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Abstract. Potato virus Y (PVY) is an aphid-borne plant virus that causes sub-
stantial yield losses in potato production. Control measures of the viral infection are
both limited and expensive. A proper use of mixed-cropping strategy can reduce the
spread of PVY. In this paper, we formulate and analyze a mathematical model of
PVY spread in a mixed-cropping system. Then, we extend the model to an optimal
control problem by considering use of mineral oil, insecticide and farmer’s level of
field inspection for infected plants. The analytic results show that the basic repro-
duction number <0, a threshold parameter that decides properties of the dynamics.
The disease free equilibrium is stable if <0 < 1 and unstable when <0 > 1. It is
found that <0, and hence, the disease dynamics is highly sensitive to the represen-
tative parameters of density the non-host plant and its quality in attracting vectors.
The model exhibits forward bifurcation at <0 = 1. The study of optimal control
problem suggests that mixed-cropping combined with either mineral oil or insecticide
is the best to control the disease. Furthermore, simulation results show that mixed-
cropping can be used as an alternative strategy and can reduce the need of mineral
oil or insecticide.
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1 Introduction

Potato (Solanum tuberosum L.) is the most important food crop ranking third
in production [22]. It is a highly recommended food security and cash crop in
Sub-Saharan Africa [2,11,25]. In recent years, seed certification and advances in
crop protection have made it possible to increase potato yield and production.
Nonetheless, problems with viral diseases such as Potato virus Y (PVY) are
still prevalent, especially in developing countries, and can cause huge losses of
the annual harvest [3, 23, 27]. PVY belongs to the family Potyviradae genus
Potyvirus and infection in potato causes seed degeneration and yield reduction
[11,13,21].

Transmission by aphid vectors is the most important means of PVY spread
in potatoes crop. It can be vectored by several species of colonizing and non-
colonizing aphids in a non-persistent manner, which means, a brief superficial
probes of few seconds is sufficient for acquisition or inoculation. Aphids usually
cease to be infective within 4–8 hours after acquisition [6, 7, 10,12,16,21].

Control measures of PVY are both limited and expensive. Use of certi-
fied seed is the best to avoid field infection. The virus can also be managed
by controlling its aphid vectors by insecticides and mineral oils [19]. How-
ever, these chemical requires repeated applications and their success strongly
depends on the environmental conditions, density and species of the aphid
vectors involved. Aphids can also be controlled by cultural methods such as
mulching, border-cropping and mixed-cropping [10, 12, 21]. These strategies
are based on manipulation of the search and feeding behaviors of aphids and
the transmission mechanism of the virus. Aphids use visual and chemical cues
to locate the host habitat. After landing on a plant, recognition as a host
(or rejection) follows only after brief superficial probes of few seconds which is
sufficient for acquisition or inoculation [5, 16,21].

Mixed-cropping is an agricultural practice of planting the virus-host (potato
in our case) with a non-host crop (sometimes called barrier crop) plants. The
efficiency of mixed-cropping strategy is determined by the quality of the barrier
plant in attracting vectors. In order to achieve the desired goal, the barrier
plant species should be selected so that it is appealing to vectors and taller
than the potato crop. It was reported that maize, sorghum, sunflower, vetch
and oat can be used [10, 12]. The barrier crop reduces the spread of PVY
in potatoes crop by obstructing the transmission processes in many ways; by
attracting vectors, acting as a physical barrier between the host and vectors
and acting as a vector-trap and virus-sink crop, i.e., the virus is lost from an
infective vector when it feeds on the plant [12].

Currently, modeling plant diseases dynamics has received considerable at-
tention. Models of vector-born plant diseases have been constructed and stud-
ied in an attempt to identify important factors which affects the spread, for
example [4, 14, 15, 26, 28]. However, the protective nature of mixed-cropping
system against a host plant infection with non-persistently transmitted vector-
borne plant viral diseases has been rarely described and studied through math-
ematical models. We are not familiar with models of PVY or other non-
persistent viruses which consider mixed-cropping practice as a control strategy
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except the work in [9]. In this work, the impact of mixed-cropping system
on the disease dynamics was expressed by its effect on the basic reproduction
number <0. However, the study did not consider other possible ways such
as vector-trap effects in during the acquisition process. Also, the efficiencies
of mixed-cropping and chemical controls are not investigated and compared
by extending the model to an optimal control problem. It is important to
study the potential of mixed-cropping strategy in controlling the disease and
its significance in reducing the need for chemical controls.

As a result, in this paper, we propose a model of PVY disease dynamics in
a mixed-cropping system by describing possible way by which a non-host plant
can reduce the virus spread in the host plants. Then, we extend the model to
an optimal control problem by considering insecticide and mineral oil, and the
farmers rate of field inspection for roguing infected plants as controls. The pa-
per is organized as follows: Section 2 is devoted to model construction. Analysis
of the formulated model is performed in Section 3. An optimal control problem
is studied in Section 4. In Section 5, numerical simulations are demonstrated.
Finally, discussion and conclusions are given in Section 6.

2 Model description

The proposed model of PVY disease spread consists of two plant species; the
host potato and a non-host crop plants. Being transmitted by the aphid vectors,
the viral infection affects only the potato but not the non-host plant. Therefore,
in the model, there are three populations: the potato plant Np, the non-host
plant Q, and the aphid vector Nv. We assume that the non-host plant Q is
attractive to vectors, planted earlier, taller and has longer maturation period
than the host. It is distributed uniformly in the field and constant during the
potatoes crop growing period.

There are three, respectively two compartments of the host plant and vector
population. These are; susceptible host H, latent (not infectious) host L, and
infected (infectious) I host; and susceptible (virus-free) vector X and infective
(carrier) vector Y . Accordingly, the total number of host plant and vector
populations are given by Np(t) = H(t)+L(t)+I(t) and Nv(t) = X(t)+Y (t) at
any time t, respectively. Susceptible host plants are recruited into the crop field
by plantation rate r in the available space constrained by abundance of the host
crop and the maximum carrying capacity of the crop field K,K > 0. That is,
r(K−H−L− I) is a replenishment rate of susceptible plant. The host plants,
irrespective of their status, are subject to natural death rate d. Susceptible
vectors are recruited either by birth (in the crop field) or by immigration rate
Λ. Vectors are not affected by the viral infection but subject to natural death
or emigration rate m.

A susceptible host plant can get infected and move to latent class only
when inoculated with the virus by infective vectors. Latent (exposed) plants
can progress to the infected class with rate γ. Infected plants neither die
of nor recover from the disease but subject to roguing rate g. A susceptible
vector can acquire the virus and becomes infective only when it feeds/probes
on infected plants. Infective vectors will lose the virus and become susceptible
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both naturally at rate aτ and when feeding/probing on Q [7, 12].
The protective nature of Q against the vector-mediated infection of host

plants is represented in the inoculation and acquisition processes. Because, in
a mixed-cropping situation, Q affects the acquisition and inoculation processes
in several ways including; (i) by attracting vector, (ii) acting as a virus-sink
and/or vector-trap, and (iii) acting as a physical/chemical barrier between the
host crop and the aphid vectors [6, 7, 10,12].

We assume that the host plant infection is a vector-dependent saturating
incidence, a1β1HY

1+(α1+a3q1Q)Y . Because an infective vector will lose the virus nat-

urally after few probes on the healthy host and the Q plants [7, 10, 12]. The
acquisition incidence is assumed to follow a saturation functional response,

a2β2IX
1+α2I+a3q2QX

. The parameter α1(α2) denotes the effect of sustained feeding

on the infectivity of Y (acquisition efficiency of X), respectively [6, 7]. Simi-
larly, the terms a3q1QY and a3q2QX denote the loss of virus from Y due to
feeding on Q and the interference of Q on X during acquisition, respectively
or the vector-trap effect of Q. Finally, the virus-sink process from Y due to
feeding on Q is given by a vector-dependent saturating response a3β3QY

1+α3Y
. Based

on the above assumptions and from the schematic diagram Figure 1, the trans-
mission dynamics of PVY disease is given by the following system of ordinary
differential equations:

Figure 1. Schematic diagram of the formulated PVY disease model in a mixed-cropping
system comprised of host and non-host crop plants.



dH

dt
= r
(
K −H − L− I)− a1β1HY

1 + (α1 + a3q1Q)Y
− dH,

dL

dt
=

a1β1HY

1 + (α1 + a3q1Q)Y
− (γ + d)L,

dI

dt
= γL− (g + d)I,

dX

dt
= Λ+ aτY − a2β2IX

1 + α2I + a3q2QX
+
a3β3QY

1 + α3Y
−mX,

dY

dt
=

a2β2IX

1 + α2I + a3q2QX
− a3β3QY

1 + α3Y
− (m+ aτ)Y,

(2.1)
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with the initial conditions

H(0) > 0, L(0) ≥ 0, I(0) ≥ 0, X(0) ≥ 0, Y (0) ≥ 0. (2.2)

Note that an equation for the dynamics ofQ is lacking in (2.1) because of the
assumption that Q is constant, i.e., dQ

dt = 0. The model (2.1) is different from
the one in [9] in that; (i) it considers the possible vector-trap effect of Q which
is incorporated in the acquisition functional response, (ii) the virus-sink action
of Q is assumed a saturation response due to the infective vectors, (iii) it is
assumed that, only a proportion a, 0 < a ≤ 1 of infected vectors will be fasting
and can hold the virus for a maximum (average) time 1/τ and, finally, (iv) the
host plant recruitment rate function allows the basic reproduction number <0

to depend on the parameter γ which is more realistic.
The parameters ai, 0 < ai < 1, i = 1, 2, 3 implicitly denote the effect of

habitat complexity induced by Q on vector-host contact, and subsequently, the
acquisition/inoculation rates. The biological/ecological descriptions of param-
eters and their values are taken from [9] and organized in the Table 1. The
parameters a, α3, q1, q2 are assign assumed values and d = 1/120 = 0.0083
(FAO, 2009).

3 Model analysis

First, we can reduce the model system (2.1) into a four dimensional subsystem.
Adding the last two equations and solving the resulting differential equation
dNv
dt = Λ−mNv. Which givesNv(t) = Λ/m−(Λ/m−Nv(0))e−mt andNv(t) −→
Λ/m as t −→∞, where Nv = X+Y . Therefore, we can replace X by Λ/m−Y
and study the dynamics of the resulting reduced subsystem:

dH

dt
= r
(
K −H − L− I)− a1β1HY

1 + b1Y
− dH,

dL

dt
=
a1β1HY

1 + b1Y
− (γ + d)L,

dI

dt
= γL− (g + d)I,

dY

dt
=

a2β2I

b2 + α2I − cY
( Λ
m
− Y

)
− a3β3QY

1 + α3Y
− zY,

(3.1)

where

b1 = α1 + a3q1Q, b2 = 1 + cΛ/m, c = a3q2Q, z = m+ aτ.

3.1 Boundedness and non-negativity of solutions

Since we are studing biological populations, it is important to show the non-
negativity and boundedness of the system.

Theorem 1. If the initial conditions of the system (3.1) are in the region

Ω =
{

(H,L, I, Y ) ∈ R4
+ : 0 < H,L, I ≤ K∗, 0 ≤ Y ≤ Λ

m
, K∗ =

rK

r + d

}
,
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Table 1. Biological/ecological descriptions of the model parameters and their illustrative
values to be used for numerical simulations.

Param. Biological description and unit Value Range

β1 virus inoculation rate. (vector × day)−1 0.015 0.0014-0.0176
β2 virus acquisition rate. (plant× day)−1 0.015 0.0014-0.0176
β3 the rate of virus losses from Y on feeding

(or probing) the Q plant. (vector × day)−1 0.05 0.01-0.1
a1 efficiency of vectors to visit H. constant 0.2 0.2-0.5
a2 efficiency of vectors to visit I. constant 0.2 0.2-0.5
a3 proportion (or preference) of vectors visiting

Q. constant 0.5 0.5-0.8
a proportion of fasting aphids. constant 0.01 0.01-0.05
α1 saturation effect due to Y , i.e. loss of infectivity

on feeding H. (vector × day)−1 0.2 0.22-1
α2 effect of saturation due to the time spent by X

feeding on I. (plant× day)−1 0.1 0.01-1
α3 effect of saturation due to scarcity of Q or rejection

of vectors after landing. (vector × day)−1 0.1 0.01-0.2
q1 time spent by Y searching for H due to the

interference of (or feeding on) Q,
and hence loss of infectivity. (vector × day)−1 0.002 0.0005-0.005

q2 time spent by X searching for I due to the
interference of (or feeding on) Q. (vector × day)−1 0.001 0.0005-0.005

Λ recruitment rate of vectors. vector × (day)−1 5 0.1-10
r recruitment rate of host plants. (day)−1 0.01
d natural death rate of host crop plant. (day)−1 0.0083
g roguing rate of infected plant. (day)−1 0.05 0.0883-0.05
γ progress rate of L to I. (day)−1 0.071 0.0083-0.17
K maximum carrying capacity of the field. plant 500 50-1000
τ inverse of infectivity period of vectors. (day)−1 8 6-12
m emigration and/or natural death rate. (day)−1 0.2 0.025-0.5
Q total number of a non-virus host plants

in the potatoes crop field. constant 200 100-300

then all solutions of the system equations will enter and remain in Ω. Also,
any solution with initial conditions in Ω is non-negative.

Proof. Note that N ′p(t) ≤ rK− (r+d)Np(t), where ′ denotes the time deriva-

tive d
dt . Solving the differential inequality for Np(t) and taking the limit

limt−→∞Np(t) ≤ K∗ and also Y ≤ Λ/m showing the boundedness of the
system (3.1) in Ω. Also, any solution H,L, I, Y which initial values in Ω sat-
isfies:

H ′(t) ≥ −H
(
d+

β1Λ

m+ b1Λ

)
, L′(t) ≥ −(γ + d)L, I ′(t) ≥ −(g + d)I,

Y ′(t) ≥ −f(Y )Y ≥ −f(Λ/m)Y,

where f(Y ) = (z + a3β3Q+ α3zY )/(1 + α3Y ) is a decreasing function of Y ,
i.e., f(Y ) ≤ f(Λ/m) which means Y ′(t) ≥ −f(Λ/m)Y . From the above differ-
ential inequalities, we can obtain H(t), L(t), I(t) and Y (t) are non-negative
for all t ≥ 0. We conclude that the model system (3.1) is epidemiologically
meaningful and mathematically well-posed in Ω. ut
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3.2 The disease-free equilibrium (E0) and basic reproduction
number (<0)

Clearly, system (3.1) always has a disease-free equilibrium given by E0 =
(K∗, 0, 0, 0). We compute the basic reproduction number <0 using the next
generation matrix method [24]. The rate at which new infections are created
is determined by the matrix F , and the rates of transfer into and out of the
class of infected states are represented by the matrix V; these are given by

F =

 a1β1HY

1 + b1Y
0
0

 , V =


(γ+d)L

−γL+(g+d)I

a3β3QY

1 + α3Y
+zY−

a2β2I( Λm − Y )

b2 + α2I − cY

 .

From the next generation matrix FV−1, we get the average value of secondary
cases defined as the basic reproduction number <0 which is given by:

<0 =
γa1a2β1β2K

∗Λ

m(d+ g)(d+ γ)D0b2
, D0 = z + a3β3Q. (3.2)

Remark 1. Note that without mixed-cropping system (i.e. Q = 0), the basic
reproduction number is:

<01 :=
γβ1β2K

∗Λ

m(d+ g)(d+ γ)z
>

γa1a2β1β2K
∗Λ

m(d+ g)(d+ γ)D0b2
= <0.

3.3 Local stability of E0

In this subsection we study the local stability of the disease-free equilibrium
point E0.

Theorem 2. The disease-free equilibrium, E0 of (3.1) is locally asymptotically
stable if <0 < 1 ; it is unstable if <0 > 1.

Proof. Here, we apply the Routh-Hurwitz criteria to study the local stability
of E0. The Jacobian of (3.1) at E0 is:

J(E0) =


−(r+d) −r −r −a1β1K

∗

0 −(γ+d) 0 a1β1K
∗

0 γ −(g+d) 0

0 0
a2β2Λ

mb2
−D0

 ,

where D0 is given in (3.2). The characteristic equation is evaluated as:

(λ+ r + d)
(
λ3 + p1λ

2 + p2λ+ p3
)

= 0,

where

p1 = γ + 2d+ g +D0 > 0, p2 = (γ + 2d+ g)D0 + (γ + d)(g + d) > 0,

p3 = (γ + d)(g + d)D0(1−<0).
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It is clear that one of the eigenvalues, λ = −(r+ d) is negative. The remaining
eigenvalues are given by solutions of the cubic equation λ3 + p1λ

2 + p2λ+ p3 =
0. If <0 < 1, then p3 > 0 and p3(p1p2 − p3) > 0. Hence, E0 is locally
asymptotically stable. Otherwise, if <0 > 1, then p3 < 0 and E0 becomes
unstable. ut

3.4 Global stability of E0

Here, we establish the global stability of E0 via Lyapunov functions. For this,
we define a Lyapunov function V as

V = m1

(
H −K∗ −K∗ log

H

K∗
+ L+

(γ + d)I

γ

)
+m2Y,

where m1 and m2 are positive constants to be determined latter. We get the
following result:

Theorem 3. Assume <0 < 1 and D0b1 ≥ α3a3β3Q. Then the disease-free
equilibrium is globally asymptotically stable.

Proof. The time derivative of V along the solutions of system (3.1) is

V ′ =m1

[(H−K∗
H

)
H ′+L′+

(γ + d)I ′

γ

]
+m2Y

′ ≤ rm1(
H−K∗

H
)(K∗−H−L−I)

+

(
m1

a1β1K
∗

1 + b1Y
−m2

D0 + α3zY

1 + α3Y

)
Y +

(
m2

a2β2( Λ
m
− Y )

b2 + α2I − cY
−m1q

)
I,

≤
(
m1

a1β1K
∗

1 + b1Y
−m2

D0 + α3zY

1 + α3Y

)
Y +

(
m2

a2β2Λ

mb2
−m1q

)
I,

where q = (γ+d)(g+d)/γ. Because K∗≥H+L+I and f(Y ) =
a2β2(

Λ
m−Y )

b2+α2I−cY is

decreasing with respect to Y . Let m2 = m1
a1β1K

∗

D0
, m1 = 1

q and D0b1 ≥

α3a3β3Q. Then V ′ ≤
(

γa1a2β1β2K
∗Λ

mb2D0(g+d)(γ+d)
−1

)
I = (<0−1)I. Therefore, V ′(t) <

0 when <0 < 1 and V ′(t) = 0 only at E0. Hence, the conclusion follows by
Lyapunov stability theorem [20]. ut

3.5 Bifurcation analysis

Now we perform bifurcation analysis of the model (3.1) near <0 = 1 and the
disease-free equilibrium E0. Investigating the direction of bifurcation is impor-
tant to determine conditions for stability of E0 and/or existence of endemic
equilibrium E∗. We follow the technique of Castillo-Chavez and Song [8]. Let
β1 be the bifurcation parameter, X = (x1, x2, x3, x4) = (H,L, I, Y ), G =
(f1, f2, f3, f4) =

(
H ′, L′, I ′, Y ′

)
. Then the system (3.1) can be re-written as:

dX

dt
= G(X, β∗1); G : R4 ×R+ −→ R4, G ∈ C2(R4 ×R+), (3.3)

where β∗1 is a value of β1 at which <0 = 1. Let E0 be the equilibrium point of
the system, that is G(E0, β

∗
1) = 0 for all β∗1 is the value of β1 such that <0 = 1,

Math. Model. Anal., 27(3):408–428, 2022.
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i.e., β∗1 = mb2D0(γ+d)(g+d)
γa1a2β2K∗Λ . Let A = J(E0, β

∗
1) be the Jacobian matrix of (3.3)

evaluated at E0 and β∗1 . We need to show the following conditions hold: [A1]
A has a simple zero eigenvalue and all the other eigenvalues has negative real
parts. [A2] A has a non-negative right eigenvector w and a left eigenvectors v
each corresponding to the zero eigenvalue.

Theorem 4. The system (3.1) exhibits forward bifurcation near <0 = 1 and
the disease free equilibrium E0 provided that D0b1 ≥ α3a3β3Q.

Proof. The Jacobian at (E0, β
∗
1) is:

J(E0, β
∗
1) =


−(r + d) −r −r −a1β∗1K∗

0 −(γ + d) 0 a1β
∗
1K
∗

0 γ −(g + d) 0

0 0 a2β2Λ
mb2

−D0

 .

We found that two of the eigenvalues corresponding characteristic polynomial
as λ1 = −(r + d), λ2 = 0 and the other two are roots of

λ2 + (γ + 2d+ g +D0)λ+ (γ + d)(g + d) + (γ + 2d+ g)D0 = 0.

It is clear that three eigenvalues have negative real parts and one eigenvalue is
zero and simple. Let w = (w1, w2, w3, w4), v = (v1, v2, v3, v4) be the right and
left eigenvector corresponding to J(E0, β

∗
1), respectively. That is, the following

matrix product hold:

[J(E0, β
∗
1)] · [w]T = 0, [J(E0, β

∗
1)]T · [v]T = 0,

where AT denotes the transpose of a matrix A. From the above matrix product
we get:

w1 = −a1β
∗
1K
∗

r + d

(
1+

r(γ + d+ g)

(γ+d)(g+d)

)
w4, w2 =

a1β
∗
1K
∗w4

γ + d
, w3 =

γa1β
∗
1K
∗w4

(g + d)(γ + d)
,

v1 = 0, v2 =
γa2β2Λv4

mb2(g + d)(γ + d)
, v3 =

a2β2Λv4
mb2(g + d)

, w4 = w4 > 0, v4 = v4 > 0

To complete the proof, we need to show that a < 0 and b > 0, where a and b
be defined as follows:

a =

4∑
k,j,i=1

vkwjwi
∂2fk
∂xi∂xj

(E0, β
∗
1) , b =

4∑
k,j=1

vkwj
∂2fk
∂xj∂β∗1

(E0, β
∗
1). (3.4)

Since v1 = 0 we need only compute the second order partial derivatives of f2, f3
and f4 with respect to xi and β∗1 , i = 1, ..., 4 evaluated at (E0, β

∗
1) by equation

(3.4) and taking v4 = w4 = 1, gives:

a =−
[
a21β

∗2
1 K∗

r + d

(
1 +

r(γ + d+ g)

(γ + d)(g + d)

)
+

γa1a2β
∗
1β2K

∗

(g + d)(γ + d)b22

(
1 +

2α2γa1β
∗
1K
∗Λ

m(g + d)(γ + d)

)
+ 2[D0b1 − α3a3β3Q]

]
< −2[D0b1 − α3a3β3Q], b = v2w2K

∗ =
D0

γ + d
> 0.

Therefore, a < 0 when D0b1 ≥ α3a3β3Q. We conclude that the system (3.1)
exhibits forward bifurcation near <0 = 1 since a < 0 and b > 0 [8]. The
implication of the occurrence of forward bifurcation means that the endemic
equilibrium can not exist if <0 is less that one. ut
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3.6 Endemic equilibrium (E∗)

An endemic equilibrium E∗ of the system (3.1) is a steady state solution when
the disease persists. That is, E∗ = (H∗, L∗, I∗, Y ∗) where H∗ 6= 0, L∗ 6=
0, I∗ 6= 0 and Y ∗ 6= 0. It is obtained by setting the right-hand sides of (3.1) to
zero. Therefore, H∗, L∗ and Y ∗ are obtained as:

L∗ =
(g + d)I∗

γ
, H∗ = K∗ − wI∗, Y ∗ =

I∗

c0K∗ − c1I∗
, with

w =
γ(r + d+ g) + (r + d)(g + d)

γ(r + d)
, c0 =

γa1β1
(γ + d)(g + d)

, c1 = c0w + b1.

And I, ignoring the star sign, is a feasible root of the cubic polynomial:

P (I) = A3I
3 + 3A2I

2 + 3A1I +A0 = 0, (3.5)

where

A0 =b2(c0K
∗)2D0(1−<0), A1 =

c0K
∗

3

{
[α3zb2 + c0K

∗a2β2]

+D0

[
α2c0K

∗ − c+ b2(c1 − α3)<0 + 2b2c1(<0 − 1)
]}

A2 =
−1

3

{
c0K

∗[α2(D0c1 − α3z) + a2β2(2c1 − α3)
]

+ α3z(b2c1 + c)

+D0c1
[
α2c0K

∗ − c+ b2c1(<0 − 1) + 2b2(c1 − α3)<0

]}
A3 =c1

[
(c1 − α3)

(
a2β2

(
1 + c1

Λ

m

)
+ α2z

)
+c1α2a3β3Q

]
.

For <0 > 1, c1 ≥ α3 and Λ(c1−α3)<0 ≥ m then A0 < 0, A1 > 0, A2 < 0 and
A3 > 0. Thus, by Descartes rule of sign changes, the Equation (3.5) has one,
two or three real positive roots. On the other hand, let ψ be a primitive cube
root of unity. Using Cardano’s method of solving cubic equations, a general
solution to (3.5) can be given by:

I =
−A2

A3
+ ψk

(
−Q+

√
Q2 + 4P 3

2

)1/3

+ ψk
(
−Q−

√
Q2 + 4P 3

2

)1/3

,

P =
A1A3 −A2

2

A2
3

, Q =
2A3

2 − 3A1A2A3 +A0A
2
3

A3
3

, k = 0, 1, 2.

3.7 Local stability of E∗ and non-existence of Hopf bifurcation

In this subsection, we study the local stability of the endemic equilibrium by
using the Routh-Hurwitz criteria [20]. Also, we will establish the non-existence
of periodic solutions near E∗ of the system (3.1). We obtain the following
result:

Theorem 5. Let D0b1 ≥ α3a3β3Q an endemic equilibrium E∗ exists. Then E∗

is locally asymptotically stable. Furthermore, the system (3.1) does not exhibit
a Hopf bifurcation near E∗.
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Proof. The Jacobian at E∗ is given by:

J(E∗) =


−A11 −r −r −A14

A21 −A22 0 A14

0 γ −A33 0
0 0 A43 −A44

 ,

where

A11 = r + d+A21, A21 =
a1β1Y

∗

1 + b1Y ∗
, A14 =

a1β1H
∗

(1 + b1Y ∗)2
,

A22 = γ + d, A33 = g + d, A43 =
a2β2( Λm − Y

∗)(b2 − cY ∗)
(b2 + α2I∗ − cY ∗)2

,

A44 = z +
a3β3Q

(1 + α3Y ∗)2
+

a2β2I
∗(1 + α2I

∗)

(b2 + α2I∗ − cY ∗)2
.

The corresponding characteristic equation is

P (λ) = λ4 + l1λ
3 + l2λ

2 + l3λ+ l4 = 0,

with

l1 = A11 +A22 +A33 +A44 > 0,

l2 = A11A22 +A33A44 + (A11 +A22)(A33 +A44) + rA21 > 0,

l3 = A11A22(A33+A44) + (A11+A22)A33A44+rA21(γ+A33+A44)−γA14A43,

l4 = (A11A22 + rA21)A33A44 + γrA21A44 − (r + d)γA14A43.

The corresponding Hurwitz determinants are given by: M1 = l1 > 0,

M2 =l1l2 − l3 = A11A22(A11 +A22) +A33A44(A33 +A44)

+ rA21(A11 + d) + γA14A43 + l1(A11 +A22)(A33 +A44) > 0,

M3 =l3(l1l2 − l3)− l21l4 = l1(A11 +A22)
[
A11A22A

2
33

+ rA21[A2
33 +A33A44 +A2

44]
]

+ l3
[
A11A22(A11 +A22)

+A33A44(A33 +A44) + rA11A21 + γA14A43

]
, M4 = l4M3.

Using the equilibrium equation, we obtain:

γA14A34 =
A22A33(D0 + α3zY )(b2 − cY )

(1 + b1Y )(1 + α3Y )(b2 + α2I − cY )
, A44 > z +

a3β3Q

(1 + α3Y ∗)2
,

=⇒ A22A33A44 − γA14A43 >
A22A33(D0b1 − α3a3β3Q)Y

(1 + b1Y )(1 + α3Y )2(b2 + α2I − cY )
.

Therefore, if D0b1 ≥ α3a3β3Q then l3 > 0, l4 > 0,M3 > 0 and M4 > 0. By the
Routh-Hurwitz criteria, we conclude that the endemic equilibrium E∗ is locally
asymptotically stable. Furthermore, since M3 > 0, there is no Hopf bifurcation
near E∗ [20]. ut
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3.8 Global stability of E∗

In order to discuss the global stability of the endemic equilibrium E∗, we follow
the procedure used in Theorem 3 with a Lyapunov function V defined as:

V =
(
H −H∗ −H∗ log

H

H∗
)

+
(
L− L∗ − L∗ log

L

L∗
)
+
(
I − I∗ − I∗ log

I

I∗
)

+
(
Y − Y ∗ − Y ∗ log

Y

Y ∗
)
.

The time derivative of V in the direction of system Equation (3.1) is:

V ′ =
dV

dt
=

(H −H∗
H

)
H ′ +

(L− L∗
L

)
L′ +

(I − I∗
I

)
I ′ +

(Y − Y ∗
Y

)
Y ′

=r
(
K −Np

)
+
a1β1H

∗Y

1 + b1Y
+ dH∗ + (γ + d)L∗ + (g + d)I∗ +

a2β2I( Λ
m
− Y )

b2 + α2I − cY

+
( a3β3Q

1 + α3Y
+ z

)
Y ∗ − rH∗(K −Np)

H
− dH − a1β1HY L

∗

(1 + b1Y )L
− dL− (g + d)I

− γ LI
∗

I
−
a2β2I( Λ

m
− Y )Y ∗

(b2 + α2I − cY )Y
−
( a3β3Q

1 + α3Y
+ z

)
Y = M −N,

M =r(K −Np) +
a1β1H

∗Y

1 + b1Y
+ dH∗ + (γ + d)L∗ + (g + d)I∗

+
a2β2I(Λ/m− Y )

b2 + α2I − cY
+

( a3β3Q

1 + α3Y
+ z

)
Y ∗,

N =
H∗

H
r(K −Np) + dH +

a1β1HY L
∗

(1 + b1Y )L
+ dL+ (g + d)I + γ

LI∗

I

+
a2β2I( Λ

m
− Y )Y ∗

(b2 + α2I − cY )Y
+

( a3β3Q

1 + α3Y
+ z

)
Y.

Clearly, V ′ < 0 provided that M < N and V ′ = 0 only at E∗. Thus, by Lya-
punov stability theorem, the endemic equilibrium E∗ is globally asymptotically
stable if M < N [20].

3.9 Sensitivity of the basic reproduction number <0

It is important to determine the influence of parameters on the disease dynamics
and to evaluate the efficiency of a control strategy used. For these, we evaluate
the sensitivity of <0 with respect to the involved parameters. According to [20],
the sensitivity of <0 to the parameter p is defined as

Υ<0
p :=

∂<0

∂p
× p

<0
.

Using this formula and parameters values in Table 1, the sensitivity indices of
parameters are evaluated and organized in the Table 2. The sensitivity index
of a parameter is interpreted as follows: A parameter with positive (negative)
sensitivity index will increase (decrease) the disease spread when it increases
(increases), respectively. From the table, we see that parameters related to
the mixed-cropping strategy Q, a3, β3 and q2 are are the most influential in
reducing the rate of disease spread.
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Table 2. Sensitivity indices of parameters.

Parameters Sensitivity indices Parameter Sensitivity indices

β1, β2, a1, a2, K∗ +1.000 q2 -0.909
Λ +0.091 g -0.858
γ +0.007 d -0.247
Q, a3 -1.884 m -0.092
β3 -0.975 a, τ -0.016

4 Extension into optimal control model

In this section, we extend the model system (2.1) to an optimal control problem
by incorporating the use three additional controls; mineral oil u1, insecticide u2,
and farmer’s inspection of the crop field u3. The objectives of this section are to
investigate the advantage of combining mixed-cropping with chemical controls
and also to compare the efficiency of mixed-cropping with that of insecticide
and/or mineral oil in reducing the disease spread. An other objective is to
illustrate the advantages of mixed-cropping strategy in reducing the need for
chemical controls, u1 and u2.

Spraying mineral oil reduces the probability of acquisition and inoculation
by preventing vectors from probing on the host crop. Treating the host plant
with mineral oil also increases the death or emigration rate of vectors. Insecti-
cide reduces vector population by increasing the death rate. Farmer’s inspec-
tion of the crop field aims to increase the identification and timely removal
of infected (virus source) plants, that is, to decrease the number of infected
plants. Incorporating these controls, the model system (2.1) becomes:

dH

dt
= r
(
K −H − L− I)− (1− u1)a1β1HY

1 + (α1 + a3q1Q)Y
− dH,

dL

dt
=

(1− u1)a1β1HY

1 + (α1 + a3q1Q)Y
− (γ + d)L,

dI

dt
= γL− [g(1 + u3) + d]I,

dX

dt
= Λ+aτY− (1− u1)a2β2IX

1+α2I + a3q2QX
+
a3β3QY

1 + α3Y
−(eu1 + u2 +m)X,

dY

dt
=

(1− u1)a2β2IX

1 + α2I + a3q2QX
− a3β3QY

1 + α3Y
− (eu1 + u2 + aτ +m)Y,

(4.1)

subject to the initial conditions (2.2). The factor e, 0 < e < 1 in (4.1) denotes
the death/emigration of vectors caused by mineral oil.

We will apply optimal control theory [1] to determine the optimal level of
efforts that would be needed to minimize the disease prevalence and the costs of
applying controls. For this, we need to define an objective functional J which
is to minimize the number of latent L and infected I host plants, susceptible
X and infected Y vectors, and the costs associated with the controls u1, u2, u3
over a finite interval of time [0, T ]. By choosing quadratic cost functions of the
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controls, we define the objective functional as

J = min
u1,u2,u3

∫ T

0

[
m1(L+ I) +m2(X + Y ) +

1

2

3∑
i=1

niu
2
i

]
dt, (4.2)

subject to the constraint (4.1) with initial conditions (2.2). The set of ad-
missible controls is a subset of bounded Lebesgue measurable functions U ⊂
(L∞[0, T ])3, (u1, u2, u3) ∈ U where

0 ≤ ui(t) ≤ φ ≤ 1, 0 ≤ t ≤ T, φ = max{uimax}, i = 1, 2, 3.

The quantities m1,m2 denote the weight constants of the exposed and infected
plants, and vector population, respectively. The constants n1, n2, n3 denote the
weight for u1, u2, u3, respectively. The terms 1

2n1u
2
1,

1
2n2u

2
2 and 1

2n3u
2
3 are the

costs of applying the controls. The weights of state variables are assigned based
on their relative importance while those of controls are assigned in relation to
their cost implications. We thus seek an optimal control (u∗1, u

∗
2, u
∗
3) such that:

J (u∗1, u
∗
2, u
∗
3) = min{J (u1, u2, u3) : (u1, u2, u3) ∈ U}.

For the optimal control problem (4.1)–(4.2), we know that the state system is
bounded and satisfies Lipschitz property with respect to the state variables.
Also, the integrand in J is convex with respect to both the control and state
variables. Therefore, the existence of an optimal control pair is a consequence
of the standard results of optimal control theory [1, 4, 17,18].

4.1 The Hamiltonian and optimality system

Applying Pontryagin’s Maximum Principle (PMP), the necessary conditions
that an optimal pair (u∗, x∗), u∗=(u∗1, u

∗
2, u
∗
3), x∗=(Hu∗

, Lu
∗
, Iu

∗
, Xu∗

, Y u
∗
)

must satisfy can be obtained by converting the problem of minimization of the
objective functional coupled with the state variables into a problem of minimiz-
ing point-wise a Hamiltonian, H, with respect to the controls (u1, u2, u3) [1,18].
We define the Hamiltonian as:

H = m1(L+I)+m2(X+Y )+
1

2

3∑
i=1

niu
2
i+λ1

dH

dt
+λ2

dL

dt
+λ3

dI

dt
+λ4

dX

dt
+λ5

dY

dt
,

where λi, i = 1, . . . , 5 are the adjoint or co-state variables. By the PMP we
have the following result:

Theorem 6 [Proposition]. If the optimal pair (u∗1, u
∗
2, u
∗
3) minimizes

J (u1, u2, u3) over U , then there exist adjoint functions λi, i = 1, . . . , 5 which
satisfies:

i. the adjoint system

dλ1
dt

=
−∂H
∂H

= λ1(r + d) + (λ1 − λ2)
(1− u1)a1β1Y

1 + (α1 + a3q1Q)Y
,

dλ2
dt

=
−∂H
∂L

= −m1 + λ1r + λ2(γ + d)− λ3γ,
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dλ3
dt

=
−∂H
∂I

=−m1 + λ1r + λ3(g + d+ gu3)

+
(λ4 − λ5)(1− u1)a2β2X(1 + a3q2QX)

(1 + α2I + a3q2QX)2
,

dλ4
dt

=
−∂H
∂X

=−m2 + (λ4 − λ5)
(1− u1)a2β2I(1 + α2I)

(1 + α2I + a3q2QX)2

+ λ4(eu1 + u2 +m),

dλ5
dt

=
−∂H
∂Y

=−m2 + (λ1 − λ2)
(1− u1)a1β1H

(1 + (α1 + a3q1Q)Y )2

+
(λ5 − λ4)a3β3Q

(1 + α3Y )2
− λ4aτ + λ5(eu1 + u2 + z),

ii. the control system

dH

dt
=
dH
dλ1

,
dL

dt
=
dH
dλ2

,
dI

dt
=
dH
dλ3

,
dX

dt
=
dH
dλ4

,
dY

dt
=
dH
dλ5

,

iii. the transversality conditions

λi(T ) = 0, i = 1, . . . , 5, and

iv. the optimality condition,

H
(
Hu∗

(t), Lu
∗
(t), Iu

∗
(t), Xu∗

(t), Y u
∗
(t), u∗1(t), u∗2(t), u∗3(t), λ∗i (t)

)
= min

U
H
(
H∗(t), L∗(t), I∗(t), X∗(t), Y ∗(t), u1(t), u2(t), u3(t), λ∗i (t)

)
,

i = 1, . . . , 5, for t almost everywhere in [0, T ].

The optimality condition ∂H
∂ui

= 0, i = 1, 2, 3 gives the optimal control pair
(u∗1, u

∗
2, u
∗
3), where

u∗1 = min
{

1,max
{

0 ,
1

n1

( (λ2 − λ1)a1β1HY

1 + (α1 + a3q1Q)Y
+

(λ5 − λ4)a2β2IX

1 + α2I + a3q2QX

+ e(λ4X + λ5Y )
)}}

,

u∗2 = min
{

1,max
{

0 ,
λ4X + λ5Y

n2

}}
, u∗3 = min

{
1,max

{
0 ,

λ3gI

n3

}}
.

5 Numerical simulations

In this section, we present numerical simulations to support the analytic results
of the study. We use the set of parameters values given in the Table 1. Unless
and otherwise mentioned, the following parameters are used in the simulations:
r = 0.01, K = 915, Q = 200, d = 0.0083, γ = 0.071, a = g = m = 0.05, β1 =
β2 = 0.015, β3 = 0.05, τ = 8, Λ = 10, α1 = 0.2, α2 = 0.01, q1 = 0.002, q2 =
0.001 and α3 = 0.1, unless and otherwise given specifically.

If we let Q = 200, Λ = 5, β1 = β2 = 0.0175, β3 = 0.08, a1 = a2 =
0.5, a3 = 0.4, then <0 = 0.954 < 1. The simulation result of the model is
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(a) (b)

Figure 2. Simulation of system (3.1) showing the time evolution of healthy H(t), latent
L(t), infected I(t) hosts and infected vectors Y (t) when (a) <0 < 1 and (b) <0 > 1. The

plots show that the disease will die out if <0 < 1 (a) and can persist if <0 > 1 (b).

given by Figure 2(a) which shows the latent host (L), infected host (I) and
infective vector (Y ) populations tend to zero as time increases, whereas, the
healthy host plant population (H) tend towards K∗. This implies the global
asymptotic stability of the disease-free equilibrium and confirms the analytic
finding.

On the other hand, when Q = 100, Λ = 5, β1 = β2 = 0.015, β3 = 0.05, a1 =
a2 = 0.5, a3 = 0.3, we get <0 = 4.595 and the dynamics is illustrated by
Figure 2(b) which shows the persistence of disease in the host population, i.e.,
the stability of endemic equilibrium.

(a) (b)

Figure 3. Plots showing effects of density of the barrier plant Q and its associated
parameters on the dynamics of healthy H(t) and infected I(t) plant populations. The solid

curves are when Q = 200, a1 = 0.3, a2 = 0.3, a3 = 0.5, β3 = 0.05, the dotted are when
Q = 100, a1 = a2 = 0.5, a3 = 0.4, β3 = 0.03, and the dashed are when Q = 0, a1 = a2 = 1.

The impact of parameters related to the mixed-cropping system a1, a2, a3, Q
is illustrated on the evolution of healthy and infected plants Figure 3(a) and
3(b).

6 Discussion and conclusions

In this paper, we have investigated the dynamical properties of a model for PVY
spread in a mixed-cropping system comprised of two crops; the host (potato)
and a non-host crop. Then, we extend the model to an optimal control problem

Math. Model. Anal., 27(3):408–428, 2022.
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by considering the use of mineral oil u1, insecticide u2 and farmer’s level of field
inspection u3 and investigated their impact on the disease spread.

Figure 4. Forward bifurcation diagram of the endemic equilibrium near <0 = 1 and the
disease-free point E0. It means, the endemic equilibrium exists if and only if <0 > 1. We

have used the Equation (3.5) to plot the graph by writing the coefficients Ai in terms of <0

as much as possible. The bifurcation parameter can be any of the parameters involved in
<0. The implication of the occurrence of forward bifurcation means that the disease can be

eradicated if <0 is less that one.

The analytic results of the model show that the basic reproduction number
<0 is a threshold parameter that decides properties of the disease dynamics.
The model exhibits forward bifurcation near <0 = 1 and the disease-free equi-
librium E0 (see Figure 4). This means, the endemic equilibrium E∗ can exist
only when <0 > 1. It is shown that E0 is globally asymptotically stable if
<0 < 1 and b1D0 ≥ α3a3β3Q (Theorem 3) and demonstrated by numerical
simulation, Figure 2(a). The epidemiological implication is that the disease
will eventually be eliminated when <0 < 1. However, the disease can persist in
the host plant population if <0 > 1 as shown in Figure 2(b).

From the derivation of the basic reproduction number <0 and sensitivity
analysis results, we see that <0 is significantly influenced in a mixed-cropping
system. The density (number) of the mixed-cropped plants (Q), the quality of
Q in attracting vectors a3, the probability of virus removal β3 and its vector-
trap factor q2 are crucial in reducing the value of <0, and hence, to control the
disease. We present the graphs in Figures 3(a) and 3(b) to demonstrate how
significant the values of these parameters affect the disease dynamics.
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Figure 5. Plots of the optimal controls u∗1, u
∗
2 and u∗3 as functions of time without (a)

and with (b) mixed-cropping strategy. The graphs are results of the parameters values
m1 = 100, m2 = 80, n1 = n2 = 10, 000, n3 = 1000.

The optimal control profiles of the model without and with mixed-cropping
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system is shown in Figures 5(a) and 5(b), respectively. These graphs depict the
time and amount of mineral oil u1, insecticide u2 needed and the need of field
observation u3. The graphs show that mixed-cropping strategy can reduce the
need for chemical controls u1 and u2.
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Figure 6. Simulations of the model (4.1) (a) without mixed-cropping, i.e.
Q = 0, a1 = a2 = 1, and (b) with mixed-cropping system for Q = 200. The graphs show the

disease can persist in the host population in case (a) but dies out in case (b).

The impact of these controls on the dynamical behaviors of the host and
vector populations without and with mixed-cropping is demonstrated in Fig-
ures 6(a) and 6(b), respectively. Use of mineral oil, insecticide and roguing
without mixed-cropping may not sufficient to eradicate the disease as shown
in Figure 6(a), however, the disease can be successfully controlled when these
measures are integrated with mixed-cropping, see Figure 6(b).

(a) (b) (c)

(d) (e)

Figure 7. Simulations showing the time evolution of the host and vector populations
under different situations; when mixed-cropping, mineral oil u1 and insecticide u2 are used
(dash), mixed-cropping only, i.e. u1 = u2 = 0 (dot), and when no measures except u3 are

taken, i.e. Q = u1 = u2 = 0, a1 = a2 = 1 (solid). The parameters values used are
β3 = 0.02, Λ = 10, a1 = a2 = 0.3, a3 = 0.6, u3 6= 0.

We can conclude that (i) mixed-cropping strategy alone can produce equiv-
alent result in controlling the disease as that of using mineral oil and insecticide
(see Figures 7(a)–7(e)), and (ii) the integration of mixed-cropping with either
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(a) (b) (c)

(d) (e)

Figure 8. The host and vector population dynamics under different situations where
u3 6= 0. When mixed-cropping combined with mineral oil is used (solid), mixed-cropping

with insecticide (dotted), and mineral oil combined with insecticide but without
mixed-cropping, i.e., Q = 0 (dashed).

mineral oil or insecticide is the best to manage the disease as shown in Fig-
ures 8(a)–8(e). We believe that our study can contribute further knowledge in
the search for affordable and non-chemical control methods of non-persistently
transmitted vector-borne plant viral diseases.
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