

Joint Discrete Approximation of Analytic Functions by Hurwitz Zeta-Functions

Aidas Balčiūnas^{*a*}, Virginija Garbaliauskienė^{*b*}, Violeta Lukšienė^{*a*}, Renata Macaitienė^{*c*} and Audronė Rimkevičienė^{*c*}

^a Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University
Naugarduko g. 24, LT-03225 Vilnius, Lithuania
^b Institute of Regional Development, Šiauliai Academy, Vilnius University
P. Višinskio g. 25, LT-76351 Šiauliai, Lithuania
^c Faculty of Business and Technologies, Šiauliai State College
Aušros al. 40, LT-76241 Šiauliai, Lithuania
E-mail: aidas.balciunas@mif.vu.lt
E-mail: virginija.garbaliauskiene@sa.vu.lt
E-mail: violeta.franckevic@mif.vu.lt

E-mail: a.rimkeviciene@svako.lt

Received June 7, 2021; revised December 8, 2021; accepted December 8, 2021

Abstract. Let H(D) be the space of analytic functions on the strip $D = \{\sigma + it \in \mathbb{C} : 1/2 < \sigma < 1\}$. In this paper, it is proved that there exists a closed non-empty set $F_{\alpha_1,\ldots,\alpha_r} \subset H(D)$ such that every collection of the functions $(f_1,\ldots,f_r) \in F_{\alpha_1,\ldots,\alpha_r}$ is approximated by discrete shifts $(\zeta(s+ikh_1,\alpha_1),\ldots,\zeta(s+ikh_r,\alpha_r)), h_j > 0, j = 1,\ldots,r, k \in \mathbb{N} \cup \{0\}$, of Hurwitz zeta-functions with arbitrary parameters α_1,\ldots,α_r .

Keywords: Hurwitz zeta-function, space of analytic functions, weak convergence, universality.

AMS Subject Classification: 11M35.

Copyright © 2022 The Author(s). Published by Vilnius Gediminas Technical University This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

1 Introduction

Let $s = \sigma + it$ be a complex variable, and α , $0 < \alpha \leq 1$, be a fixed parameter. The Hurwitz zeta-function $\zeta(s, \alpha)$ is defined, for $\sigma > 1$, by the Dirichlet series

$$\zeta(s,\alpha) = \sum_{m=0}^{\infty} \frac{1}{(m+\alpha)^s},$$

and can be continued analytically to the whole complex plane, except for a simple pole at the point s = 1 with residue 1. For $\alpha = 1$, the function $\zeta(s, \alpha)$ becomes the Riemann zeta-function $\zeta(s)$, and, for $\alpha = \frac{1}{2}$, $\zeta(s, \frac{1}{2}) = (2^s - 1)\zeta(s)$. Further, the function $\zeta(s, \alpha)$, $\alpha \neq 1$; $\frac{1}{2}$, has no Euler's product, and this is reflected in its value distribution.

Suppose that $\mathfrak{a} = \{a_m : m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}\}\$ be a periodic sequence of complex numbers. A generalization of the function $\zeta(s, \alpha)$ is the periodic Hurwitz zeta-function

$$\zeta(s,\alpha;\mathfrak{a})=\sum_{m=0}^{\infty}\frac{a_m}{(m+\alpha)^s},\quad \sigma>1,$$

which also has the meromorphic continuation to the whole complex plane.

Analytic properties of the functions $\zeta(s, \alpha)$ and $\zeta(s, \alpha; \mathfrak{a})$, including the approximation of analytic functions, depend on the arithmetic nature of the parameter α . Let $D = \{s \in \mathbb{C} : 1/2 < \sigma < 1\}$. Denote by H(D) the space of analytic functions on D endowed with the topology of uniform convergence on compacta. Approximation of all functions of the space H(D) by shifts $\zeta(s + i\tau, \alpha)$ and $\zeta(s + i\tau, \alpha; \mathfrak{a}), \tau \in \mathbb{R}$, is called universality of the functions $\zeta(s, \alpha)$ and $\zeta(s, \alpha; \mathfrak{a})$, respectively. More precisely, the following results are known.

Denote by \mathcal{K} the class of compact subsets of the strip D with connected complements, and by H(K) with $K \in \mathcal{K}$ the class of continuous functions on K that are analytic in the interior of K. Let meas A stand for the Lebesgue measure of a measurable set $A \subset \mathbb{R}$. Suppose that the number α is transcendental or rational $\neq 1$ or 1/2, and $K \in \mathcal{K}$, $f(s) \in H(K)$. Then, for every $\varepsilon > 0$,

$$\liminf_{T \to \infty} \frac{1}{T} \max\left\{ \tau \in [0, T] : \sup_{s \in K} |\zeta(s + i\tau, \alpha) - f(s)| < \varepsilon \right\} > 0.$$
(1.1)

Different proofs of the latter inequality are given in [1, 10, 36] and [28].

The above theorem is of continuous type. Also, a similar result of discrete type is known. Denote by #A the cardinality of a set A, and let N run over the set \mathbb{N}_0 . For α rational $\neq 1$ or 1/2, let h > 0 be arbitrary, while, for transcendental α , let h be such that $\exp\{(2\pi l)/h\}$ is irrational for all $l \in \mathbb{N}$. Let K and f(s) be as above, then, for every $\varepsilon > 0$,

$$\liminf_{N \to \infty} \frac{1}{N+1} \# \left\{ 0 \leqslant k \leqslant N : \sup_{s \in K} |\zeta(s+ikh,\alpha) - f(s)| < \varepsilon \right\} > 0.$$

For the proof, see [1, 28, 35].

Universality results for the function $\zeta(s, \alpha)$ also follows from the Mishou theorem on the joint universality of the Riemann and Hurwitz zeta-functions [33] and other results of a such type [5, 6, 7, 18, 20]. More general, shifts $\zeta(s + i\varphi(k), \alpha)$ with a certain function $\varphi(k)$ were used in [19]. The shifts $\zeta(s+ih\gamma_k, \alpha)$, where $0 < \gamma_1 < \gamma_2 < \cdots \leq \gamma_k \leq \gamma_{k+1} \leq \cdots$ is a sequence of imaginary parts of non-trivial zeros of the Riemann zeta-function were applied in [3, 23, 26] and [32]. Analogical universality theorems for the function $\zeta(s, \alpha; \mathfrak{a})$ were proved in [11, 29, 31], and follow from joint universality theorems for periodic zeta-functions (see, for example, [12, 14, 17, 22, 25, 30]).

Universality of the functions $\zeta(s, \alpha)$ and $\zeta(s, \alpha; \mathfrak{a})$ with algebraic irrational parameter α is a very complicated and open problem.

In [13, 15], for universality of $\zeta(s, \alpha)$, the linear independence over the field of rational numbers for the sets

 $\{\log(m+\alpha): m \in \mathbb{N}_0\}$ and $\{(\log(m+\alpha): m \in \mathbb{N}_0), 2\pi/h\}$

was required. This requirement is weaker than the transcendence of α , however, examples of such α are not known. In the joint case, the above sets were generalized [13, 16] by

$$\left\{ \left(\log(m+\alpha_1): m \in \mathbb{N}_0\right), \dots, \left(\log(m+\alpha_1): m \in \mathbb{N}_0\right) \right\}$$

and

 $\{(h_1 \log(m + \alpha_1) : m \in \mathbb{N}_0), \dots, (h_r \log(m + \alpha_r) : m \in \mathbb{N}_0), 2\pi\}.$

There are known several results of approximation of analytic functions by shifts of the functions $\zeta(s, \alpha)$ and $\zeta(s, \alpha; \mathfrak{a})$ with algebraic irrational parameter α , however, the set of approximated functions is not identified. The first results of such a kind has been obtained in [2]. Suppose that $0 < \alpha < 1$ is arbitrary. Then there exists a closed non-empty subset $F_{\alpha} \subset H(D)$ such that, for every compact $K \subset D$, $f(s) \in F_{\alpha}$ and $\varepsilon > 0$, inequality (1.1) holds. The analogical statements for the functions $\zeta(s, \alpha; \mathfrak{a})$ and the Lerch zeta-function are given in [9] and [21], respectively. Generalizations of [2] for the Mishou theorem were obtained in [24]. In [8], the following joint approximation theorem for Hurwitz zeta-functions has been proved.

Theorem 1. Suppose that the numbers $0 < \alpha_j < 1$, $\alpha_j \neq 1/2$, $j = 1, \ldots, r$, are arbitrary. Then there exists a closed non-empty set $F_{\alpha_1,\ldots,\alpha_r} \subset H^r(D)$ such that, for every compact sets $K_1,\ldots,K_r \subset D$, $(f_1,\ldots,f_r) \in F_{\alpha_1,\ldots,\alpha_r}$ and $\varepsilon > 0$,

$$\liminf_{T \to \infty} \frac{1}{T} \max\left\{ \tau \in [0, T] : \sup_{1 \le j \le r} \sup_{s \in K_j} |\zeta(s + i\tau, \alpha_j) - f_j(s)| < \varepsilon \right\} > 0.$$

Moreover, the limit

$$\lim_{T \to \infty} \frac{1}{T} \operatorname{meas}\left\{\tau \in [0, T] : \sup_{1 \le j \le r} \sup_{s \in K_j} |\zeta(s + i\tau, \alpha_j) - f_j(s)| < \varepsilon\right\} > 0$$

exists for all but at most countably many $\varepsilon > 0$.

The aim of this paper is a discrete version of Theorem 1. For brevity, let $\underline{\alpha} = (\alpha_1, \ldots, \alpha_r)$ and $\underline{h} = (h_1, \ldots, h_r)$.

Theorem 2. Suppose that the numbers $0 < \alpha_j < 1$, $\alpha_j \neq 1/2$ and positive numbers h_j , j = 1, ..., r, are arbitrary. Then there exists a closed nonempty set $F_{\underline{\alpha},\underline{h}} \subset H^r(D)$ such that, for every compact sets $K_1, ..., K_r \subset D$, $(f_1, ..., f_r) \in F_{\underline{\alpha},\underline{h}}$ and $\varepsilon > 0$,

$$\liminf_{N \to \infty} \frac{1}{N+1} \# \left\{ 0 \leqslant k \leqslant N : \sup_{1 \leqslant j \leqslant r} \sup_{s \in K_j} |\zeta(s+ikh_j, \alpha_j) - f_j(s)| < \varepsilon \right\} > 0.$$

Moreover, "lim inf" can be replaced by "lim" for all but at most countably many $\varepsilon > 0$.

It will be proved that the set $F_{\underline{\alpha},\underline{h}}$ is the support of a certain $H^r(D)$ -valued random element.

2 Probabilistic results

Denote by $\mathcal{B}(\mathbb{X})$ the Borel σ -field of the space \mathbb{X} , and, for $A \in \mathcal{B}(H^r(D))$, define

$$P_{N,\underline{\alpha},\underline{h}}(A) = \frac{1}{N+1} \# \left\{ 0 \leqslant k \leqslant N : \underline{\zeta}(s+ik\underline{h},\underline{\alpha}) \in A \right\},\$$

where

$$\underline{\zeta}(s+ik\underline{h},\underline{\alpha}) = \left(\zeta(s+ikh_1,\alpha_1),\ldots,\zeta(s+ikh_r,\alpha_r)\right).$$

In this section, we deal with weak convergence of $P_{N,\alpha,h}$ as $N \to \infty$.

We start with definition of one probability space. Define

$$\varOmega = \prod_{m \in \mathbb{N}_0} \gamma_m$$

where $\gamma_m = \{s \in \mathbb{C} : |s| = 1\}$ for all $m \in \mathbb{N}_0$. By the Tikhonov theorem, with the product topology and pointwise multiplication, the torus Ω is a compact topological Abelian group. Therefore, $\Omega^r = \Omega_1 \times \cdots \times \Omega_r$, where $\Omega_j = \Omega$ for all $j = 1, \ldots, r$, again is a compact topological Abelian group. Thus, on $(\Omega^r, \mathcal{B}(\Omega^r))$, the probability Haar measure m_H can be defined, and we have the probability space $(\Omega^r, \mathcal{B}(\Omega^r), m_H)$. Denote by $\omega_j(m)$ the *m*th component of an element $\omega_j \in \Omega_j, j = 1, \ldots, r, m \in \mathbb{N}$. Characters of the group Ω^r are of the form

$$\prod_{j=1}^{r} \prod_{m \in \mathbb{N}_0}^{*} \omega_j^{k_{jm}}(m),$$

where the sign "*" shows that only a finite number of integers k_{jm} are distinct from zero. Therefore, putting $\underline{k} = \{k_{jm} : k_{jm} \in \mathbb{Z}, m \in \mathbb{N}_0\}, j =, \ldots, r$, we have that the Fourier transform $g(\underline{k}_1, \ldots, \underline{k}_r)$ of a probability measure μ on $(\Omega^r, \mathcal{B}(\Omega^r))$ is given by

$$g(\underline{k}_1, \dots, \underline{k}_r) = \int_{\Omega^r} \left(\prod_{j=1}^r \prod_{m \in \mathbb{N}_0}^* \omega_j^{k_{jm}}(m) \right) \, \mathrm{d}\mu.$$
(2.1)

Define two collections

$$A(\underline{\alpha},\underline{h}) = \left\{ (\underline{k}_1, \dots, \underline{k}_r) : \exp\left\{ -i\sum_{j=1}^r h_j \sum_{m \in \mathbb{N}_0}^r k_{jm} \log(m+\alpha_j) \right\} = 1 \right\},\$$
$$B(\underline{\alpha},\underline{h}) = \left\{ (\underline{k}_1, \dots, \underline{k}_r) : \exp\left\{ -i\sum_{j=1}^r h_j \sum_{m \in \mathbb{N}_0}^r k_{jm} \log(m+\alpha_j) \right\} \neq 1 \right\}.$$

Let $Q_{\underline{\alpha},\underline{h}}$ be the probability measure on $(\Omega^r, \mathcal{B}(\Omega^r))$ having the Fourier transform

$$g_{\underline{\alpha},\underline{h}}(\underline{k}_1,\ldots,\underline{k}_r) = \begin{cases} 1 & \text{if } (\underline{k}_1,\ldots,\underline{k}_r) \in A(\underline{\alpha},\underline{h}), \\ 0 & \text{if } (\underline{k}_1,\ldots,\underline{k}_r) \in B(\underline{\alpha},\underline{h}). \end{cases}$$

For $A \in \mathcal{B}(\Omega^r)$, define

$$Q_{N,\underline{\alpha},\underline{h}}(A) = \frac{1}{N+1} \# \left\{ 0 \leqslant k \leqslant N : \left(\left((m+\alpha_1)^{-ikh_1} : m \in \mathbb{N}_0 \right), \ldots, ((m+\alpha_r)^{-ikh_r} : m \in \mathbb{N}_0 \right) \right) \in A \right\}.$$

Lemma 1. $Q_{N,\underline{\alpha},\underline{h}}$ converges weakly to the measure $Q_{\underline{\alpha},\underline{h}}$ as $N \to \infty$.

Proof. In view of (2.1), the Fourier transform $g_{N,\underline{\alpha},\underline{h}}(\underline{k}_1,\ldots,\underline{k}_r)$ of $Q_{N,\underline{\alpha},\underline{h}}$ is given by

$$g_{N,\underline{\alpha},\underline{h}}(\underline{k}_1,\dots,\underline{k}_r)$$

$$= \int_{\Omega^r} \left(\prod_{j=1}^r \prod_{m\in\mathbb{N}_0}^* \omega_j^{k_{jm}}(m) \right) \mathrm{d}Q_{N,\underline{\alpha},\underline{h}} = \frac{1}{N+1} \sum_{k=0}^N \prod_{j=1}^r \prod_{m\in\mathbb{N}_0}^* (m+\alpha_j)^{-ikh_jk_{jm}}$$

$$= \frac{1}{N+1} \sum_{k=0}^N \exp\left\{ -ik \sum_{j=1}^r h_j \sum_{m\in\mathbb{N}_0}^* k_{jm} \log(m+\alpha_j) \right\}.$$

Thus, $g_{N,\underline{\alpha},\underline{h}}(\underline{k}_1,\ldots,\underline{k}_r) = 1$ for $(\underline{k}_1,\ldots,\underline{k}_r) \in A(\underline{\alpha},\underline{h})$. If $(\underline{k}_1,\ldots,\underline{k}_r) \in B(\underline{\alpha},\underline{h})$, then by the sum formula of geometric progression, we have

$$g_{N,\underline{\alpha},\underline{h}}(\underline{k}_1,\ldots,\underline{k}_r) = \frac{1 - \exp\left\{-i(N+1)\sum_{j=1}^r h_j \sum_{m\in\mathbb{N}_0}^* k_{jm}\log(m+\alpha_j)\right\}}{(N+1)\left(1 - \exp\left\{-i\sum_{j=1}^r h_j \sum_{m\in\mathbb{N}_0}^* k_{jm}\log(m+\alpha_j)\right\}\right)}.$$

Therefore,

$$\lim_{N \to \infty} g_{N,\underline{\alpha},\underline{h}}(\underline{k}_1, \dots, \underline{k}_r) = \begin{cases} 1 & \text{if } (\underline{k}_1, \dots, \underline{k}_r) \in A(\underline{\alpha}, \underline{h}), \\ 0 & \text{if } (\underline{k}_1, \dots, \underline{k}_r) \in B(\underline{\alpha}, \underline{h}), \end{cases}$$

This together with a continuity theorem for probability measures on compact groups proves the lemma. $\hfill\square$

Now, let $\theta > 1/2$ be a fixed number, and, for $m \in \mathbb{N}_0$, $n \in \mathbb{N}$,

$$v_n(m, \alpha_j) = \exp\left\{-\left(\frac{m+\alpha_j}{n+\alpha_j}\right)^{\theta}\right\}, \quad j = 1, \dots, r.$$

Define $\underline{\zeta}_n(s,\underline{\alpha}) = (\zeta_n(s,\alpha_1), \ldots, \zeta_n(s,\alpha_r))$, where

$$\zeta_n(s,\alpha_j) = \sum_{m=0}^{\infty} \frac{v_n(m,\alpha_j)}{(m+\alpha_j)^s}, \quad j = 1, \dots, r.$$

In view of the definition $v_n(m, \alpha_j)$, the latter Dirichlet series are absolutely convergent for $\sigma > 1/2$. For $A \in \mathcal{B}(H^r(D))$, define

$$V_{N,n,\underline{\alpha},\underline{h}}(A) = \frac{1}{N+1} \# \left\{ 0 \leqslant k \leqslant N : \underline{\zeta}_n(s+ik\underline{h},\underline{\alpha}) \in A \right\}.$$

To obtain the weak convergence for $V_{N,n,\underline{\alpha},\underline{h}}$ as $N \to \infty$, introduce the mapping $u_{n,\underline{\alpha}} : \Omega^r \to H^r(D)$ given by

$$u_{n,\underline{\alpha}}(\omega) = \underline{\zeta}_n(s,\underline{\alpha},\omega), \quad \omega = (\omega_1,\ldots,\omega_r) \in \Omega^r,$$

where $\underline{\zeta}_n(s,\underline{\alpha},\omega) = (\zeta_n(s,\alpha_1,\omega_1),\ldots,\zeta_n(s,\alpha_r,\omega_r))$ with

$$\zeta_n(s,\alpha_j,\omega_j) = \sum_{m=0}^{\infty} \frac{\omega_j(m)v_n(m,\alpha_j)}{(m+\alpha_j)^s}, \quad j = 1,\dots, r$$

Obviously, the latter series also are absolutely convergent for $\sigma > 1/2$. Therefore, the mapping u_n is continuous, hence, it is $(\mathcal{B}(\Omega^r), \mathcal{B}(H^r(D)))$ -measurable. Thus, the measure $Q_{\underline{\alpha},\underline{h}}$ defines the unique probability measure $V_{\underline{\alpha},\underline{h}}$ on $(H^r(D), \mathcal{B}(H^r(D)))$ by the formula

$$V_{\underline{\alpha},\underline{h}}(A) = Q_{\underline{\alpha},\underline{h}}(u_{n,\underline{\alpha}}^{-1}A), \quad A \in \mathcal{B}(H^r(D)).$$

Moreover, the definitions of $V_{N,n,\alpha,h}$ and $Q_{N,\alpha,h}$ imply the equality

$$V_{N,n,\underline{\alpha},\underline{h}}(A) = Q_{N,\underline{\alpha},\underline{h}}(u_{n,\alpha}^{-1}A), \quad A \in \mathcal{B}(H^r(D)).$$

All these remarks together with Lemma 1 and the property of preservation of weak convergence under continuous mappings lead to the following limit lemma.

Lemma 2. $V_{N,n,\alpha,h}$ converges weakly to $V_{n,\alpha,h}$ as $N \to \infty$.

To obtain a limit theorem for $P_{N,\underline{\alpha},\underline{h}}$, we need the estimation a distance between $\underline{\zeta}_n(s,\underline{\alpha})$ and $\underline{\zeta}(s,\underline{\alpha})$. Let $g_1,g_2 \in H(D)$. Recall that

$$\rho(g_1, g_2) = \sum_{l=1}^{\infty} 2^{-l} \frac{\sup_{s \in K_l} |g_1(s) - g_2(s)|}{1 + \sup_{s \in K_l} |g_1(s) - g_2(s)|},$$

where $\{K_l : l \in \mathbb{N}\}$ is a certain sequence of compact subsets of the strip D, is a metric on H(D) inducing its topology of uniform convergence on compacta. Let $\underline{g}_1 = (g_{11}, \ldots, g_{1r}), \underline{g}_2 = (g_{21}, \ldots, g_{2r}) \in H^r(D)$. Then

$$\underline{\rho}(\underline{g}_1, \underline{g}_2) = \max_{1 \leq j \leq r} \rho(g_{1j}, g_{2j})$$

is a metric on $H^r(D)$ that induces the product topology.

Let θ be the same parameter as in definition of $v_n(m, \alpha_i)$, and

$$l_n(s,\alpha) = \frac{s}{\theta} \Gamma\left(\frac{s}{\theta}\right) (n+\alpha)^{-s},$$

where $\Gamma(s)$ is the Euler gamma-function. Then the following integral representation is known [28].

Lemma 3. For $s \in D$,

$$\zeta(s,\alpha) = \frac{1}{2\pi i} \int_{\theta-i\infty}^{\theta+i\infty} \zeta(s+z,\alpha) l_n(z,\alpha) \frac{\mathrm{d}z}{z}$$

We will use some mean square results of discrete type. For the proof of them, the next lemma connecting the continuous and discrete mean squares is useful.

Lemma 4. Suppose that $T, T_0 \ge \delta > 0$ are real numbers, $\mathcal{T} \ne \emptyset$ is a finite set lying in the interval $[T_0 + \delta/2, T_0 + T - \delta/2]$, and

$$N_{\delta}(x) = \sum_{t \in \mathcal{T}, |t-x| < \delta} 1.$$

Let S(x) be a complex valued function continuous in $[T_0, T_0 + T]$ and have a continuous derivative in $(T_0, T_0 + T)$. Then

$$\sum_{t \in \mathcal{T}} N_{\delta}^{-1}(t) |S(t)|^2 \leq \frac{1}{\delta} \int_{T_0}^{T_0 + T} |S(x)|^2 \, \mathrm{d}x + \left(\int_{T_0}^{T_0 + T} |S(x)|^2 \, \mathrm{d}x \int_{T_0}^{T_0 + T} |S'(x)|^2 \, \mathrm{d}x \right)^{1/2}.$$

The lemma is called the Gallagher lemma, its proof is given in [34, Lemma 1.4].

Lemma 5. Suppose that $0 < \alpha \leq 1$, $1/2 < \sigma < 1$ and h > 0 are fixed numbers. Then, for every $t \in \mathbb{R}$,

$$\sum_{k=0}^{N} |\zeta(\sigma + ikh + it, \alpha)|^2 \ll_{\alpha,\sigma,h} N(1+|t|).$$

Proof. It is well known that

$$\int_0^T |\zeta(\sigma + it, \alpha)|^2 \ll_{\alpha, \sigma} T, \quad \int_0^T |\zeta'(\sigma + it, \alpha)|^2 \ll_{\alpha, \sigma} T.$$

Therefore, an application of Lemma 4 with $\delta = h$ gives the estimate of the lemma. \Box

The next lemma is very important for the proof of weak convergence for $P_{N,\underline{\alpha},\underline{h}}$.

Lemma 6. For arbitrary $0 < \alpha_j \leq 1$ and $h_j > 0$, $j = 1, \ldots, r$,

$$\lim_{n \to \infty} \limsup_{N \to \infty} \frac{1}{N+1} \sum_{k=0}^{N} \underline{\rho} \left(\underline{\zeta}(s+ik\underline{h},\underline{\alpha}), \underline{\zeta}_{n}(s+ik\underline{h},\underline{\alpha}) \right) = 0.$$

Proof. The definition of the metric $\underline{\rho}$ implies that it suffices to show the equality

$$\lim_{n \to \infty} \limsup_{N \to \infty} \frac{1}{N+1} \sum_{k=0}^{N} \rho\left(\zeta(s+ikh,\alpha), \zeta_n(s+ikh,\alpha)\right) = 0$$

for arbitrary $0 < \alpha \leq 1$ and h > 0. On the other hand, the latter equality is implied by

$$\lim_{n \to \infty} \limsup_{N \to \infty} \frac{1}{N+1} \sum_{k=0}^{N} \sup_{s \in K} |\zeta(s+ikh,\alpha) - \zeta_n(s+ikh,\alpha)| = 0$$

for every compact subset $K \subset D$.

Thus, let $K \subset D$ be an arbitrary compact set. There exists $\varepsilon > 0$ such that all points of the set K lie in the strip $\{s \in \mathbb{C} : 1/2 + 2\varepsilon \leq \sigma \leq 1 - \varepsilon\}$. Let $s = \sigma + it \in K$, and $\theta_1 = \sigma - 1/2 - \varepsilon > 0$. Then, in view of Lemma 3 and the residue theorem,

$$\zeta_n(s,\alpha) - \zeta(s,\alpha) = \frac{1}{2\pi i} \int_{-\theta_1 - i\infty}^{-\theta_1 + i\infty} \zeta(s+z,\alpha) l_n(z,\alpha) \frac{\mathrm{d}z}{z} + R_n(s,\alpha),$$

where

$$R_n(s,\alpha) = \operatorname{Res}_{z=1} \zeta(s+z,\alpha) l_n(z,\alpha) \frac{1}{z} = \frac{l_n(1-s,\alpha)}{1-s}$$

Hence, for $s \in K$,

$$\begin{aligned} \zeta_n(s+ikh,\alpha) &- \zeta(s+ikh,\alpha) \ll \sup_{s \in K} |R_n(s+ikh,\alpha)| \\ &+ \int_{-\infty}^{\infty} |\zeta(1/2+\varepsilon+ikh+i\tau,\alpha)| \sup_{s \in K} \left| \frac{l_n(1/2+\varepsilon-s+i\tau,\alpha)}{1/2+\varepsilon-s+i\tau} \right| \, \mathrm{d}\tau. \end{aligned}$$

Therefore,

$$\frac{1}{N+1} \sum_{k=0}^{N} \sup_{s \in K} |\zeta(s+ikh,\alpha) - \zeta_n(s+ikh,\alpha)| \ll I_1 + I_2,$$
(2.2)

where

$$I_1 = \int_{-\infty}^{\infty} \left(\frac{1}{N+1} \sum_{k=0}^{N} \left| \zeta \left(\frac{1}{2} + \varepsilon + ikh + i\tau, \alpha \right) \right| \right) \sup_{s \in K} \left| \frac{l_n(1/2 + \varepsilon - s + i\tau, \alpha)}{1/2 + \varepsilon - s + i\tau} \right| \, \mathrm{d}\tau$$

and

$$I_2 = \frac{1}{N+1} \sum_{k=0}^{N} \sup_{s \in K} |R_n(s+ikh, \alpha)|.$$

The crucial role in the estimation of $l_n(s, \alpha)$ is played by the gamma-function. It is well known that there exists c > 0 such that, uniformly in $\sigma_1 \leq \sigma \leq \sigma_2$,

$$\Gamma(\sigma + it) \ll \exp\{-c|t|\}.$$
(2.3)

This estimate leads, for $\sigma + it \in K$, to

$$\frac{l_n(1/2 + \varepsilon - \sigma - it + i\tau, \alpha)}{1/2 + \varepsilon - \sigma - it + i\tau} \ll \frac{(n+\alpha)^{1/2 + \varepsilon - \sigma}}{\theta} \exp\{-(c/\theta)|\tau - t|\}$$
$$\ll_{\theta, K} (n+\alpha)^{-\varepsilon} \exp\{-(c/\theta)|\tau|\}.$$

Therefore, in view of Lemma 5,

$$I_{1} \ll_{\theta,K} (n+\alpha)^{-\varepsilon} \int_{-\infty}^{\infty} \left(\frac{1}{N} \sum_{k=0}^{N} \left| \zeta(1/2 + \varepsilon + ikh + i\tau, \alpha) \right|^{2} \right)^{1/2} \\ \times \exp\{-(c/\theta)|\tau|\} \, \mathrm{d}\tau \ll_{\theta,K,\varepsilon,h} (n+\alpha)^{-\varepsilon}.$$
(2.4)

By estimate (2.3) again, we find that, for $s \in K$,

$$\frac{l_n(1-s-ikh,\alpha)}{1-s-ikh} \ll_{\theta} (n+\alpha)^{1-\sigma} \exp\{-(s/\theta)|kh-t|\}$$
$$\ll_{\theta,K} (n+\alpha)^{1/2-2\varepsilon} \exp\{-((ch)/\theta)k\}.$$

Therefore,

$$I_2 \ll_{\theta,K} (n+\alpha)^{1/2-2\varepsilon} \frac{1}{N} \sum_{k=0}^N \exp\{-((ch)/\theta)k\} \ll_{\theta,K,h} (n+\alpha)^{1/2-2\varepsilon} \frac{\log N}{N}$$

This, together with (2.4) and (2.2) proves the lemma. \Box

Now, we define the marginal measures of $V_{n,\underline{\alpha},\underline{h}}$. For $A \in \mathcal{B}(\Omega_j), j = 1, \ldots, r$ define

$$Q_{N,\alpha_j,h_j}(A) = \frac{1}{N+1} \# \left\{ 0 \le k \le N : \left((m+\alpha_j)^{-ikh_j} : m \in \mathbb{N}_0 \right) \in A \right\}.$$

Then by Lemma 1 of [27], Q_{N,α_j,h_j} converges weakly to a certain probability measure Q_{α_j,h_j} on $(\Omega_j, \mathcal{B}(\Omega_j))$ as $N \to \infty$, $j = 1, \ldots, r$. Let the mapping $u_{n,\alpha_j}: \Omega_j \to H(D)$ be given by $u_{n,\alpha_j}(\omega_j) = \zeta_n(s,\alpha_j,\omega_j)$. Define

$$V_{n,\alpha_j,h_j}(A) = Q_{\alpha_j,h_j} u_{n,\alpha_j}^{-1}(A) = Q_{\alpha_j,h_j}(u_{n,\alpha_j}^{-1}A), \quad A \in \mathcal{B}(H(D)), \ j = 1, \dots, r.$$

Then in [27, Lemma 4], the following statement has been obtained.

Lemma 7. For all $0 < \alpha_j \leq 1$ and $h_j > 0$, $j = 1, \ldots, r$, the family of probability measures $\{V_{n,\alpha_j,h_j} : n \in \mathbb{N}\}$ is tight, i.e., for every $\varepsilon > 0$, there exists a compact set $K_j = K_j(\varepsilon) \subset H(D)$ such that $V_{n,\alpha_j,h_j}(K_j) > 1 - \varepsilon$ for all $n \in \mathbb{N}$.

We apply Lemma 7 for the family of probability measures $\{V_{n,\underline{\alpha},\underline{h}} : n \in \mathbb{N}\}$.

Lemma 8. The family $\{V_{n,\underline{\alpha},\underline{h}} : n \in \mathbb{N}\}$ is tight.

Proof. Let $\varepsilon > 0$ be an arbitrary number. By Lemma 7, there exist compact sets $K_1, \ldots, K_r \subset H(D)$ such that

$$V_{n,\alpha_j,h_j}(K_j) > 1 - \varepsilon/r \tag{2.5}$$

for all $n \in \mathbb{N}$. Let $K = K_1 \times \cdots \times K_r$. Then K is a compact set in $H^r(D)$. Denoting

$$(H(D) \setminus K_j)_r = (\underbrace{H(D) \times \cdots \times H(D)}_{j-1} \times (H(D) \setminus K_j) \times H(D) \times \cdots \times H(D)),$$

by (2.5), we have

$$V_{n,\underline{\alpha},\underline{h}}(H^{r}(D)\setminus K) = V_{n,\underline{\alpha},\underline{h}}\left(\bigcup_{j=1}^{r}(H(D)\setminus K_{j})\right)_{r} \leq \sum_{j=1}^{r}V_{n,\alpha_{j},h_{j}}(H(D)\setminus K_{j}) \leq \varepsilon$$

for all $n \in \mathbb{N}$. Thus, $V_{n,\underline{\alpha},\underline{h}}(K) \ge 1 - \varepsilon$ for all $n \in \mathbb{N}$. \Box

Now we are in position to prove a limit theorem for $P_{N,\alpha,h}$.

Theorem 3. On $(H^r(D), \mathcal{B}(H^r(D)))$, there exists a probability measure $P_{\underline{\alpha},\underline{h}}$ such that $P_{N,\underline{\alpha},\underline{h}}$ converges weakly to $P_{\underline{\alpha},\underline{h}}$ as $N \to \infty$.

Proof. Let ξ_N be a random variable defined on a certain probability space with measure μ and having the distribution

$$\mu{\xi_N = k} = 1/(N+1), \quad k = 0, 1, \dots, N.$$

On the mentioned probability space, define the $H^{r}(D)$ -valued random elements

$$X_{N,n,\underline{\alpha},\underline{h}} = X_{N,n,\underline{\alpha},\underline{h}}(s) = \zeta_n(s + i\xi_N\underline{h},\underline{\alpha}), \ X_{N,\underline{\alpha},\underline{h}} = X_{N,\underline{\alpha},\underline{h}}(s) = \zeta(s + i\xi_N\underline{h},\underline{\alpha}).$$

Moreover, let $Y_{n,\underline{\alpha},\underline{h}}$ be the $H^r(D)$ -valued random element having the distribution $V_{n,\underline{\alpha},\underline{h}}$. Then, in view of Lemma 2,

$$X_{N,n,\underline{\alpha},\underline{h}} \xrightarrow[N \to \infty]{\mathcal{D}} Y_{n,\underline{\alpha},\underline{h}},$$
 (2.6)

where $\xrightarrow{\mathcal{D}}$ means the convergence in distribution.

By the Prokhorov theorem, see, for example, [4], every tight family of probability measures is relatively compact. Thus, in view of Lemma 8, the family $\{V_{n,\underline{\alpha},\underline{h}}\}$ is relatively compact. Therefore, there exists a subsequence $\{V_{n_l,\underline{\alpha},\underline{h}}\}$ weakly convergent to a certain probability measure $P_{\underline{\alpha},\underline{h}}$ as $l \to \infty$. Hence,

$$Y_{n_l,\underline{\alpha},\underline{h}} \xrightarrow[l \to \infty]{\mathcal{D}} P_{\underline{\alpha},\underline{h}}.$$
(2.7)

Moreover, Lemma 6 implies that, for every $\varepsilon > 0$,

$$\lim_{n \to \infty} \limsup_{N \to \infty} \mu \left\{ \underline{\rho} \left(X_{N,\underline{\alpha},\underline{h}}, X_{N,n,\underline{\alpha},\underline{h}} \right) \ge \varepsilon \right\}$$

$$\leqslant \lim_{n \to \infty} \limsup_{N \to \infty} \frac{1}{\varepsilon(N+1)} \sum_{k=0}^{N} \underline{\rho} \left(\underline{\zeta}(s+ik\underline{h},\underline{\alpha}), \underline{\zeta}_{n}(s+ik\underline{h},\underline{\alpha}) \right) = 0.$$

This, (2.6) and (2.7) together with Theorem 4.2 of [4] show that

$$X_{N,\underline{\alpha},\underline{h}} \xrightarrow[N \to \infty]{\mathcal{D}} P_{\underline{\alpha},\underline{h}}.$$

Since the latter relation is equivalent to weak convergence of $P_{N,\underline{\alpha},\underline{h}}$ to $P_{\underline{\alpha},\underline{h}}$ as $N \to \infty$, the theorem is proved. \Box

3 Proof of approximation

Denote by $F_{\underline{\alpha},\underline{h}}$ the support of the limit measure $P_{\underline{\alpha},\underline{h}}$ in Theorem 3. Thus $F_{\underline{\alpha},\underline{h}} \subset H^r(D)$ is a minimal closed set such that $P_{\underline{\alpha},\underline{h}}(F_{\underline{\alpha},\underline{h}}) = 1$. The set $F_{\underline{\alpha},\underline{h}}$ consists of all elements $g \in H^r(D)$ such that, for every open neighbourhood \overline{G} of g, the equality $P_{\underline{\alpha},\underline{h}}(\overline{G}) > 1$ is satisfied. Obviously, $F_{\underline{\alpha},\underline{h}} \neq \emptyset$.

Proof. (Proof of Theorem 2). 1. Let $(f_1(s), \ldots, f_r(s)) \in F_{\underline{\alpha}, \underline{h}}$. Define the set

$$G_{\varepsilon} = \Big\{ (g_1, \dots, g_r) \in H^r(D) : \sup_{1 \leq j \leq r} \sup_{s \in K_j} |g_j(s) - f_j(s)| < \varepsilon \Big\}.$$

Then G_{ε} is an open neighbourhood of an element of the support of the measure $P_{\underline{\alpha},\underline{h}}$, therefore $P_{\underline{\alpha},\underline{h}}(G_{\varepsilon}) > 0$. Hence, by Theorem 3 and equivalent of weak convergence of probability measures in terms of open sets,

$$\liminf_{N \to \infty} P_{N,\underline{\alpha},\underline{h}}(G_{\varepsilon}) \ge P_{\underline{\alpha},\underline{h}}(G_{\varepsilon}) > 0.$$

This, the definitions of $P_{N,\underline{\alpha},\underline{h}}$ and G_{ε} prove the first assertion of the theorem.

2. The boundary of the set G_{ε} lies in the set

$$\Big\{(g_1,\ldots,g_r)\in H^r(D): \sup_{1\leqslant j\leqslant r}\sup_{s\in K_j}|g_j(s)-f_j(s)|=\varepsilon\Big\}.$$

Therefore, these boundaries do not intersect for different ε . Hence, the set G_{ε} is a continuity set of the measure $P_{\underline{\alpha},\underline{h}}$ for all but at most countably many $\varepsilon > 0$. Therefore, Theorem 3 together with equivalent of weak convergence of probability measures in terms of continuity sets implies that

$$\lim_{N \to \infty} P_{N,\underline{\alpha},\underline{h}}(G_{\varepsilon}) = P_{\underline{\alpha},\underline{h}}(G_{\varepsilon}) > 0$$

for all but at most countably many $\varepsilon > 0$, and the second assertion of the theorem is proved. \Box

References

- B. Bagchi. The Statistical Behaviuor and Universality Properties of the Riemann Zeta-Function and Other Allied Dirichlet Series. PhD Thesis, Indian Statistical Institute, Calcutta, 1981.
- [2] A. Balčiūnas, A. Dubickas and A. Laurinčikas. On the Hurwitz zeta-function with algebraic irrational parameter. *Math. Notes*, **105**(1-2):173–179, 2019. https://doi.org/10.1134/S0001434619010218.
- [3] A. Balčiūnas, V. Garbaliauskienė, J. Karaliūnaitė, R. Macaitienė, J. Petuškinaitė and A. Rimkevičienė. Joint discrete approximation of a pair of analytic functions by periodic zeta-functions. *Math. Modell. Analysis*, 25(1):71–87, 2020. https://doi.org/10.3846/mma.2020.10450.
- [4] P. Billingsley. Convergence of Probability Measures. Willey, New York, 1968.
- [5] E. Buivydas and A. Laurinčikas. A discrete version of the Mishou theorem. Ramanujan J., 38(2):331–347, 2015. https://doi.org/10.1007/s11139-014-9631-2.
- [6] E. Buivydas and A. Laurinčikas. A generalized joint discrete universality theorem for the Riemann and Hurwitz zeta-functions. *Lith. Math. J.*, 55(2):193–206, 2015. https://doi.org/10.1007/s10986-015-9273-0.
- [7] E. Buivydas, A. Laurinčikas, R. Macaitienė and J. Rašytė. Discrete universality theorems for the Hurwitz zeta-function. J. Approx. Th., 183:1–13, 2014. https://doi.org/10.1016/j.jat.2014.03.006.
- [8] V. Franckevič, A. Laurinčikas and D. Šiaučiūnas. On joint value distribution of Hurwitz zeta-functions. *Chebyshevskii Sb.*, 19(3):219–230, 2018.
- [9] V. Franckevič, A. Laurinčikas and D. Šiaučiūnas. On approximation of analytic functions by periodic Hurwitz zeta-functions. *Math. Modell. Analysis*, 24(1):20– 33, 2019. https://doi.org/10.3846/mma.2019.002.
- [10] S.M. Gonek. Analytic Properties of Zeta and L-Functions. PhD Thesis, University of Michigan, 1979.
- [11] A. Javtokas and A. Laurinčikas. Universality of the periodic Hurwitz zeta-function. *Integral Transforms Spec. Funct.*, **17**(10):711–722, 2006. https://doi.org/10.1080/10652460600856484.
- [12] R. Kačinskaitė and A. Laurinčikas. The joint distribution of periodic zeta-functions. *Studia Sci. Math. Hungar.*, 48(2):257–279, 2011. https://doi.org/10.1556/sscmath.48.2011.2.1162.
- [13] A. Laurinčikas. The joint universality of Hurwitz zeta-functions. *Šiauliai Math. Semin.*, 3 (11):169–187, 2008.
- [14] A. Laurinčikas. Joint universality of zeta-functions with periodic coefficients. *Izv. Math.*, 74(3):515–539, 2010. https://doi.org/10.1070/IM2010v074n03ABEH002497.
- [15] A. Laurinčikas. A discrete universality theorem for the Hurwitz zeta-function. J. Number Th., 143:232–247, 2014. https://doi.org/10.1016/j.jnt.2014.04.013.
- [16] A. Laurinčikas. Distribution modulo 1 and universality of the Hurwitz zeta-function. J. Number Th.,167:294-303, 2016.https://doi.org/10.1016/j.jnt.2016.03.013.
- [17] A. Laurinčikas. Universality theorems for zeta-functions with periodic coefficients. *Siber. Math. J.*, **57**(2):330–339, 2016. https://doi.org/10.1134/S0037446616020154.

- [18] A. Laurinčikas. A discrete version of the Mishou theorem. II. Proc. Steklov Inst. Math., 296(1):172–182, 2017. https://doi.org/10.1134/S008154381701014X.
- [19] A. Laurinčikas. On discrete universality of the Hurwitz zeta-function. Results Math., 72(1-2):907–917, 2017. https://doi.org/10.1007/s00025-017-0702-8.
- [20] A. Laurinčikas. Joint value distribution theorems for the Riemann and Hurwitz zeta-functions. *Moscow Math. J.*, 18(2):349–366, 2018. https://doi.org/10.17323/1609-4514-2018-18-2-349-366.
- [21] A. Laurinčikas. "Almost" universality of the Lerch zeta-function. Math. Commun., 24(1):107–118, 2019.
- [22] A. Laurinčikas. Joint discrete universality for periodic zeta-functions. Quaest. Math., 42(5):687–699, 2019. https://doi.org/10.2989/16073606.2018.1481891.
- [23] A. Laurinčikas. Non-trivial zeros of the Riemann zeta-function and joint universality theorems. J. Math. Anal. Appl., 475(1):385–402, 2019. https://doi.org/10.1016/j.jmaa.2019.02.047.
- [24] A. Laurinčikas. On the Mishou theorem with algebraic parameter. Siber. Math. J., 60(6):1075–1082, 2019. https://doi.org/10.1134/S0037446619060144.
- [25] A. Laurinčikas. Joint discrete universality for periodic zeta-functions. II. Quaest. Math., 43(12):1765–1779, 2020. https://doi.org/10.2989/16073606.2019.1654554.
- [26] A. Laurinčikas. Zeros of the Riemann zeta-function in the discrete universality of the Hurwitz zeta-function. *Studia Sci. Math. Hungar.*, 57(2):147–164, 2020. https://doi.org/10.1556/012.2020.57.2.1460.
- [27] A. Laurinčikas. On the Hurwitz zeta-function with algebraic irrational parameter. Proc. Steklov Inst. Math., http://mi.mathnet.ru/tm4165.
- [28] A. Laurinčikas and R. Garunkštis. *The Lerch Zeta-Function*. Kluwer Academic Publishers, Dordrecht, Boston, London, 2002.
- [29] A. Laurinčikas and R. Macaitienė. The discrete universality of the periodic Hurwitz zeta function. *Integral Transforms Spec. Funct.*, **20**(9-10):673–686, 2009. https://doi.org/10.1080/10652460902742788.
- [30] A. Laurinčikas and R. Macaitienė. Joint approximation of analytic functions by shifts of the Riemann and periodic Hurwitz zeta-functions. *Appl. Anal. Discrete Math.*, 12(2):508–527, 2018. https://doi.org/10.2298/AADM170713016L.
- [31] A. Laurinčikas, R. Macaitienė, D. Mochov and D. Šiaučiūnas. Universality of the periodic Hurwitz zeta-function with rational parameter. *Sib. Math. J.*, 59(5):894–900, 2018. https://doi.org/10.1134/S0037446618050130.
- [32] R. Macaitienė and D. Šiaučiūnas. Joint universality of Hurwitz zeta-functions and nontrivial zeros of the Riemann zeta-function. *Lith. Math. J.*, **59**(1):81–95, 2019. https://doi.org/10.1007/s10986-019-09423-2.
- [33] H. Mishou. The joint value distribution of the Rieman zeta-function and Hurwitz zeta-functions. *Lith. Math. J.*, 47(1):32–47, 2007. https://doi.org/10.1007/s10986-007-0003-0.
- [34] H.L. Montgomery. Topics in Multiplicative Number Theory. Lecture Notes Math. Vol. 227, Springer-Verlag, Berlin, 1971. https://doi.org/10.1007/BFb0060851.
- [35] J. Sander and J. Steuding. Joint universality for sums and products of Dirichlet L-functions. Analysis (Munich), 26(3):295–312, 2006. https://doi.org/10.1524/anly.2006.26.99.295.
- [36] S.M. Voronin. Analytic Properties of Generating Function of Arithmetic Objects. Diss. doktor fiz.-matem. nauk, Steklov Math. Inst., Moscow, 1977 (in Russian).