i.e., also θ
− 1

2
ε ∇ · (D(θε)∇cε) lies in L2(0, T ;L2(Ω)) and hence cε solves the

transport equation (1.1a) in a strong sense.

Henceforth, for the sake of simplicity, we assume d = 1. If the gradi-
ent of the initial data θ0,ε is provided with more θ-weighted integrability, i.e.,
θ−10,ε∇θ0,ε ∈ L4(Ω) for n = 2 and θ−10,ε∇θ0,ε ∈ L6(Ω) for n = 3 (abbreviated

as θ−10,ε∇θ0,ε ∈ L2n(Ω) below), the solution (cε, θε) of the previous Lemma sat-
isfies further regularity properties in certain θ-weighted norms, especially the
condition (2.3a):

Lemma 2 [Regularity]. Assume that the conditions of Lemma 1 are satisfied,
such that θ−10,ε∇θ0,ε ∈ L2n(Ω). Then, the solution (cε, θε) to (2.4) even satisfies
(2.3a) and the regularity properties

θεcε ∈ L2(0, T ;H2(Ω)) ∩ L∞(0, T ;H1
0 (Ω)) and θε ∈ L∞(0, T ;H2(Ω)) .

Moreover, the corresponding norms are uniformly bounded with respect to ε > 0.

Proof. See Section 4. ut

As a consequence, we conclude that every strong solution satisfies (2.3) or
at least (2.3a) for n = 2 or n = 3, respectively, cf. remark below the proof.

The solutions (cε, θε)ε>0 are uniformly bounded in the introduced θ-weigh-
ted norms. Thus, a compactness argument yields limit functions (c, θ) solving
the original degenerating equations (1.1) in a strong sense. In particular, these
limit functions inherit sufficient regularity and hence satisfy condition (2.3) or
(2.3a), respectively.
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Theorem 3 [Existence]. Let σ ≥ 2, c0 ∈ L∞(Ω) ∩ H1
0 (Ω), ‖c0‖∞ ≤ ρ and

θ0 ∈ H2(Ω) with θ0(x) ∈ [0, 1) for a.e. x ∈ Ω and θ−10 ∇θ0 ∈ L2n(Ω). Then,
there exists a bounded solution (c, θ) ∈ Xθ × Y to (2.2) satisfying (2.3a) and

θc, θ ∈ L2(0, T ;H2(Ω) ∩ H1(0, T ;L2(Ω)) .

Proof. We choose for every sufficiently small ε > 0 the initial data θ0,ε in such
a way that the conditions of Lemma 2 are satisfied. Moreover, we assume that
(θ0,ε)ε>0 approximates the initial data θ0 with respect to the H2-norm and
the corresponding norms

∥∥θ−10,ε∇θ0,ε
∥∥
2n

are uniformly bounded. To prove the

convergence of a subsequence of (cε, θε)ε>0 to a solution (c, θ) ∈ Xθ×Y of (2.2)
we apply the previous lemma and the θ-uniform estimates (2.6) and (4.3), see
Section 4. In fact (θεcε)ε>0 and (θε)ε>0 are bounded in the Banach space

L2(0, T ;H2(Ω)) ∩ L∞(0, T ;H1(Ω)) ∩ L∞(ΩT ) . (2.11)

Therefore, there are subsequences (θkck)k∈N and (θk)k∈N converging weakly∗

to some limits ζ and θ, respectively. These limits are bounded

‖ζ‖L∞(ΩT )
≤ lim inf

k→∞
‖θkck‖∞ ≤ ‖c0‖∞ , ‖θ‖L∞(ΩT )

≤ lim inf
k→∞

‖θk‖∞ ≤ 1.

With Lemma 1 we infer that also the time derivatives ∂t(θεcε) and ∂tθε
are uniformly bounded in L2(0, T ;L2(Ω)). Then the Lemma of Aubin-Lions
implies strong convergence of (θkck)k∈N and (θk)k∈N in C(0, T ;H1(Ω)) to ζ and
θ, respectively. In particular, due to the boundedness of supt∈(0,T ) ‖cε(t)‖∞ ≤ ρ
there is a subsequence of (ck)k∈N weakly∗ converging to a limit c ∈ L∞(ΩT ).
That means with respect to L2(0, T ;L2(Ω)) the sequence of products (θkck)k∈N
converges weakly to the product θc and hence θc = ζ belongs to (2.11).

Furthermore, there exists a subsequence (θσ−1k )k∈N weakly converging to
θσ−1. The limit θ actually satisfies (2.2b) since∫ T

0

(∂t(θk − θ), ϕ)2
k→∞−→ 0,

∫ T

0

(fε(k)(ck, θk)− f(c, θ), ϕ)2

≤
∫ T

0

∫
Ω

(θσ−1k − θσ−1)θcϕ+
∥∥θσ−1k

∥∥
∞ ‖θkck − θc‖2 ‖ϕ‖2

k→∞−→ 0.

Similarly the convergence of the terms in (2.2a) associated with the right-hand
side also holds true.

Due to possible degeneration of θ, it is not to be expected that (∇ck)k∈N
and (∂tck)k∈N converge in L2(ΩT ) to ∇c and ∂tc, respectively. Nevertheless,
in what follows we verify that at least (θk∇ck)k∈N and (θk∂tck)k∈N converge
weakly:

The time derivatives θk∂tck belong to L2(0, T ;L2(Ω)), see Lemma 1, and
are uniformly bounded with respect to this function space. Thus a subsequence
of (θk∂tck)k∈N converges weakly and, moreover, there holds

θk∂tck = ∂t(θkck)− (∂tθk)ck = ∂t(θkck) + 1
ρθ
σ
k c

2
k ⇀ ∂t(θc) + 1

ρθ
σc2 . (2.12)
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Furthermore, the spatio-temporal distributional equation

〈θ∂tc, η〉H−1(ΩT ),H1(ΩT ) =− (c, ∂t(θη))L2(ΩT ) = −(c, (∂tθ)η)L2(ΩT )

−(c, θ∂tη)L2(ΩT ) =( 1
ρθ
σc2, η)L2(ΩT ) + (∂t(θc), η)L2(ΩT ) (2.13)

with respect to the time derivative of c ∈ L2(0, T ;L2(Ω)) = L2(ΩT ) holds for
all η ∈ C∞0 (ΩT ) and thus θ∂tc ∈ H−1(ΩT ) coincides with ∂t(θc) + 1

ρθ
σc2 ∈

L2(0, T ;L2(Ω)). Therefore, we conclude the weak convergence of (θk∂tck)k∈N
to θ∂tc ∈ L2(0, T ;L2(Ω)) and with (2.12) the identity θ∂tc = ∂t(θc) − (∂tθ)c
in the L2-sense.

Let us note the strong convergence of (θk)k∈N in C(0, T ;H1(Ω)). Together
with the weakly∗ convergence of (ck)k∈N to θ in L∞(ΩT ) we conclude that
the sequence of products (∇θk · ck)k∈N converge weakly in L2(0, T ;L2(Ω)).
Similarly to the time derivative we may argue with Lemma 1 that (θk∇ck)k∈N
converges weakly to θ∇c ∈ L2(0, T ;L2(Ω)), even though, ∇c is not necessarily
a L2-function. Then this implies the identity θ∇c = ∇(θc)−∇θ · c.

Considering the terms associated with the time and spatial derivative we
actually have∫ T

0

(θk∂tck−θ∂tc, ϕ)2
k→∞−→ 0 and

∫ T

0

(D(θk)∇ck − D(θ)∇c,∇ϕ)2
k→∞−→ 0

for all ϕ ∈ L2(0, T ;H1
0 (Ω)) and therewith the existence of a solution (c, θ) to

the degenerate Equations (2.2).
Since the limits θc, θ belong to (2.11) as well, the solution satisfies in par-

ticular (2.3a): Testing (2.2b) with

−∇ · (θ−2n|∇θ|2n−2∇θ) = 2nθ−2n−1|∇θ|2n − (2n− 1)θ−2n|∇θ|2n−2∆θ ,

n = 2, 3, would formally lead to θ−1∇θ ∈ L∞(L2n), cf. end of the proof of
Lemma 2 in Section 4 below. To be more rigorous, it is necessary to introduce
an appropriate cut-off function θδ := max{θ, δ}, δ > 0. With this we actually
test (2.2b) by −∇ · (θ−2nδ |∇θ|2n−2∇θ), which is an appropriate approximation
of the above function and leads with Gronwall’s Lemma (see [11, Prop. 3.4])
to the following uniformly bounded estimate with respect to δ > 0:

sup
t∈(0,T )

∥∥θ−1δ ∇θ(t)∥∥2n ≤ [∥∥θ−10 ∇θ0
∥∥
2n

+

∫ t

0

∥∥θσ−2∥∥∞ ‖θ∇c‖2n]
× exp

(∫ t

0

∥∥θ−1∂tθ∥∥∞ + σ

∫ t

0

∥∥θσ−1c∥∥∞) .

Moreover, due to (2.11) we have ∇(θc),∇θ ∈ L2(0, T ;H1(Ω)) and hence

θ∇c = ∇(θc)−∇θ · c ∈ L2(0, T ;Lq(Ω)) (2.14)

with q < ∞ for n = 2 and q = 6 for n = 3, respectively. Finally, taking the
limit δ → 0 yields the wanted condition (2.3a). ut
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Owing to (2.14), we obtain boundedness of supt
∥∥θ−1∇θ(t)∥∥

6
in three di-

mensions. In fact, Theorem 2 requires slightly more regularity (2.3b) to ensure
uniqueness in three dimensions. However, similar to the solutions of (2.4), the
degenerating solutions (c, θ) of Theorem 3 even fulfill (2.3) for n = 2 since
(2.14) even holds for any q < ∞. In this case, uniqueness of (c, θ) follows
directly from Theorem 2.

3 Proof of Theorem 2

Without loss of generality we focus on the three-dimensional case, i.e. n = 3.
Moreover, we set the density ρ = 1. Let (c1, θ1), (c2, θ2) ∈ Xθ ×Y be two weak
solutions of (2.2) to the initial data (c0, θ0) additionally satisfying (2.3a). The
solution (c2, θ2) is furthermore assumed to fulfill (2.3b). We set

(c̄, θ̄) := (c1 − c2, θ1 − θ2) .

Boundedness of the porosities’ ratio: We start with testing the ODE
(2.2b) by θ−a2,δ θ̄

a−1, for θ2,δ := max{θ2, δ}, δ > 0 and some a ∈ 2N0, which
yields due to∫ t

0

∫
Ω

∂tθ̄ · θ−a2,δ θ̄
a−1 = 1

a

∥∥∥θ−12,δ θ̄(t)
∥∥∥a
a
− 1

a

∫ t

0

∫
Ω

(∂tθ
−a
2,δ )θ̄a

and f(ci, θi) = θσi ci for i = 1, 2, the inequality

1
a

∥∥∥θ−12,δ θ̄(t)
∥∥∥a
a
≤
∫ t

0

∫
Ω

∣∣θ−a−12,δ (∂tθ2,δ)θ̄
a
∣∣+∫ t

0

∫
Ω

∣∣ [(θσ1−θσ2 )c1 + θσ2 c̄] θ
−a
2,δ θ̄

a−1∣∣
≤
∫ t

0

∥∥∥θ−12,δ∂tθ2,δ

∥∥∥
∞

∥∥∥θ−12,δ θ̄
∥∥∥a
a
+σ

∫ t

0

‖c1‖∞
∥∥∥θ−12,δ θ̄

∥∥∥a
a
+

∫ t

0

∥∥θσ−12

∥∥
∞ ‖c̄‖∞

∥∥∥θ−12,δ θ̄
∥∥∥a−1
a

.

Here we have applied the following estimate (3.1) of θσ1−θσ2 : since θ1, θ2 ∈ [0, 1),
there holds with d

dξ (ξσ) ≤ σmaxκ∈[0,1](κθ1 + (1 − κ)θ2)σ−1 =: σθσ−1max for ξ in

between θ1, θ2 and hence
|θσ1−θ

σ
2 |

|θ1−θ2| ≤ σθ
σ−1
max the inequality

|θσ1 − θσ2 | ≤ σθσ−1max θ̄ . (3.1)

We actually obtain with
∥∥∥θ−12,δ∂tθ2,δ

∥∥∥
∞
≤
∥∥θ−12 ∂tθ2

∥∥
∞ and Gronwall’s Lemma

sup
t∈(0,T )

∥∥∥θ−12,δ θ̄(t)
∥∥∥
a
≤
[ ∫ T

0

∥∥θσ−12

∥∥
∞ ‖c̄‖∞

]
exp
(
1
a

∫ T

0

( ∥∥θ−12 ∂tθ2
∥∥
∞+σ ‖c1‖∞

))
,

i.e., supt
∥∥θ−12,δ θ̄(t)

∥∥
a
<∞. Taking the limit a→∞ verifies the boundedness of

supt∈(0,T )

∥∥θ−12,δ θ̄(t)
∥∥
∞. Since the upper bound is independent of δ, there exists

a weakly∗ converging subsequence of (θ−12,δ θ̄)δ>0 (again indexed by δ > 0) with

a limit ς in L∞(ΩT ). Moreover, the strong convergence θ2,δ
δ→0−→ θ2 leads to

θ̄ = θ2,δ · (θ−12,δ θ̄)
δ→0−→ θ2 · ς ,
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i.e., θ−12 θ̄ = ς ∈ L∞(ΩT ). We note that the measure of Ω̃(t) := {x ∈
Ω | θ1(x, t) 6= 0 = θ2(x, t)} is zero for t ∈ (0, T ). Otherwise we would have

sup
t∈(0,T )

∥∥∥θ−12,δ θ̄(t)
∥∥∥
∞
≥ sup
t∈(0,T )

1
δ ‖θ1(t)‖L∞(Ω̃) ,

where the right-hand side is unbounded for δ → 0. Finally, this leads for δ → 0
to the boundedness of

sup
t∈(0,T )

∥∥θ−12 θ̄(t)
∥∥
∞ = sup

t∈(0,T )

∥∥∥ θ1θ2 (t)− 1
∥∥∥
∞

, (3.2)

i.e., θ1/θ2 is uniformly bounded. Changing the roles of θ1 and θ2 also shows the
uniform boundedness of the reciprocal θ2/θ1. In particular, both values vanish
similarly, and hence the corresponding equations degenerate in the same way.
Therefore, the weighted spaces Vθi(Ω) (and also the dual (Vθi(Ω))∗), i = 1, 2,
coincide since the corresponding norms are equivalent.

Moreover, we have in particular ‖θ−1i ∂tθi‖∞ < ∞, i = 1, 2, due to σ ≥ 2
and θ−1i ∂tθi = θσ−1i ci ∈ L∞(ΩT ).

Inequalities of c̄ in appropriate norms: Testing each single term of the
transport equation (2.2a) associated to c1 and c2, respectively, with θ1c̄ yields∫ t

0

〈θ1∂tc1−θ2∂tc2, θ1c̄〉= 1
2

∫
Ω

|θ1θ2c̄2(t)| dx− 1
2

∫ t

0

∫
Ω

∂t(θ1θ2)c̄2+

∫ t

0

〈θ̄∂tc1, θ1c̄〉,∫ t

0

∫
Ω

(D(θ1)∇c1 − D(θ2)∇c2)∇(θ1c̄)=

∫ t

0

∫
Ω

θ1D(θ2)|∇c̄|2+

∫ t

0

∫
Ω

D(θ2)∇c̄∇θ1 ·c̄

+

∫ t

0

∫
Ω

θ1 (D(θ1)− D(θ2))∇c1∇c̄+

∫ t

0

∫
Ω

(D(θ1)− D(θ2))∇c1∇θ1 · c̄,∫ t

0

∫
Ω

((c1−1)θσ1 c1−(c2−1)θσ2 c2) θ1c̄ =

∫ t

0

∫
Ω

[
(c21 − c22)θσ2 + c21(θσ1 − θσ2 )

]
θ1c̄

−
∫ t

0

∫
Ω

[(θσ1 − θσ2 )c1 + θσ2 c̄] θ1c̄. (3.3)

Here, the product rule ∇(θ1c̄) = (∇θ1)c̄ + θ1∇c̄ and similar equations are
applied in the sense of distributions, cf. (2.13).

Thereby, the term
∫ t
0
〈θ̄∂tc1, θ1c̄〉 will be replaced by an adequate term, cf.

(3.4) below, since the direct estimation∫ t

0

〈θ̄∂tc1, θ1c̄〉 ≤
∫ t

0

∫
Ω

‖θ1∂tc1‖V ∗θ1
∥∥θ̄c̄∥∥

Vθ1

needs the control of the inconvenient norm:
∥∥θ̄c̄∥∥2

Vθ1
=
∥∥θ̄c̄∥∥2

2
+
∥∥D(θ1)

1
2∇(θ̄c̄)

∥∥2
2
.

Therefore we replace the problematic term
∫ t
0
〈θ̄∂tc1, θ1c̄〉 with (2.2a) by∫ t

0

〈θ1∂tc1, θ̄c̄〉 = −
∫ t

0

∫
Ω

D(θ1)∇c1∇(θ̄c̄) +

∫ t

0

∫
Ω

(c1 − 1)θσ1 c1θ̄c̄ (3.4)
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such that the appearing derivatives can be arranged more uniformly. This leads
to useful estimates which can be managed with (2.3). Combining (3.3) with
(3.4) yields

1
2

∥∥∥θ 1
2
1 θ

1
2
2 c̄(t)

∥∥∥2
2
+

∫ t

0

∥∥∥θ 1
2
1 D(θ2)

1
2∇c̄

∥∥∥2
2

= 1
2

∫ t

0

∫
Ω

∂t(θ1θ2)c̄2+

∫ t

0

∫
Ω

D(θ1)∇c1∇(θ̄c̄)

−
∫ t

0

∫
Ω

(c1 − 1)θσ1 c1θ̄c̄−
∫ t

0

∫
Ω

θ1 (D(θ1)− D(θ2))∇c1∇c̄

−
∫ t

0

∫
Ω

D(θ2)∇c̄∇θ1 · c̄−
∫ t

0

∫
Ω

(D(θ1)− D(θ2))∇c1∇θ1 · c̄

+

∫ t

0

∫
Ω

[
(c21 − c22)θσ2 + c21(θσ1 − θσ2 )

]
θ1c̄−

∫ t

0

∫
Ω

[(θσ1 − θσ2 )c1 + θσ2 c̄] θ1c̄ .

The very last term on the right-hand side −
∫ t
0

∫
Ω
θσ2 θ1c̄

2 is negative and hence
can be neglected in the following. Moreover, we apply (3.1) and obtain the
inequality

1
2

∥∥∥θ 1
2
1 θ

1
2
2 c̄(t)

∥∥∥2
2

+

∫ t

0

∥∥∥θ 1
2
1 D(θ2)

1
2∇c̄

∥∥∥2
2
≤ 1

2

∫ t

0

(∥∥∥θ 1
2
2 /θ

1
2
1

∥∥∥
∞
‖∂tθ1‖∞+

∥∥∥θ 1
2
1 /θ

1
2
2

∥∥∥
∞

× ‖∂tθ2‖∞
)∥∥∥θ 1

2
1 θ

1
2
2 c̄
∥∥∥2
2

+

∫ t

0

‖θ1∇c1‖6
(∥∥∥θ d−3

2
1 ∇θ̄

∥∥∥
2

∥∥∥θ d+1
2

1 c̄
∥∥∥
3

+
∥∥∥θ d−3

2
1 θ̄

∥∥∥
3

×
∥∥∥θ d+1

2
1 ∇c̄

∥∥∥
2

)
+

∫ t

0

‖(c1 − 1)θσ1 c1‖∞
∥∥∥θ− 1

2
1 θ

− 1
2

2 θ̄
∥∥∥
2

∥∥∥θ 1
2
1 θ

1
2
2 c̄
∥∥∥
2

+ d

∫ t

0

‖θ1∇c1‖6
∥∥θd−1maxθ

−d+1
1

∥∥
∞

∥∥∥θ d−3
2

1 θ̄
∥∥∥
3

∥∥∥θ d+1
2

1 ∇c̄
∥∥∥
2

(?)
+

∫ t

0

∥∥∥θ 1
2
1 θ

d
2
2 ∇c̄

∥∥∥
2

∥∥θ−11 ∇θ1
∥∥
6
‖θ

1
2
1 θ

d
2
2 c̄‖3

+ d

∫ t

0

∥∥θd−1maxθ
−d+1
1

∥∥
∞

∥∥∥θ d−3
2

1 θ̄
∥∥∥
3
‖θ1∇c1‖6

∥∥θ−11 ∇θ1
∥∥
6

∥∥∥θ d+1
2

1 c̄
∥∥∥
3

+

∫ t

0

(‖c1‖∞ + ‖c2‖∞)
∥∥θσ−12

∥∥
∞

∥∥∥θ 1
2
1 θ

1
2
2 c̄
∥∥∥2
2

+ σ

∫ t

0

∥∥θσ−1max

∥∥
∞ ‖θ1c1‖∞ (‖c1‖∞ + 1)

∥∥∥θ− 1
2

1 θ
− 1

2
2 θ̄

∥∥∥
2

∥∥∥θ 1
2
1 θ

1
2
2 c̄
∥∥∥
2
. (3.5)

Let us note that d−3
2 ≥ −1 since d ≥ 1.

Inequalities of appropriate norms of θ̄: The above estimate (3.5) shows the

need of controlled L2-norms for θ−11 θ−12 θ̄ and θ
d−3
2

1 ∇θ̄. Therefore, we formally
test the ODE (2.2b) with θ−11 θ−12 θ̄ leading to∫ t

0

∫
Ω

∂tθ̄ · θ−11 θ−12 θ̄ = 1
2

∥∥∥θ− 1
2

1 θ
− 1

2
2 θ̄(t)

∥∥∥2
2
− 1

2

∫ t

0

∫
Ω

∂t(θ
−1
1 θ−12 )θ̄2 ,

which implies with (3.1) the inequality

1
2

∥∥∥θ− 1
2

1 θ
− 1

2
2 θ̄(t)

∥∥∥2
2
≤ 1

2

∫ t

0

∫
Ω

|θ−21 (∂tθ1)θ−12 θ̄2|+ 1
2

∫ t

0

∫
Ω

|θ−11 θ−22 (∂tθ2)θ̄2|
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+

∫ t

0

∫
Ω

| [(θσ1 − θσ2 )c1 + θσ2 c̄] θ
−1
1 θ−12 θ̄|

≤
∫ t

0

(∥∥θ−11 ∂tθ1
∥∥
∞ +

∥∥θ−12 ∂tθ2
∥∥
∞

) ∥∥∥θ− 1
2

1 θ
− 1

2
2 θ̄

∥∥∥2
2

+ σ

∫ t

0

∥∥θσ−1max

∥∥
∞ ‖c1‖∞

×
∥∥∥θ− 1

2
1 θ

− 1
2

2 θ̄
∥∥∥2
2

+

∫ t

0

∥∥θ−11 θσ−12

∥∥
∞

∥∥∥θ 1
2
1 θ

1
2
2 c̄
∥∥∥
2

∥∥∥θ− 1
2

1 θ
− 1

2
2 θ̄

∥∥∥
2
. (3.6)

In order to obtain this estimate rigorously, one has to introduce cut-off func-
tions and prove uniform boundedness similar to (3.2). Moreover, due to the
result (3.2), a further derivation of such an inequality as (3.6) would have been
unnecessary, but in (3.6) we work with symmetric θ1- and θ2-weights such that
the conclusion θ1 = θ2 at the end of the proof is more obvious.

Beside this also an appropriate estimate for θ
d−3
2

1 ∇θ̄ is needed in (3.5). Thus
let us formally test (2.2b) with −∇ · (θd−31 ∇θ̄):

1
2

∥∥∥θ d−3
2

1 ∇θ̄(t)
∥∥∥2
2

= d−3
2

∫ t

0

∫
Ω

θd−41 ∂tθ1|∇θ̄|2 −
∫ t

0

∫
Ω

∇ · (f(c1, θ1)− f(c2, θ2))

× θd−31 ∇θ̄=d−3
2

∫ t

0

∫
Ω

θd−41 ∂tθ1|∇θ|2+

∫ t

0

∫
Ω

[(θσ1−θσ2 )∇c1 + θσ2∇c̄] θd−31 ∇θ̄

+ σ

∫ t

0

[
(θσ−11 − θσ−12 )∇θ1c1 + θσ−12 ∇θ̄c1 + θσ−12 ∇θ2c̄

]
θd−31 ∇θ̄ .

The right-hand side can be estimated with (3.1) (which can be used similarly
for the exponent σ − 1 ≥ 1) by

1
2

∥∥∥θ d−3
2

1 ∇θ̄(t)
∥∥∥2
2
≤ |d−3|2

∫ t

0

∥∥θ−11 ∂tθ1
∥∥
∞

∥∥∥θ d−3
2

1 ∇θ̄
∥∥∥2
2

+ σ(σ − 1)

∫ t

0

∥∥θσ−2max

∥∥
∞

∥∥∥θ d−3
2

1 θ̄
∥∥∥
3

∥∥θ−11 ∇θ1
∥∥
6
‖θ1c1‖∞

∥∥∥θ d−3
2

1 ∇θ̄
∥∥∥
2

+ σ

∫ t

0

∥∥θσ−12 c1
∥∥
∞

∥∥∥θ d−3
2

1 ∇θ̄
∥∥∥2
2

+ σ

∫ t

0

∥∥θ−12 ∇θ2
∥∥
6

∥∥θσ2 θ−21

∥∥
∞

×
∥∥∥θ d+1

2
1 c̄

∥∥∥
3

∥∥∥θ d−3
2

1 ∇θ̄
∥∥∥
2

+σ

∫ t

0

∥∥θσ−1maxθ
−1
1

∥∥
∞

∥∥∥θ d−3
2

1 θ̄
∥∥∥
3
‖θ1∇c1‖6

∥∥∥θ d−3
2

1 ∇θ̄
∥∥∥
2

+

∫ t

0

∥∥∥θσ− d22 θ
d
2−2
1

∥∥∥
∞

∥∥∥θ 1
2
1 θ

d
2
2 ∇c̄

∥∥∥
2

∥∥∥θ d−3
2

1 ∇θ̄
∥∥∥
2
. (3.7)

In order to control the norms
∥∥∥θ d−3

2
1 θ̄

∥∥∥
3

and
∥∥∥θ d+1

2
1 c̄

∥∥∥
3

appearing in (3.5) and

(3.7), we apply the Sobolev embedding W 1, 32 (Ω) ↪→ L3(Ω) and Young’s in-
equality ( 1

6 + 1
2 = 2

3 ) to obtain∥∥∥θ d−3
2

1 θ̄
∥∥∥ 3

2

3
.
∥∥∥θ d−3

2
1 θ̄

∥∥∥ 3
2

W 1, 3
2

=
∥∥∥θ d−3

2
1 θ̄

∥∥∥ 3
2

3
2

+
∥∥∥∇(θ

d−3
2

1 θ̄)
∥∥∥ 3

2

3
2

,

where
∥∥∥∇(θ

d−3
2

1 θ̄)
∥∥∥

3
2

≤ |d−3|2

∥∥θ−11 ∇θ1
∥∥
6

∥∥∥θ d−3
2

1 θ̄
∥∥∥
2

+
∥∥∥θ d−3

2
1 ∇θ̄

∥∥∥
3
2
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as well as ∥∥∥θ d+1
2

1 c̄
∥∥∥ 3

2

3
.
∥∥∥θ d+1

2
1 c̄

∥∥∥ 3
2

W 1, 3
2

=
∥∥∥θ d+1

2
1 c̄

∥∥∥ 3
2

3
2

+
∥∥∥∇(θ

d+1
2

1 c̄)
∥∥∥ 3

2

3
2

,

where
∥∥∥∇(θ

d+1
2

1 c̄)
∥∥∥

3
2

≤ |d+1|
2

∥∥θ−11 ∇θ1
∥∥
6

∥∥∥θ d+1
2

1 c̄
∥∥∥
2

+
∥∥∥θ d+1

2
1 ∇c̄

∥∥∥
3
2

.

Therefore, we have with d ≥ 1 the upper bounds of the form∥∥∥θ d−3
2

1 θ̄
∥∥∥
3
. (1 +

∥∥θ−11 ∇θ1
∥∥
6
)
∥∥θ−11 θ̄

∥∥
2

+
∥∥∥θ d−3

2
1 ∇θ̄

∥∥∥
2
,∥∥∥θ d+1

2
1 c̄

∥∥∥
3
. (1 +

∥∥θ−11 ∇θ1
∥∥
6
) ‖θ1c̄‖2 +

∥∥∥θ d+1
2

1 ∇c̄
∥∥∥
2
. (3.8)

Uniqueness by Gronwall’s Lemma: Let us abbreviatory denote γ :=
‖θ1∇c1‖6 ∈ L2(0, T ), cf. (2.3a). For the sake of readability, we suppress
constants in the following, which may also depend on ci, θi, i = 1, 2. Finally,

combining (2.3a), (3.5)–(3.8) and absorbing the
∥∥∥θ 1

2
1 D(θ2)

1
2∇c̄

∥∥∥
2
-type terms by

Young’s inequality results in

1
2

∥∥∥θ 1
2
1 θ

1
2
2 c̄(t)

∥∥∥2
2

+ (1− 7δ)

∫ t

0

∥∥∥θ 1
2
1 D(θ2)

1
2∇c̄

∥∥∥2
2

+ 1
2

∥∥∥θ− 1
2

1 θ
− 1

2
2 θ̄(t)

∥∥∥2
2

+ 1
2

×
∥∥∥θ d−3

2
1 ∇θ̄(t)

∥∥∥2
2
.
∫ t

0

∥∥∥θ 1
2
1 θ

1
2
2 c̄
∥∥∥2
2

+

∫ t

0

γ
(∥∥∥θ d−3

2
1 ∇θ̄

∥∥∥
2
‖θ1c̄‖2 +C(δ)γ

∥∥∥θ d−3
2

1 ∇θ̄
∥∥∥2
2

+ C(δ)γ(
∥∥θ−11 θ̄

∥∥
2

+
∥∥∥θ d−3

2
1 ∇θ̄

∥∥∥
2
)2
)

+

∫ t

0

∥∥∥θ− 1
2

1 θ
− 1

2
2 θ̄

∥∥∥
2

∥∥∥θ 1
2
1 θ

1
2
2 c̄
∥∥∥
2

+ C(δ)

×
∫ t

0

γ2(
∥∥θ−11 θ̄

∥∥
2

+
∥∥∥θ d−3

2
1 ∇θ̄

∥∥∥
2
)2

(?)
+ C̃(δ)

∫ t

0

‖θ2c̄‖22
(∥∥∥θ d−3

2
2 ∇θ2

∥∥∥ 6+κ
3+κ

6+κ
+ 1
)

+

∫ t

0

γ
(∥∥θ−11 θ̄

∥∥
2

+
∥∥∥θ d−3

2
1 ∇θ̄

∥∥∥
2

)(
‖θ1c̄‖2 + C(δ)γ

( ∥∥θ−11 θ̄
∥∥
2

+
∥∥∥θ d−3

2
1 ∇θ̄

∥∥∥
2

))
+

∫ t

0

∥∥∥θ 1
2
1 θ

1
2
2 c̄
∥∥∥2
2

+

∫ t

0

∥∥∥θ− 1
2

1 θ
− 1

2
2 θ̄

∥∥∥
2

∥∥∥θ 1
2
1 θ

1
2
2 c̄
∥∥∥
2

+

∫ t

0

∥∥∥θ− 1
2

1 θ
− 1

2
2 θ̄

∥∥∥2
2

+

∫ t

0

∥∥∥θ− 1
2

1 θ
− 1

2
2 θ̄

∥∥∥2
2

+

∫ t

0

∥∥∥θ 1
2
1 θ

1
2
2 c̄
∥∥∥
2

∥∥∥θ− 1
2

1 θ
− 1

2
2 θ̄

∥∥∥
2

+

∫ t

0

∥∥∥θ d−3
2

1 ∇θ̄
∥∥∥2
2

+

∫ t

0

(∥∥θ−11 θ̄
∥∥
2

+
∥∥∥θ d−3

2
1 ∇θ̄

∥∥∥
2

)∥∥∥θ d−3
2

1 ∇θ̄
∥∥∥
2

+

∫ t

0

∥∥∥θ d−3
2

1 ∇θ̄
∥∥∥2
2

+

∫ t

0

(
‖θ1c̄‖2 + C(δ)

∥∥∥θ d−3
2

1 ∇θ̄
∥∥∥
2

)∥∥∥θ d−3
2

1 ∇θ̄
∥∥∥
2

+

∫ t

0

γ
(∥∥θ−11 θ̄

∥∥
2

+
∥∥∥θ d−3

2
1 ∇θ̄

∥∥∥
2

)∥∥∥θ d−3
2

1 ∇θ̄
∥∥∥
2

+ C(δ)

∫ t

0

∥∥∥θ d−3
2

1 ∇θ̄
∥∥∥2
2

(3.9)

for sufficiently small δ > 0. An exception here is the term highlighted with
(?) in (3.5), which is the reason for the necessity of (2.3b) since it can not
be estimated by simply applying (3.8). Contrarily, this term was treated a
little more subtly by using the Gagliardo-Nirenberg interpolation inequality
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and (8 + κ)/(12 + 2κ) = 1/(6 + κ) + 1/2∥∥∥θ d+1
2

2 c̄
∥∥∥
3
.
∥∥∥θ d+1

2
2 c̄

∥∥∥1− 6+κ
6+2κ

2

∥∥∥∇(θ
d+1
2

2 c̄)
∥∥∥ 6+κ

6+2κ

12+2κ
8+κ

.
∥∥∥θ d+1

2
2 c̄

∥∥∥ κ
6+2κ

2
(
∥∥∥θ d−3

2
2 ∇θ2

∥∥∥
6+κ
‖θ2c̄‖2 +

∥∥∥θ d+1
2

2 ∇c̄
∥∥∥
2
)

6+κ
6+2κ .

Then Young’s inequality with the conjugate exponents 12+3κ
12+4κ + κ

12+4κ = 1 leads
to∫ t

0

∥∥∥θ 1
2
1 θ

d
2
2 ∇c̄

∥∥∥
2

∥∥θ−11 ∇θ1
∥∥
6

∥∥∥θ d+1
2

2 c̄
∥∥∥
3

.
∫ t

0

∥∥∥θ 1
2
1 θ

d
2
2 ∇c̄

∥∥∥
2
‖θ2c̄‖2

∥∥∥θ d−3
2

2 ∇θ2
∥∥∥ 6+κ

6+2κ

6+κ
+

∫ t

0

∥∥∥θ 1
2
1 θ

d
2
2 ∇c̄

∥∥∥ 12+3κ
6+2κ

2
‖θ2c̄‖

κ
6+2κ

2

. C̃(δ)

∫ t

0

‖θ2c̄‖22

(∥∥∥θ d−3
2

2 ∇θ2
∥∥∥ 6+κ

3+κ

6+κ
+ 1

)
+ δ

∫ t

0

∥∥∥θ 1
2
1 θ

d
2
2 ∇c̄

∥∥∥2
2
.

Finally, with

F :=
∥∥∥θ 1

2
1 θ

1
2
2 c̄(t)

∥∥∥2
2

+
∥∥∥θ− 1

2
1 θ

− 1
2

2 θ̄(t)
∥∥∥2
2

+
∥∥∥θ d−3

2
1 ∇θ̄(t)

∥∥∥2
2

we obtain by applying Gronwall’s Lemma to (3.9) that supt∈(0,T ) F(t) ≤ 0, i.e.
supt∈(0,T ) F(t) = 0 implying c1 = c2, θ1 = θ2 and hence the uniqueness of the
solution. 2

Remark 2. The proof for n = 2 is very similar to the previous one. In (3.5) and
(3.7), the integrands which were managed by norms with exponents fulfilling
1
2 + 1

3 + 1
6 = 1, can be estimated by norms with exponents of the form 1

2 + 1
4 + 1

4 =

1. That is because the embedding W 1, 43 (Ω) ↪→ L4(Ω) is valid in the two-
dimensional case, and hence estimates in the L4-norm are sufficient. Moreover,
due to 3

4 = 1
4 + 1

2 we obtain inequalities similar to (3.8), including
∥∥θ−11 ∇θ1

∥∥
4
.

Contrarily, the embedding W 1, 32 (Ω) ↪→ L3(Ω) and estimates with respect to
the L6-norm were necessary for three dimensions, cf. (3.8).

4 Proof of Lemma 2

For the sake of readability we suppress the index ε of the solution to (2.4) during
this section, i.e. instead of (cε, θε) we abbreviatory write (c, θ). We start by
testing the modified transport equation (2.4)1 with −∆(θc) and obtain∫ t

0

〈∇(∂t(θc)),∇(θc)〉 = 1
2

[
‖∇(θc)(t)‖22 − ‖∇(θ0,εc0)‖22

]
and further with ∇ · D(θ)∇c = ∆(θc)−∆θ · c−∇θ∇c,∫ t

0

∫
Ω

∇ · D(θ)∇c∆(θc)=

∫ t

0

‖∆(θc)‖22−
∫ t

0

∫
Ω

∆θ · c∆(θc)−
∫ t

0

∫
Ω

∇θ∇c∆(θc)
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and finally for the reactive term:
∫ t
0

∫
Ω
fε(c, θ)∆(θc) ≤

∫ t
0

∫
Ω
|θσc∆(θc)|. Note

that the applied test function is admissible due to (2.7).

Applying the Laplacian ∆ to the solution θ=θ0,ε−
∫ t
0
fε(c, θ) of (2.4)4 yields

∆θ = ∆θ0,ε −
∫ t

0

∆fε(c, θ) ,

where for θ > ε there holds

∆fε(c, θ) = ∇ · (σθσ−1∇θ · c+ θσ∇c) = σ(σ − 1)θσ−2|∇θ|2c+ σθσ−1∆θ · c
+ σθσ−1∇θ∇c+ (σ − 1)θσ−2∇θ(θ∇c) + θσ−1∇ · (θ∇c) = σ(σ − 1)θσ−2

× |∇θ|2c+ σθσ−1∆θ · c+ (2σ − 1)θσ−1∇θ∇c+ θσ−
1
2 θ−

1
2∇ · (θ∇c) .

Thereby θ−
1
2∇ · (θ∇c) in the last summand of the right-hand side belongs to

L2(0, T ;L2(Ω)) due to (2.10). Summarizing leads to

1
2 ‖∇(θc)(t)‖22 +

∫ t

0

‖∆(θc)‖22 + ‖∆θ(t)‖22 ≤
1
2 ‖∇(θ0,εc0)‖22 (4.1)

+

∫ t

0

∫
Ω

∆θ · c∆(θc) +

∫ t

0

∫
Ω

∇θ∇c∆(θc) +

∫ t

0

∫
Ω

|θσc∆(θc)|

+ ‖∆θ0,ε‖2 ‖∆θ(t)‖2 +σ(σ−1)

∫ t

0

∫
Ω

θσ−2|∇θ|2c∆θ+σ
∫ t

0

∫
Ω

θσ−1∆θ · c∆θ

+ (2σ − 1)

∫ t

0

∫
Ω

θσ−1∇θ∇c∆θ +

∫ t

0

∫
Ω

θσ−
1
2 θ−

1
2∇ · (θ∇c)∆θ . (4.2)

Since the gradient of c can generally not be controlled in the L4-norm, we
replace ∇c by θ−1(∇(θc) − ∇θ · c). Then an additional weight θ−1 occurs,
which can be absorbed by ∇θ in the L4-norm: We test the ODE (2.4)4 with
−∇ · (θ−4|∇θ|2∇θ) leading to∫ t

0

∫
Ω

(∂t(∇θ))θ−4|∇θ|2∇θ = 1
4

[∥∥θ−1∇θ(t)
∥∥4
4
−
∥∥θ−1

0,ε∇θ0,ε
∥∥4
4

]
+

∫ t

0

∫
Ω

θ−5∂tθ|∇θ|4,∫ t

0

∫
Ω

∇fε(θ, c)·θ−4|∇θ|2∇θ≤σ
∫ t

0

∫
Ω

∣∣θσ−1∇θ ·cθ−4|∇θ|2∇θ
∣∣+∫ t

0

∫
Ω

∣∣θσ∇cθ−4|∇θ|2∇θ
∣∣

such that we obtain

1
4

∥∥θ−1∇θ(t)∥∥4
4
≤ 1

4

∥∥θ−10,ε∇θ0,ε
∥∥4
4
−
∫ t

0

∫
Ω

θ−5∂tθ|∇θ|4

+ σ

∫ t

0

∫
Ω

∣∣θσ−1∇θ · cθ−4|∇θ|2∇θ∣∣+

∫ t

0

∫
Ω

∣∣θσ∇cθ−4|∇θ|2∇θ∣∣ .
Combining this with (4.2) results in

1
2 ‖∇(θc)(t)‖22 +

∫ t

0

‖∆(θc)‖22 + 1
2 ‖∆θ(t)‖

2
2 + 1

4

∥∥θ−1∇θ(t)∥∥4
4
≤ 1

2 ‖∇(θ0,εc0)‖22

+

∫ t

0

∫
Ω

∆θ · c∆(θc)+

∫ t

0

∫
Ω

θ−1∇θ
(
∇(θc)−∇θ · c

)
∆(θc) +

∫ t

0

∫
Ω

|θσc∆(θc)|
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+ 1
2 ‖∆θ0,ε‖

2
2 + σ(σ − 1)

∫ t

0

∫
Ω

θσ−2|∇θ|2c∆θ + σ

∫ t

0

∫
Ω

θσ−1∆θ · c∆θ

+ (2σ−1)

∫ t

0

∫
Ω

θσ−1θ−1∇θ
(
∇(θc)−∇θ · c

)
∆θ+

∫ t

0

∫
Ω

θσ−
1
2 θ−

1
2∇ · (θ∇c)∆θ

+ 1
4

∥∥θ−10,ε∇θ0,ε
∥∥4
4
−
∫ t

0

∫
Ω

θ−5∂tθ|∇θ|4 + σ

∫ t

0

∫
Ω

∣∣θσ−1∇θ · cθ−4|∇θ|2∇θ∣∣
+

∫ t

0

∫
Ω

∣∣θσθ−1(∇(θc)−∇θ · c
)
θ−4|∇θ|2∇θ

∣∣
such that

1
2 ‖∇(θc)(t)‖22 +

∫ t

0

‖∆(θc)‖22 + 1
2 ‖∆θ(t)‖

2
2 + 1

4

∥∥θ−1∇θ(t)∥∥4
4
≤ 1

2 ‖∇(θ0,εc0)‖22

+

∫ t

0

‖∆θ‖2 ‖c‖∞ ‖∆(θc)‖2 +

∫ t

0

∥∥θ−1∇θ∥∥
4

(
‖∇(θc)‖4 +

∥∥θ−1∇θ∥∥
4
‖θc‖∞

)
× ‖∆(θc)‖2 +

∫ t

0

‖θσc‖2 ‖∆(θc)‖2 + 1
2 ‖∆θ0,ε‖

2
2 +σ(σ−1)

∫ t

0

‖θσ‖∞
∥∥θ−1∇θ∥∥2

4

× ‖c‖∞ ‖∆θ‖2 + σ

∫ t

0

∥∥θσ−1c∥∥∞ ‖∆θ‖22 + (2σ − 1)

∫ t

0

(∥∥θσ−1∥∥∞ ‖∇(θc)‖4

+ ‖θσc‖∞
∥∥θ−1∇θ∥∥

4

)∥∥θ−1∇θ∥∥
4
‖∆θ‖2+

∫ t

0

∥∥∥θσ− 1
2

∥∥∥
∞

∥∥∥θ− 1
2∇ · (θ∇c)

∥∥∥
2
‖∆θ‖2

+ 1
4

∥∥θ−10,ε∇θ0,ε
∥∥4
4

+(1+σ)

∫ t

0

∥∥θσ−1c∥∥∞ ∥∥θ−1∇θ∥∥44 +

∫ t

0

(∥∥θσ−2∥∥∞ ‖∇(θc)‖4

+
∥∥θσ−1c∥∥∞ ∥∥θ−1∇θ∥∥4 )∥∥θ−1∇θ∥∥34 .

Use of the Gagliardo-Nirenberg inequality entails

‖∇(θc)‖24 ≤ C
2
GN ‖∆(θc)‖2 ‖θc‖∞

for both dimensions n = 2, 3. We actually absorb the terms ‖∆(θc)‖2 on the
right-hand side with Young’s inequality and obtain

1
2 ‖∇(θc)(t)‖22 + (1− 5δ)

∫ t

0

‖∆(θc)‖22 + 1
2 ‖∆θ(t)‖

2
2 + 1

4

∥∥θ−1∇θ(t)∥∥4
4

≤ 1
2 ‖∇(θ0,εc0)‖22 + C(δ)

∫ t

0

‖∆θ‖22 ‖c‖
2
∞+C(δ)(C4

GN+1)

∫ t

0

∥∥θ−1∇θ∥∥4
4
‖θc‖2∞

+ C(δ)

∫ t

0

‖θσc‖22 + 1
2 ‖∆θ0,ε‖

2
2 + σ(σ − 1)

∫ t

0

‖θσ‖∞
∥∥θ−1∇θ∥∥2

4
‖c‖∞ ‖∆θ‖2

+ σ

∫ t

0

∥∥θσ−1c∥∥∞ ‖∆θ‖22 +C(δ)((2σ−1)CGN )
4
3

∫ t

0

∥∥θσ−1∥∥ 4
3

∞ ‖θc‖
2
3
∞
∥∥θ−1∇θ∥∥ 4

3

4

× ‖∆θ‖
4
3
2 +(2σ−1)

∫ t

0

‖θσc‖∞
∥∥θ−1∇θ∥∥2

4
‖∆θ‖2 +

∫ t

0

∥∥∥θσ− 1
2

∥∥∥
∞

∥∥∥θ− 1
2∇ · (θ∇c)

∥∥∥
2

× ‖∆θ‖2 + 1
4

∥∥θ−10,ε∇θ0,ε
∥∥4
4

+ (1 + σ)

∫ t

0

∥∥θσ−1c∥∥∞ ∥∥θ−1∇θ∥∥44 + C(δ)C
4
3

GN
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×
∫ t

0

∥∥θσ−2∥∥ 4
3

∞ ‖θc‖
2
3
∞
∥∥θ−1∇θ∥∥4

4
+

∫ t

0

∥∥θσ−1c∥∥∞ ∥∥θ−1∇θ∥∥44 .
Now let

F (c, θ)(t) := 1
2 ‖∇(θc)(t)‖22 + 1

2 ‖∆θ(t)‖
2
2 + 1

4

∥∥θ−1∇θ(t)∥∥4
4
.

Then we have

F (c, θ)(t). 1
2 ‖∇(θ0,εc0)‖22 +2

∫ t

0

F (c, θ) ‖c‖2∞+8

∫ t

0

F (c, θ) ‖θc‖2∞+

∫ t

0

‖θσc‖22

+ 1
2 ‖∆θ0,ε‖

2
2 +2
√

2

∫ t

0

‖θσ‖∞ F (c, θ)
1
2 ‖c‖∞ F (c, θ)

1
2 +2

∫ t

0

∥∥θσ−1c∥∥∞ F (c, θ)

+ 4
1
3 2

2
3

∫ t

0

∥∥θσ−1∥∥ 4
3

∞ ‖θc‖
2
3
∞ F (c, θ)

1
3F (c, θ)

2
3 +2
√

2

∫ t

0

‖θσc‖∞ F (c, θ)
1
2F (c, θ)

1
2

+
√

2

∫ t

0

∥∥∥θσ− 1
2

∥∥∥
∞

∥∥∥θ− 1
2∇·(θ∇c)

∥∥∥
2
F (c, θ)

1
2+1

4

∥∥θ−10,ε∇θ0,ε
∥∥4
4
+4

∫ t

0

∥∥θσ−1c∥∥∞
× F (c, θ)+4

∫ t

0

∥∥θσ−2∥∥ 4
3

∞ ‖θc‖
2
3
∞ F (c, θ) + 4

∫ t

0

∥∥θσ−1c∥∥∞ F (c, θ)

such that Gronwall’s Lemma yields boundedness of supt∈(0,T )‖F (c, θ)(t)‖

.

[(
1
2 ‖∇(θ0,εc0)‖22+

∫ t

0

‖θσc‖22+ 1
2 ‖∆θ0,ε‖

2
2+ 1

4

∥∥θ−10,ε∇θ0,ε
∥∥4
4

) 1
2

+
√
2
2

∫ t

0

∥∥∥θσ− 1
2

∥∥∥
∞

∥∥∥θ− 1
2∇ · (θ∇c)

∥∥∥
2

]2
exp

(
2T sup

t
‖c(t)‖2∞ + 8T sup

t
‖θc(t)‖2∞

+ 2
√

2T sup
t

(‖θσ(t)‖∞ ‖c(t)‖∞) + 2T sup
t

∥∥θσ−1c(t)∥∥∞ + 4
1
3 2

2
3T

× sup
t

(
∥∥θσ−1(t)

∥∥ 4
3

∞ ‖θc(t)‖
2
3
∞) + 2

√
2T sup

t
‖θσc(t)‖∞ + 4T sup

t

∥∥θσ−1c(t)∥∥∞
+ 4T sup

t
(
∥∥θσ−2(t)

∥∥ 4
3

∞ ‖θc(t)‖
2
3
∞) + 4T sup

t
(
∥∥θσ−1(t)

∥∥
∞ ‖c(t)‖∞)

)
.

[
C

1
2
0 + 1√

2

∫ t

0

∥∥∥θ− 1
2∇ · (θ∇c)

∥∥∥
2

]2
exp (C1T ) < ∞ . (4.3)

Thereby, the constants C0 > 0 and C1 > 0 are uniformly bounded with respect
to ε > 0 due to (2.6) and an appropriate choice of the approximating initial
data θ0,ε. Moreover, (2.10) ensures uniform boundedness also for the term∥∥∥θ− 1

2∇ · (θ∇c)
∥∥∥
2
. Finally, the above estimates imply θc ∈ L2(0, T ;H2(Ω)) ∩

L∞(0, T ;H1
0 (Ω)) and θ ∈ L∞(0, T ;H2(Ω)).

Moreover, we have ∇(θc),∇θ ∈ L2(0, T ;H1(Ω)) and hence

θ∇c = ∇(θc)−∇θ · c ∈ L2(0, T ;Lq(Ω)) (4.4)

with q <∞ for n = 2 and q = 6 for n = 3, respectively. Since θ∇c belongs at
least to L2(0, T ;L6(Ω)), we test (2.4)4 with −∇ · (θ−6|∇θ|4∇θ) and obtain

1
6

∥∥θ−1∇θ(t)∥∥6
6
≤ 1

6

∥∥θ−10,ε∇θ0,ε
∥∥6
6

+

∫ t

0

∫
Ω

θ−7∂tθ|∇θ|6
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+ σ

∫ t

0

∫
Ω

θσ−1∇θ · cθ−6|∇θ|4∇θ +

∫ t

0

∫
Ω

θσ∇cθ−6|∇θ|4∇θ

≤ 1
6

∥∥θ−10,ε∇θ0,ε
∥∥6
6

+

∫ t

0

∥∥θ−1∂tθ∥∥∞ ∥∥θ−1∇θ∥∥66
+ σ

∫ t

0

∥∥θσ−1c∥∥∞ ∥∥θ−1∇θ∥∥66 +

∫ t

0

∥∥θσ−2∥∥∞ ‖θ∇c‖6 ∥∥θ−1∇θ∥∥56 .

Again the Lemma of Gronwall yields the boundedness of θ−1∇θ in
L∞(0, T ;L6(Ω)), i.e. (c, θ) satisfies (2.3a). 2

Remark 3. Because of (4.4) we obtain boundedness of supt ‖θ−1∇θ(t)‖q for
q ≤ 6 in three dimensions, but in the two-dimensional case even for any q <∞.
Consequently, for n = 2 the solution (c, θ) of the above proof also fulfills the
condition (2.3b).

5 Conclusions

The current study analyzed the diffusion-precipitation model (1.1), including
vanishing porosity. Due to nonlinearity and degenerating θ-weights in this
model, the proof of uniqueness is rather challenging. Introducing appropriate
θ-weighted norms enabled us to handle the degeneracy. We assumed additional
conditions (2.3) under which uniqueness of weak solutions was established.
Moreover, a proof of existence, which is based on a compactness argument,
entails rather regular solutions to (1.1) (almost) satisfying the uniqueness con-
ditions (2.3). As a result, every two-dimensional strong solution is unique.
In contrast, the slightly different condition (2.3b) is additionally required and
hence uniqueness is still open in three dimensions.

Slightly more θ-weighted integrability (2.3b) would ensure uniqueness in

three dimensions. However, since a L
6+κ
3+κ (L6+κ)-norm for some κ > 0 needs

to be controlled, it may be useful to employ strong Lp-theory of parabolic
equations. Although this is beyond the scope of this paper, it is nevertheless
of interest for future work.

For simplicity, the diffusivity was proposed to be scalar-valued. In fact,
this parameter is a tensor D : [0, 1) → R(n,n) in anisotropic media [4]. Such a
generalization can be easily made since the effective tensor is typically bounded,
symmetric, and still positive semidefinite in the case of clogging [8].

Although this article is one of the first steps towards rigorous analysis of
clogging porous media, a lot of future work still needs to be done in various
directions. For example, one should extend the range of σ and generalize the
reaction rate. Moreover, fluid flow and advective transport should be incorpo-
rated for a more comprehensive model.

In fact, the restriction that the diffusivity D(θ) degenerates only for θ = 0
is generally not reasonable for an arbitrary geometric setting. Depending on
the underlying geometry of the medium’s microstructure the diffusivity may
vanish for a positive critical porosity θclog > 0, cf. [4]. However, assuming
θclog = 0, the present work avoided technical excesses due to possible post-
clogging precipitation processes. Nevertheless, since the analytically justified
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restriction on the critical porosity θclog = 0 is not exhaustive, analysis for
θclog > 0 is also important and should be done in the future.
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[3] O.A. Ladyženskaja, V.A. Solonnikov and N.N. Ural’ceva. Linear and quasi-
linear equations of parabolic type. American Mathematical Society, Providence,
RI, 1968. https://doi.org/10.1090/mmono/023.

[4] N. Ray, A. Rupp, R. Schulz and P. Knabner. Old and new approaches predicting
the diffusion in porous media. Transport in Porous Media, 124(3):803–824, 2018.
https://doi.org/10.1007/s11242-018-1099-x.

[5] N. Ray, T.L. van Noorden, F.A. Radu, W. Friess and P. Knab-
ner. Drug release from collagen matrices including an evolving mi-
crostructure. ZAMM - Journal of Applied Mathematics and Mechanics /
Zeitschrift fr Angewandte Mathematik und Mechanik, 93(10-11):811–822, 2013.
https://doi.org/10.1002/zamm.201200196.

[6] R. Schulz. Degenerate equations for flow and transport in clogging porous
media. Journal of Mathematical Analysis and Applications, 483(2), 2020.
https://doi.org/10.1016/j.jmaa.2019.123613.

[7] R. Schulz. Degenerate equations in a diffusion-precipitation model for clogging
porous media. European Journal of Applied Mathematics, 31(6):1050–1069, 2020.
https://doi.org/10.1017/S0956792519000391.

[8] R. Schulz and P. Knabner. Derivation and analysis of an effective model for
biofilm growth in evolving porous media. Mathematical Methods in the Applied
Sciences, 40(8):2930–2948, 2017. https://doi.org/10.1002/mma.4211.

[9] R. Schulz and P. Knabner. An effective model for biofilm growth made by
chemotactical bacteria in evolving porous media. SIAM Journal on Applied
Mathematics, 77(5):1653–1677, 2017. https://doi.org/10.1137/16M108817X.

[10] R. Schulz, N. Ray, F. Frank, H. Mahato and P. Knabner. Strong solvabil-
ity up to clogging of an effective diffusion-precipitation model in an evolving
porous medium. European Journal of Applied Mathematics, 28(2):179–207, 2017.
https://doi.org/10.1017/S0956792516000164.

[11] Y. Taniuchi. Remarks on global solvability of 2 − d boussinesq equa-
tions with non-decaying initial data. Funkcialaj Ekvacioj, 49(1):39–57, 2006.
https://doi.org/10.1619/fesi.49.39.

[12] T.L. van Noorden. Crystal precipitation and dissolution in a porous medium: ef-
fective equations and numerical experiments. Multiscale Modeling & Simulation,
7(3):1220–1236, 2009. https://doi.org/10.1137/080722096.

[13] T.L. van Noorden and A. Muntean. Homogenisation of a locally-periodic medium
with areas of low and high diffusivity. European Journal of Applied Mathematics,
22(5):493–516, 2011. https://doi.org/10.1017/S0956792511000209.

Math. Model. Anal., 27(3):471–491, 2022.

https://doi.org/10.1137/16M1067846
https://doi.org/10.1007/s11242-015-0530-9
https://doi.org/10.1090/mmono/023
https://doi.org/10.1007/s11242-018-1099-x
https://doi.org/10.1002/zamm.201200196
https://doi.org/10.1016/j.jmaa.2019.123613
https://doi.org/10.1017/S0956792519000391
https://doi.org/10.1002/mma.4211
https://doi.org/10.1137/16M108817X
https://doi.org/10.1017/S0956792516000164
https://doi.org/10.1619/fesi.49.39
https://doi.org/10.1137/080722096
https://doi.org/10.1017/S0956792511000209

	Introduction
	Main results
	Proof of Theorem 2
	Proof of Lemma 2
	Conclusions
	References

