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1 Introduction

Let a = {am : m ∈ N} be a periodic sequence of complex numbers with
minimal period q ∈ N. The periodic zeta-function ζ(s; a), s = σ+ it, is defined,
for σ > 1, by the Dirichlet series

ζ(s; a) =

∞∑
m=1

am
ms

.

�
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In view of periodicity of the sequence a,

ζ(s; a) =
1

qs

q∑
l=1

alζ

(
s,
l

q

)
, (1.1)

where ζ(s, α), 0 < α 6 1, denotes the classical Hurwitz zeta-function, it follows
that the function ζ(s; a) is analytic in the whole complex plane, except for a
simple pole at the point s = 1 with residue

â
def
=

1

q

q∑
l=1

al.

If am ≡ 1, then the function ζ(s; a) reduces to the Riemann zeta-function ζ(s).
If am = χ(m), where χ(m) is a Dirichlet character modulo q, then the function
ζ(s; a) becomes a Dirichlet L-function L(s, χ). Thus, the periodic zeta-function
is a generalization of the classical Riemann zeta-function ζ(s) and Dirichlet L-
function L(s, χ).

As the functions ζ(s) and L(s, χ), the function ζ(s; a) for some sequences
a is universal in the sense that its shifts ζ(s + iτ ; a), τ ∈ R, approximate a
wide class of analytic functions defined on the strip D = {s ∈ C : 1/2 <
σ < 1}. Universality of the function ζ(s; a) was considered by various authors,
among them B. Bagchi, J. Steuding, J. Kaczorowski, J. Sander, R. Macaitienė,
R. Kačinskaitė, the second, third and fourth authors, and others. For a more
precise account, we propose a survey paper [6]. The majority of the papers deal
with the continuous universality of ζ(s; a) when τ in shifts ζ(s + iτ ; a) takes
arbitrary real values. To our knowledge, the discrete universality of ζ(s; a),
when τ in ζ(s+iτ ; a) takes real values from a certain discrete set, was discussed
only in [3,4,5] with multiplicative sequence a, i. e., amn = aman for all (m,n) =
1 and a1 = 1. For example, Theorem 2 of [4] with w(u) ≡ 1 implies the following
result. Denote by K the class of compact subsets of the strip D with connected
complements, and by H0(K) with K ∈ K the class of continuous non-vanishing
functions on K that are analytic in the interior of K. Let P be the set of all
prime numbers, #A denotes the cardinality of the set A, and, for h > 0,

L(P, h, π) =

{
(log p : p ∈ P),

2π

h

}
.

Under above notation, for every K ∈ K, f(s) ∈ H0(K) and ε > 0,

lim inf
N→∞

1

N + 1
#

{
0 6 k 6 N : sup

s∈K
|ζ(s+ ikh; a)− f(s)| < ε

}
> 0

provided that the sequence a is multiplicative, and the set L(P, h, π) is linearly
independent over the field of rational numbers Q.

Latter, we will give a modified statement of the above theorem from [4], for
it some notation is required.

In this paper, we will consider the discrete approximation of analytic func-
tions by shifts of a certain absolutely convergent on D Dirichlet series with
coefficients depending on a parameter. These series is closely connected to the
function ζ(s; a).

Math. Model. Anal., 27(1):78–87, 2022.
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2 Definition of an absolutely convergent series

As usual, denote by Γ (s) the Euler gamma-function, θ > 1/2 is a fixed number,
u > 0 and

lu(s) =
s

θ
Γ
(s
θ

)
us, vu(m) = exp

{
−
(m
u

)θ}
, m ∈ N.

Define the series

ζu(s; a) =

∞∑
m=1

amvn(m)

ms
.

Since the sequence a is bounded, the latter series is absolutely convergent, say,
for σ > 1/2. In view of the Mellin formula

1

2πi

∫ a+i∞

a−i∞
Γ (s)b−s ds = e−b, a, b > 0,

we have the equality

vu(m) =
1

2πi

∫ θ+i∞

θ−i∞

1

θ
Γ
(s
θ

)(m
u

)−s
ds. (2.1)

The latter formula also implies the bound vu(m) �θ,u m
−θ. Moreover, (2.1)

shows that

ζu(s; a) =
1

2πi

∞∑
m=1

am
ms

∫ θ+i∞

θ−i∞

z

θ
Γ
(z
θ

)(m
u

)−z dz

z

=
1

2πi

∫ θ+i∞

θ−i∞

lu(z)

z

∞∑
m=1

am
ms+z

dz =
1

2πi

∫ θ+i∞

θ−i∞
ζ(s+ z; a)lu(z)

dz

z
. (2.2)

3 Statement of the main theorem

Denote by H(D) the space of analytic functions on D endowed with the topol-
ogy of uniform convergence on compacta. In this section, we define the H(D)-
valued random element connected to the function ζ(s; a). We start with tradi-
tional probability space. Let

Ω =
∏
p∈P

γp,

where γp = {s ∈ C : |s| = 1} for all p ∈ P. The torus Ω is a compact topological
Abelian group, therefore, on (Ω,B(Ω)), where B(X) is the Borel σ-field of the
space X, the probability Haar measure mH can be defined. This gives the
probability space (Ω,B(Ω),mH). Denote by ω(p) the pth component of an
element ω ∈ Ω, p ∈ P. Now, on the probability space (Ω,B(Ω),mH), define
the H(D)-valued random element

ζ(s, ω; a) =
∏
p∈P

(
1 +

∞∑
α=1

apαω
α(p)

pαs

)
.
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The details of this definition can be found in [2]. We will prove the following
statement.

Theorem 1. Suppose that the sequence a is multiplicative, the set L(P, h, π) is
linearly independent over Q and uN →∞, uN � N2 logAN with every A > 0
as N →∞. Let K ∈ K and f(s) ∈ H0(K). Then the limit

lim
N→∞

1

N + 1
#

{
0 6 k 6 N : sup

s∈K
|ζuN (s+ ikh; a)− f(s)| < ε

}
= mH

{
ω ∈ Ω : sup

s∈K
|ζ(s, ω; a)− f(s)| < ε

}
> 0

exists for all but at most countably many ε > 0.

We also state a modified universality theorem for the function ζ(s; a) men-
tioned in Introduction.

Theorem 2. Suppose that the sequence a is multiplicative, the set L(P, h, π) is
linearly independent over Q. Let K ∈ K and f(s) ∈ H0(K). Then the limit

lim
N→∞

1

N + 1
#

{
0 6 k 6 N : sup

s∈K
|ζ(s+ ikh; a)− f(s)| < ε

}
= mH

{
ω ∈ Ω : sup

s∈K
|ζ(s, ω; a)− f(s)| < ε

}
> 0

exists for all but at most countably many ε > 0.

Proof of Theorem 2 easily follows from a discrete limit theorem (Theorem 3
of [4]) by using the equivalent of weak convergence of probability measures in
terms of continuity sets.

4 Approximation in the mean

Theorem 1 will be derived from Theorem 2. For this, we need a certain ap-
proximation result of ζuN (s; a) by ζ(s; a).

Lemma 1. Suppose that uN → ∞, uN � N2 logAN with every A > 0 as
N →∞. Then, for every compact set K ⊂ D and h > 0,

lim
N→∞

1

N + 1

N∑
k=0

sup
s∈K
|ζ(s+ ikh; a)− ζuN (s+ ikh; a)| = 0.

Proof. Let 1/2 < σ < 1 be fixed and T →∞. Then it is well known that∫ T

−T
|ζ(σ + it, α)|2 dt�σ,α T,

∫ T

−T
|ζ ′(σ + it, α)|2 dt�σ,α T.

From these estimates and (1.1), we have∫ T

−T
|ζ(σ + it; a)|2 dt�σ,a T,

∫ T

−T
|ζ ′(σ + it; a)|2 dt�σ,a T.

Math. Model. Anal., 27(1):78–87, 2022.
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Hence, for τ ∈ R, ∫ T

0

|ζ(σ + iτ + it; a)|2 dt�σ,a T (1 + |τ |),∫ T

0

|ζ ′(σ + iτ + it; a)|2 dt�σ,a T (1 + |τ |).

Now the latter estimates and the application of the Gallagher lemma that
connects discrete and continuous mean squares for some differentiable functions
(Lemma 1.4 of [8]), lead to the bound

N∑
k=0

|ζ(σ + ikh+ iτ ; a)|2 �h

∫ Nh

0

|ζ(σ + iτ + it; a)|2 dt

+

(∫ Nh

0

|ζ(σ + iτ + it; a)|2 dt

∫ Nh

0

|ζ ′(σ + iτ + it; a)|2 dt

)1/2

�σ,a,h N(1 + |τ |). (4.1)

Let K ⊂ D be an arbitrary compact set. Then there exists ε > 0 such that
K lies in the strip {s ∈ C : 1/2 + 2ε 6 σ 6 1 − ε}. For s from that strip, we
have θ1 = σ − 1

2 − ε > 0. Therefore, the representation (2.2) and the residue
theorem give

ζuN (s; a)− ζ(s; a) =
1

2πi

∫ −θ1+i∞
−θ1−i∞

ζ(s+ z; a)luN (z)
dz

z
+
âluN (1− s)

1− s
.

Therefore, for s ∈ K,

|ζ(s+ ikh; a)− ζuN (s+ ikh; a)|

�
∫ ∞
−∞

∣∣∣∣ζ (1

2
+ ε+ ikh+ it+ iτ ; a

)∣∣∣∣ |luN (1/2 + ε− σ + iτ)|
|1/2 + ε− σ + iτ |

dτ

+
|â||luN (1− s− ikh)|
|1− s− ikh|

�
∫ ∞
−∞

∣∣∣∣ζ (1

2
+ ε+ ikh+ iτ ; a

)∣∣∣∣ sup
s∈K

|luN (1/2 + ε− s+ iτ)|
|1/2 + ε− s+ iτ |

dτ

+
|â||luN (1− s− ikh)|
|1− s− ikh|

.

Hence,

1

N + 1

N∑
k=0

|ζ(s+ ikh; a)− ζuN (s+ ikh; a)|

�
∫ ∞
−∞

(
1

N+1

N∑
k=0

∣∣∣∣ζ (1

2
+ε+ikh+iτ ; a

)∣∣∣∣
)

sup
s∈K

|luN (1/2+ε−s+ iτ)|
|1/2 + ε− s+ iτ |

dτ

+ |â| 1

N + 1

N∑
k=0

sup
s∈K

|luN (1− s− ikh)|
|1− s− ikh|

def
= I + Z. (4.2)
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The Cauchy inequality and (4.1) show that

1

N + 1

N∑
k=0

∣∣∣∣ζ (1

2
+ ε+ ikh+ iτ ; a

)∣∣∣∣
6

(
1

N + 1

N∑
k=0

∣∣∣∣ζ (1

2
+ ε+ ikh+ iτ ; a

)∣∣∣∣2
)1/2

�ε,a,h (1 + |τ |)1/2. (4.3)

It is well known that there exists a constant c > 0 such that

Γ (σ + it)� exp{−c|t|} (4.4)

uniformly in σ1 < σ < σ2 for arbitrary σ1 < σ2. Thus, by the definition of
lu(s), for all s ∈ K,

luN (1/2 + ε− s+ iτ)

1/2 + ε− s+ iτ
�θ u

1/2+ε−σ
N

∣∣∣∣Γ (1

θ

(
1

2
+ ε− it+ iτ

))∣∣∣∣
�θ u

−ε
N exp

{
− c
θ
|τ − t|

}
�θ,K u−εN exp

{
− c
θ
|τ |
}
.

This together with (4.3) implies the bound

I �ε,a,h,θ,K u−εN

∫ ∞
−∞

(1 + |τ |)1/2 exp
{
− c
θ
|τ |
}

dτ �ε,a,h,θ,K u−εN . (4.5)

Similarly, using (4.4), we obtain that, for all s ∈ K,

luN (1− σ − it+ ikh)

1− σ − it+ ikh
�θ,K u1−σN exp

{
−ch
θ
k

}
.

Therefore,

Z �θ,K,a
u
1/2−2ε
N

N

N∑
k=0

exp

{
−ch
θ
k

}
�θ,K,a,h u

1/2−2ε
N

logN

N
.

Since uN � N2 logAN , this together with (4.5) and (4.2) proves the lemma.
ut

5 Proof of universality

For the proof of Theorem 1, we will apply the probabilistic approach based on
weak convergence of probability measures and distribution functions. First we
will recall the proof of Theorem 2.

For A ∈ B(H(D)), define

PN,a,h(A) =
1

N + 1
#{0 6 k 6 N : ζ(s+ ikh; a) ∈ A},

and let Pζ,a denote the distribution of the random element ζ(s, ω; a), i. e.,

Pζ,a(A) = mH{ω ∈ Ω : ζ(s, ω; a) ∈ A}.

Math. Model. Anal., 27(1):78–87, 2022.
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Lemma 2. Suppose that the sequence a is multiplicative and the set L(P, h, π)
is linearly independent over Q. Then PN,a,h converges weakly to Pζ,a as N →
∞. Moreover, the support of the measure Pζ,a is the set {g ∈ H(D) : g(s) 6=
0 or g(s) ≡ 0} def= S.

Proof. The first assertion of the lemma is contained in Theorem 3 of [4] with
weight function w(u) ≡ 1. Observe that in [4] the restriction h > 1 in the
definition of the set L(P, h, π) is involved, however, in the case w(u) ≡ 1, the
latter restriction is not needed.

The second assertion of the lemma can be found in [2]. ut

Proof. (Proof of Theorem 2). Since f(s) 6= 0 on K, by the Mergelyan theorem
on the approximation of analytic functions by polynomials [7], there exists a
polynomial p(s) such that

sup
s∈K

∣∣∣f(s)− ep(s)
∣∣∣ < ε

2
. (5.1)

Obviously, ep(s) ∈ S. Therefore, the set

Gε =

{
g ∈ H(D) : sup

s∈K

∣∣∣g(s)− ep(s)
∣∣∣ < ε

2

}
is open and contains an element of the support of the measure Pζ,a. Hence,

Pζ,a(Gε) > 0. (5.2)

Define the open neighbourhood of the function f(s)

Gε =

{
g ∈ H(D) : sup

s∈K
|g(s)− f(s)| < ε

}
.

The boundary ∂Gε of the set Gε is the set{
g ∈ H(D) : sup

s∈K
|g(s)− f(s)| = ε

}
.

Therefore, the boundaries ∂Gε1 and ∂Gε2 do not intersect for different positive
ε1 and ε2. This implies that Pζ,a(∂Gε) = 0 for all but at most countably
many ε > 0, i. e., in other words, the set Gε is a continuity set of the measure
Pζ,a for all but at most countably many ε > 0. Thus, an application of the
first assertion of Lemma 2 together with the equivalent of weak convergence of
probability measures in terms of continuity sets, see, for example, [1], gives

lim
N→∞

PN,a,h(Gε) = Pζ,a(Gε) (5.3)

for all but at most countably many ε > 0. Moreover, in view of (5.1),

sup
s∈K
|g(s)− f(s)| 6 sup

s∈K

∣∣∣g(s)− ep(s)
∣∣∣+ sup

s∈K

∣∣∣f(s)− ep(s)
∣∣∣ < ε
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for g ∈ Gε. This shows that Gε ⊃ Gε. Therefore, by (5.2), we have the
inequality Pζ,a(Gε) > 0. This inequality, the definitions of PN,a,h and Gε, and
(5.3) prove the theorem. ut

We observe that the limit measure Pζ,a is independent of the number h,
and this is conditioned by the linear independence over Q of the set L(P, h, π).
The case of the linear dependence of the set L(P, h, π) is more complicated and
requires a new probability space in place of (Ω,B(Ω),mH). This case will be
considered elsewhere.

Proof. (Proof of Theorem 1). We will deduce Theorem 1 from Theorem 2 by
using Lemma 1 and the weak convergence of distribution functions.

Define the functions

FN,a,h(ε) = PN,a,h(Gε)

=
1

N + 1
#
{

0 6 k 6 N : sup
s∈K
|ζ(s+ ikh; a)− f(s)| < ε

}
,

F̂N,a,h(ε) =
1

N + 1
#
{

0 6 k 6 N : sup
s∈K
|ζuN (s+ ikh; a)− f(s)| < ε

}
,

Fζ,a(ε) = Pζ,a(Gε) = mH

{
ω ∈ Ω : sup

s∈K
|ζ(s, ω; a)− f(s)| < ε

}
.

The functions FN,a,h(ε), F̂N,a,h(ε) and Fζ,a(ε) as functions of the variable ε
are distribution functions. Actually, they are non-decreasing, left continuous,
at +∞ take values 1 and at −∞ take values 0. Moreover, since

∂Gε

=
{
g ∈ H(D) : sup

s∈K
|g(s)− f(s)| 6 ε

}
\
{
g ∈ H(D) : sup

s∈K
|g(s)− f(s)| < ε

}
,

we have

Pζ,a(∂Gε) = mH

{
ω ∈ Ω : sup

s∈K
|ζ(s, ω; a)− f(s)| 6 ε

}
−mH

{
ω ∈ Ω : sup

s∈K
|ζ(s, ω; a)− f(s)| < ε

}
= Fζ,a(ε+ 0)− Fζ,a(ε).

Hence, Fζ,a(ε+ 0) = Fζ,a(ε) if and only if Pζ,a(∂Gε) = 0. Therefore, the point
ε is a continuity point of the distribution function Fζ,a if and only if the set Gε
is a continuity set of the measure Pζ,a. By (5.3), PN,a,h converges weakly to
Pζ,a as N →∞ for all continuity sets Gε of Pζ,a . Thus, by the above remarks,
the distribution function FN,a,h(ε) as N → ∞ converges to the distribution
function Fζ,a(ε) at all its continuity points ε (FN,a,h(ε) converges weakly to
Fζ,a(ε) as N →∞).

Denote by ϕN,a,h(v), ϕ̂N,a,h(v) and ϕζ,a(v), v ∈ R, the characteristic func-

tions of the distribution functions FN,a,h(ε), F̂N,a,h(ε) and Fζ,a(ε), respectively.
Since FN,a,h(ε) converges weakly to Fζ,a(ε) as N →∞, the continuity theorem
for characteristic functions implies the equality

lim
N→∞

ϕN,a,h(v) = ϕζ,a(v) (5.4)

Math. Model. Anal., 27(1):78–87, 2022.
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for all v ∈ R. We have to show that ϕ̂N,a,h(v) also converges to ϕζ,a(v) as
N →∞.

By the definition of characteristic functions,

ϕ̂N,a,h(v)− ϕN,a,h(v) =

∫ ∞
−∞

eivε d
(
F̂N,a,h(ε)− FN,a,h(ε)

)
=

1

N + 1

∞∑
k=0

(
exp

{
iv sup
s∈K
|ζuN (s+ ikh; a)− f(s)|

}
− exp

{
iv sup
s∈K
|ζ(s+ ikh; a)− f(s)|

})
.

Hence,

|ϕ̂N,a,h(v)− ϕN,a,h(v)| 6 1

N + 1

N∑
k=0

∣∣∣∣exp

{
iv

(
sup
s∈K
|ζuN (s+ ikh; a)− f(s)|

− sup
s∈K
|ζ(s+ikh; a)−f(s)|

)}
−1

∣∣∣∣ 6 |v|
N+1

N∑
k=0

∣∣∣∣sup
s∈K
|ζuN (s+ikh; a)−f(s)|

− sup
s∈K
|ζ(s+ikh; a)−f(s)|

∣∣∣∣ 6 |v|
N+1

N∑
k=0

sup
s∈K
|ζuN (s+ikh; a)−ζ(s+ikh; a)| .

Therefore, in view of Lemma 1,

ϕ̂N,a,h(v)− ϕN,a,h(v) = o(1)

as N → ∞ uniformly in |v| 6 C with every ∞ > C > 0. This and (5.4) show
that

lim
N→∞

ϕ̂N,a,h(v) = ϕζ,a(v)

uniformly in |v| 6 C. Therefore, by the continuity theorem, we obtain that
the distribution function F̂N,a,h(ε) converges weakly to Fζ,a(ε) as N → ∞,

or F̂N,a,h(ε) converges weakly to Fζ,a(ε) in all continuity points ε of Fζ,a(ε).
However, the distribution function has at most countably many of discontinuity
points. This and the definitions of F̂N,a,h(ε) and Fζ,a(ε) prove the theorem.
ut
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[2] A. Laurinčikas. Limit Theorems for the Riemann Zeta-Function. Kluwer, Dor-
drecht, 1996. https://doi.org/10.1007/978-94-017-2091-5.

https://doi.org/10.1007/978-94-017-2091-5


Discrete Universality of Absolutely Convergent Dirichlet Series 87
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