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Abstract. This research aims to solve a comprehensive one-dimensional model of
drug release from cardiovascular stents in which the drug binding is saturable and
reversible. We used the Lagrange collocation method for space dimension and the
modified Euler method for time discretization. The existence and uniqueness of the
solution, are provided. The consistency, stability, and convergence analysis of the pro-
posed scheme are provided, to show that numerical simulations are valid. Numerical
results accurate enough and efficient just by using fewer mesh.
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1 Introduction

Nowadays, one of the common causes of death is cardiovascular disease. The
most common of them is a case of atherosclerosis which, occurs due to the
accumulation of fat in the arterial wall. The early stages of the disease be-
gin with an abnormal accumulation of cells and macrophages containing low-
density lipoprotein (LDL) in the artery wall. The atherosclerotic plaque will
be formed as the disease progress and macrophages increase. This plaque has
a variable thickness as well as a core that consists of macrophages, smooth
muscle cells, and lipids. As the disease progresses, the plaque grows and leads
to narrowing of the lumen and occlusion of the arteries. It reduces blood flow
and, in turn, reduces the level set of oxygen in the heart muscle and may lead
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to a heart attack (due to death of the heart muscle) or stroke (due to tearing
or blockage of blood vessels to the brain).

In the late 1980s and early 1990s, Palms introduced stenting as angioplasty
to the medical community [12]. Stents with various designs and structures have
widely used. Stenting has many advantages, including low-invasive and local
anesthetic. Also, the rest and recovery time are significantly reduced compared
with other methods. Several factors, including the size of the lesion, make it
possible to use different stents, consisting of a metal structure, a polymer, and
a drug-loaded in the polymer.

The first mathematical study was done on drug release stents by Zunino [19].
He considered just the layer of coating stent and the arterial wall as porous
media and ignored the cellular layer, intima, and elastic laminate inside. He
analyzed the dynamic of drug release from drug-eluting stents and focused on
the influence of affective factors in drug-release, such as drug type, polymer
coating, and its characteristics. Zunino et al. [20] outlined a complete overview
of mathematical models and numerical methods used for drug stents and their
interaction with the arterial wall. They provided a thorough study of me-
chanics, fluid dynamics, and drug release from cardiovascular stents through a
mass transfer model coupled with a fluid dynamic model and used the finite
element method to solve it. D’Angelo et al. [4] presented a drug release model
for a drug-eluting stent and solved it using the finite element method in space
and finite difference method in time. Ferreira et al. [6] proposed a 2D model
for drug release from cardiovascular stents and obtained numerical results by
using the implicit-explicit finite element method for spatial discretization and
the Euler method for temporal discretization. Ferreira et al. [5] presented a
3D model for absorbing and releasing drugs in cylindrical matrices coated with
a drug-loaded polymer. Their model contained a system of partial differential
equations with boundary conditions and moving boundary. They proposed a
coupled implicit-explicit method to solve the initial-boundary value problem.
McGinty and Pontrelli [14] provided a comprehensive model for drug release
from drug delivery devices in biological tissues. Their model included material
release, solubility in polymeric coatings along with diffusion, convection, and
biological tissue reaction as well as nonlinear saturation. They used a finite
difference method to solve their model.

In this paper, the one-dimensional McGinty and Pontrelli [14] is solved
using the lagrange collocation method in spatial discretization and the modified
Euler method in time. We intend to use a lagrange collocation method based on
derivative of Chebyshev polynomials using fewer mesh size to solve the problem
in the desired domain at specified times, as well as, the consistency, stability,
and convergence analysis of the proposed scheme. The numerical simulation
exhibits the proficiency of the method.

2 Modeling description

This section concerns a comprehensive one-dimensional McGinty and Pontrelli
model of drug release of cardiovascular stents that expressing absorption and
diffusion of the drug in the polymeric coating stent and arterial wall. In this
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model, there are two situations to deal with the drug: Dissolved drug and
bounded drug. Many researchers (see, for example, [8]) believe that two main
phenomena can occur in the release of solvent into the polymeric coating: The
rate of solvent diffusion and the change in the internal structure of the polymer.
Now, we describe the modeling of drug release in the polymer coating of the
stent and the arterial wall.

2.1 Modeling of drug release in the polymeric matrix

A cardiovascular stent is a metallic scaffold covering a polymeric coating that
contains a loaded drug. It is poached into a narrowed vessel to expand it.
The stenting process is shown diagrammatically in Figure 1, and Figure 2
demonstrates the physical domain of the problem.

Figure 1. A schematic representation of the stenting process inside the blocked
vessel [10].

Figure 2. The geometric configuration of the stent consists of a metallic structure (gray)
coated with a layer of polymeric of thickness lc (orange) containing the drug (black). The

polymeric coating is in contact with the biological tissue of thickness lw (red).

The loaded-drug in the cardiovascular stent requires to dissolve to release
and absorb in the arterial wall. By exposing the polymeric coating in the
vicinity of the biofluid, it becomes wetted, and a dissolution process begins.
The circumstances for drug release is ready now. It is often desirable that
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the drug is hydrophobic because of its poor ability to dissolve and helps to
protect the drug in the arterial wall. The dissolution process depends not
only on the solubility but also on the degree of solubility of the drug in the
biofluid. Considering these two factors, it has an essential effect on the drug
release rate. Multiple approaches have been proposed to model the dissolution
process in which usually the initial concentration of the loaded drug in the
polymer coating, B0, is considered more than its solvability, S; otherwise, the
drug easily is dissolved and diffused. Thus it rarely is divided into two distinct
phases. Here, the encapsulated drug considered a continuous variable, and it
assumed that the biofluid enters into the porous polymeric coating immediately
and becomes wetted it. The dissolution and the release of loaded drug in the
polymeric coating are described by a system of partial differential equations as
follows [14]

∂bc(t, x)

∂t
= −βcbαc (t, x) (S − cc(t, x)) in (−lc, 0), (2.1)

∂cc(t, x)

∂t
= Dc

∂2cc(t, x)

∂x2
+ βcb

α
c (t, x)(S − cc(t, x)) in (−lc, 0), (2.2)

where cc(t, x) and bc(t, x) are the concentrations of the dissolved and undis-
solved drug in the polymeric coating, respectively; Dc is the effective diffu-
sion coefficient of the drug; βc is the dissolution rate which its unit, i.e.,(

1
s.(mol.cm−3)α

)
is dependent on the value of α [14]. The amount of α de-

pends on the geometric composition, chemical properties, coating structure,
and stent design. In the Noyes-Whitney approach, the dissolution rate is con-
sidered proportional to the difference between drug dissolution and dissolved
drug concentration, which led to the linear equation (α = 0) [15]. Hixson and
Crowell [9] made corrections that attempted to account for the variation in the
level of dissolved particles, which led to a nonlinear model of the dissolution
(α = 2

3 ) [14]. The case α = 1, deals with the simplest nonlinear dissolution
model that couples two distinct phases, i.e., free and bonded phases. The case
α = 2

3 , represented by [7]. Model (2.1)–(2.2) is an integrated model of previous
models and is valid when the dissolution is in progress. When the solid drug
was solved (bc = 0), the source sentence in the model becomes zero.

2.2 Drug binding formulation

There are different binding formulations which may be linear or nonlinear,
saturated or unsaturated, and reversible or irreversible, depending on the type
of dissolved drug and cardiovascular stent. The concentration of the binding
drug in the arterial wall, i.e., bw(t, x) is given by [14]

∂bw(t, x)

∂t
= kfcw(t, x)(bmax − bw(t, x))− kbbw(t, x) in (0, lw), (2.3)

where cw(t, x) is the concentration of the dissolved drug in the arterial wall;
kf is the forward rate constant; kb is the backward rate constant; bmax is the
local density of binding sites.

Math. Model. Anal., 27(3):452–470, 2022.
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2.3 Drug transport formulation

The equation for the transfer of the dissolved drug in the arterial wall is given
by

∂cw(t, x)

∂t
=Dw

∂2cw
∂x2

− ν ∂cw(t, x)

∂x
− kfcw(t, x)(bmax − bw(t, x))− kbbw(t, x) in (0, lw),

(2.4)

where Dw denotes the diffusion coefficients of the dissolved drug in the wall
and ν is a convective velocity positive constant.

3 A comprehensive 1D coupled model of drug release

When the diffusion-dissolution formulation of the polymeric coating of the car-
diovascular stent, (2.1)–(2.2), is coupled with the nonlinear binding formulation
and the diffusion-convection formulation in the arterial wall, (2.3)–(2.4), we ar-
rive at a comprehensive coupled model of the drug release in the cardiovascular
stent. The model requires some information about the boundary, initial, and
interface conditions.

3.1 Boundary, initial, and interface conditions

The Robin boundary conditions at x = −lc and x = lw are as follows

−Dc
∂cc(t, x)

∂x
= 0 at x =− lc,

−Dw
∂cw(t, x)

∂x
+ νcw(t, x) = λwcw(t, x) at x =lw,

where λc and λw are the constants to coincides with the observed conditions
experimentally.

The initial conditions are

bc(x, 0) = B0, cc(x, 0) = 0, cw(x, 0) = 0, bw(x, 0) = 0.

As the continuity condition exists in the interface between the polymeric coat-
ing and the arterial wall, the interface condition may consider as

−Dc
∂cc(t, x)

∂x
= −Dw

∂cw(t, x)

∂x
+ νcw(t, x) at x = 0.

Also, there may be a jump on the concentration in the interface, i.e.,

−Dw
∂cw(t, x)

∂x
= P (cc(t, x)− cw(t, x)) at x = 0,

where P (cm/s) is the total mass transfer coefficient. Here, although the equa-
tions are interdependent, we do not combine them, instead, we treat each
domain independently and use the first domain data to obtain the values of
variables in the second domain.
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3.2 Non-dimensionalized drug release model

In the derivation of the new non-dimensionalized equations, the set of variables
of time and space transformed into a new set of variables x̃ = x/lw, t̃ =
Dwt/l

2
w. Here, the parameters of the arterial wall used as the reference data.

All concentrations scaled in the initial amount of B0

b̃c(t, x) =
bc(t, x)

B0
, c̃c(t, x) =

cc(t, x)

B0
,

b̃w(t, x) =
bw(t, x)

B0
, c̃w(t, x) =

cw(t, x)

B0
, b̃max =

bmax
B0

.

By setting the following parameters:

D =
Dc

Dw
, L =

lc
lw
, Dα =

βcB
α−1
0 Sl2w
Dw

, Λc =
λclw
Dw

, Θ =
Plw
Dw

,

D∗w =
kf l

2
wbmax
Dw

, βp =
l2w

kbDw
, Λw =

λwlw
Dw

, P é =
νlw
Dw

,

and employing them into Equation (2.1) leads to

∂bc(t, x)

∂t
= −DαB0b

α
c S
(

1− cc(t, x)

S

)
in (−L, 0). (3.1)

In a similar fashion and using some manipulation on Equations (2.2), (2.3),
and (2.4), the resulting equations read as follows

∂cc(t, x)

∂t
=D

∂2cc(t, x)

∂x2
+DαB0b

α
c S
(

1− cc(t, x)

S

)
in (−L, 0), (3.2)

∂bw(t, x)

∂t
=D∗wB0

[
cw(t, x)(1− bw(t, x)

bmax
)

]
− bw(t, x)

βp
in (0, 1),

∂cw(t, x)

∂t
=
∂2cw(t, x)

∂x2
− P é∂cw(t, x)

∂x

−D∗wB
[
cw(t, x)(1− bw(t, x)

bmax
)

]
+
bw(t, x)

βp
in (0, 1). (3.3)

In the same way as before, non-dimensionalized boundary and interface condi-
tions are derived as

D
∂cc(t, x)

∂x
=0 at x = −L,

∂cw(t, x)

∂x
=Θ(cc(t, x)− cw(t, x)) at x = 0,

−D∂cc(t, x)

∂x
=− ∂cw(t, x)

∂x
+ P écw(t, x) at x = 0,

−∂cw(t, x)

∂x
+ P écw(t, x) =Λwcw(t, x) at x = 1.

Math. Model. Anal., 27(3):452–470, 2022.
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4 Explicit Lagrange collocation scheme

This section presents the details of the scheme, which contains the Lagrange
collocation and the modified Euler method that is used for the spatial and
temporal discretization, respectively.

4.1 Spatial discretization

The Lagrange collocation method uses a strong formulation of the equation.
In this method, the approximate solution is required to satisfy the differential
equation at a set of discrete points exactly, which called collocation points. The
nodal bases, Lagrange polynomials used to implement the Lagrange collocation
method. Suppose Ω ⊂ R, which divided into N disjoint sub-intervals. The
Gauss-Lobatto points assumed as collocation points. The nodes and weights
of the Gauss-Lobatto quadrature formula relative to the Chebyshev weight
w(x) =

√
1− x2 is given by [3]

w0 = wN =
π

2N
, wk =

π

N
, k = 1, 2, . . . , N − 1,

xj = cos
(πj
N

)
, j = 0, 1, ..., N. (4.1)

For these nodes, (4.1), Lagrange polynomials ψl of degree N can be expressed
as [3]

ψl(x) =
(−1)(l+1)(1− x2)T

′

N (x)

c̄lN2(x− xl)
, l = 0, 1, . . . , N, (4.2)

where T
′

N (x) is a derivative of Chebyshev polynomial, and c̄l is

c̄l =

{
2, l = 0, N,

1, l = 1, . . . , N − 1.

By using the Chebyshev polynomial, each sub-interval of the physical domain
Ω must convert to [−1, 1]. Now, we approximate the concentration functions
using the following expansions:

cNj (t, x) =

N∑
i=0

cji(t)ψi(x), j = c, w, (4.3)

bNj (t, x) =

N∑
i=0

bji(t)ψi(x), j = c, w, (4.4)

where

ψi(xk) = δi,k. (4.5)

The first and second derivatives of cNj (t, x) are

∂cNj (t, x)

∂x
=

N∑
i=0

ci(t)ψ
′

i(x),
∂2cNj (t, x)

∂x2
=

N∑
i=0

ci(t)ψ
′′

i (x). (4.6)
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The closed forms for the first-derivative and second derivative matrices, respec-
tively, are [3]

(DN )jl =



c̄j
c̄l

(−1)j+l

xj − xl
, j 6= l,

−xj/2(1− x2
l ), 1 ≤ j = l ≤ N − 1,

(2N2 + 1)/6, j = l = 0,

−(2N2 + 1)/6, j = l = N,

(4.7)

(D2
N )jl =



(−1)j+l

c̄l

x2
j+xjxl−2

(1−x2
j )(xj−xl)2

1 ≤ j ≤ N − 1, 0 ≤ l ≤ N, j 6= l,

− (N2−1)(1−x2
j )+3

3(1−x2
j )

2 , 1 ≤ j = l ≤ N − 1,

2
3

(−1)l

c̄l

(2N2+1)(1−xl)−6
(1−x2

l )
, j = 0, 1 ≤ l ≤ N,

2
3

(−1)l+N

c̄l

(2N2+1)(1+xl)−6
(1+x2

l )
, j = N, 0 ≤ l ≤ N,

(N4 − 1)/15, j = l = 0, j = l = N.

At ξ0 = −1 (x = −L) by inserting (4.3), (4.4) and (4.6) into (3.1)–(3.2) and
utilizing (4.5), we have the following system of equations:

∂bNc
∂t

(t, ξ0) = −DαB0 (bc0(t))
α
S

(
1− cc0(t)

S

)
,

∂cNc
∂t

(t, ξ0) = DαB0 (bc0(t))
α
S

(
1− cc0(t)

S

)
.

For ξk ∈ (−1, 1) (x ∈ (−L, 0)), k = 1, . . . , N − 1, doing a similar process, we
get

∂bNc
∂t

(t, ξk) = −DαB0 (bck(t))
α
S

(
1− cck(t)

S

)
,

∂cNc
∂t

(t, ξk) = D

N∑
i=0

cci(t)ψ
′′

i (ξk) +DαB0 (bck(t))
α
S

(
1− cck(t)

S

)
.

At ξN = 1 (x = 0), which is the interface boundary, we can write

∂bNc
∂t

(t, ξN ) =−DαB0 (bcN (t))
α
S

(
1− ccN (t)

S

)
, (4.8)

∂cNc
∂t

(t, ξN ) =cwN (t)ψ
′′

N (ξN ) + P é cwN (t)ψ
′

N (ξN )

+DαB0 (bwN (t))
α
S

(
1− cwN (t)

S

)
.

The above collocation equations give rise to the following system of ordinary
differential equations:

dũNc
dt

+ A1c ũ
N
c = f(ũNc ), (4.9)

Math. Model. Anal., 27(3):452–470, 2022.
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where ũNc =
(
bNc (t), cNc (t)

)T
. At the beginning of the arterial wall, i.e., at

ξ0 = 1 (x = 0), we have

∂bNw
∂t

(t, ξ0) = D∗wB0

[
cw0(t)

(
1− bw0

(t)

bmax

)]
− bw0

(t)

βp
,

∂cNw
∂t

(t, 0) = Θ
(
cw0(t)ψ

′

0(ξ0)− cc0(t)ψ
′

0(ξ0)
)
−Θ (cw0(t)− cc0(t))

− P é cw0(t)ψ
′

0(ξ0)−D∗wB
[
cw0(t)

(
1− bw0

(t)

bmax

)]
+
bw0(t)

βp
.

For x ∈ (0, 1), we obtain the following system of equations:

∂bNw
∂t

(t, ξk) = D∗wB0

[
cwk(t)

(
1− bwk(t)

bmax

)]
− bwk(t)

βp
,

∂cNw
∂t

(t, ξk) =

N∑
i=0

cwi(t)ψ
′′

i (ξk)− P é
N∑
i=0

cwi(t)ψ
′

i(ξk)

−D∗wB
[
cwk(t)

(
1− bwk(t)

bmax

)]
+
bwk(t)

βp
, k = 1, . . . , N − 1.

Finally, for ξN = −1 (x = 1), we have

∂bNw
∂t

(t, ξN ) = D∗wB0

[
cwN (t)

(
1− bwN (t)

bmax

)]
− bwN (t)

βp
,

∂cNw
∂t

(t, ξN ) = cwN (t) (Λw − P é)ψ
′

N (ξN )− P é cwN (t) (Λw − P é) (4.10)

−D∗wB
[
cwN (t)

(
1− bwN (t)

bmax

)]
+
bwN (t)

βp
.

In the above equations,we use first and second derivative matrices to compute
ψ
′

and ψ
′′
.

Collocation Equations (4.8)–(4.10) give rise to the following system of or-
dinary differential equations:

dṽNw
dt

+ A2w ṽ
N
w = g(ṽNw ), (4.11)

where ṽNw =
(
bNw (t), cNw (t)

)T
.

4.2 Time discretization

The systems of ODEs resulting from the spatial discretization, (4.9) and (4.11),
have 4N + 4 unknowns cNc , c

N
w , b

N
c , and bNw , which are solved independently

using the modified Euler method over time. In this approach, the computed
solution of the system (4.9), is used as the initial solution for solving the sys-
tem (4.11) at any time.
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5 Existence and uniqueness of the solution

In this section, we show the existence and uniqueness of the solution of Equa-
tion (4.9). We begin by proving the following theorem.

Theorem 1. Suppose that U ⊆ Rn is an open region, A : [−a, a] −→ Rn×n is
a continuous matrix-valued mapping, and g : [−a, a] × U −→ U is a map of
class C1. Then there exists a > 0 such that the following initial value problem
has a unique solution for t0 ∈ [−a, a]{

ẋ = A(t)x+ g(t, x),

x(t0) = x0.
(5.1)

Proof. We assume that J = [−a, a], where a is dependent on the norm of the
matrix A. By integrating the system (5.1) in time, we arrive at

x(t) = x(t0) +

∫ t

t0

A(t)x(t) + g(x, t),

whose every solution is also a solution of the original system (5.1), and vice
versa [1]. Let us X = C0 (J,Rn×n) with a > 0. We know that Rn×n with
sup-norm is a Banach space, so X is a Banach space concerning the following
norm:

‖A‖X = sup{‖A(t)‖ : t ∈ J}.
As we know, g is locally Lipschitz. By defining the mapping T : X → X as

Tx(t) = x(t0) +

∫ t

t0

A(s)x(s) + g(x, s)ds,

we see that

‖(Tx)− (Ty)‖X = sup
t∈J
{‖(Tx(t))− (Ty(t))‖}

≤ sup
t∈J

{∥∥∥∥∫ t

t0

A(s)x(s) + g(x, s) ds−
∫ t

t0

A(s)y(s) + g(y, s)ds

∥∥∥∥}
≤ sup

t∈J

∫ t

t0

‖A(s)x(s) + g(x, s)−A(s)y(s)− g(y, s)ds‖ ds

≤ 2a‖A‖X‖x− y‖X + 2a‖g(x)− g(y)‖X .

Since g is Lipschitz, it follows that there exists a constant M > 0 such that

‖(Tx)− (Ty)‖X ≤ 2a‖A‖X‖x− y‖X + 2aM‖x− y‖X .

Thus the contraction property of the mapping T can be obtained by choosing
a < 1

2(M+‖A‖X) . As a result, T is a contraction mapping that maps A into

itself. Therefore, according to the Banach fixed-point theorem [16], T has a
unique fixed point in A, i.e., T (x(t)) = x(t), so we have

x(t) = x(t0) +

∫ t

t0

A(t)x(t) + g(x, t),

Math. Model. Anal., 27(3):452–470, 2022.
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which is the solution of (5.1). The above argument implies the existence and
uniqueness of the solution of (5.1).

As f(ũNc ) is a Lipschitz function and A1c is a continuous matrix-valued map-
ping, referring to Theorem 1, Equation (4.9) has a unique solution.

The same conclusion can be drawn for Equation (4.11).

6 Consistency, stability and convergence analysis

This section provides the consistency, stability, and convergence analysis of the
scheme.

To check the consistency of the scheme, we assume that XN is a subspace of
PN , where PN is the polynomial of degree at most N . Let us define projection
operator IN : W → XN , where is also an interpolation operator in which
W ⊆ H2(Ω). Let c be the exact solution and cN be the approximate solution.
Then we have

‖c− cN‖L2
w
≤ ‖c− IN (c)‖N + ‖cN − IN (c)‖N ,

where ‖ · ‖N is the discrete norm. Using the equivalence of discrete and contin-
uous norms, one can easily show that the right-hand side of the above equation
tends to zero (see, for example, [3]).

To prove the stability, let us consider the discretized form of Equation (3.3)
at (t, xk), for k = 0, . . . , N as follows(

∂cNw
∂t
− ∂2cNw

∂x2
+ P é

∂cNw
∂x

) ∣∣∣∣
(t,xk)

= D∗wB

[
cNw (1− bNw

bmax
)− bNw

βp

] ∣∣∣∣
(t,xk)

. (6.1)

Multiplying the kth equation of (6.1) by cNw (t, xk)wk and summing over k, gives

1

2

d

dt

N∑
k=0

[
cNw (t, xk)

]2
wk −

N∑
k=0

∂2cNw
∂x2

(t, xk)cNw (t, xk)wk

+P é

N∑
k=0

∂cNw
∂x

(t, xk)cNw (t, xk)wk =
N∑
k=0

f(cNw )cNw (t, xk)wk,

where

f(cNw (t, xk)) = D∗wB

[
cNw (t, xk)(1− bNw (t, xk)

bmax
)− bNw (t, xk)

Bp

]
.

As we know, for Gauss-Lobatto nodes (4.1) the Gaussian quadrature is exact for

all polynomial of degree at most 2N+1. Since
∂2cNw
∂x2 (t, ·)cNw (t, ·) is a polynomial

of degree 2N −2 and
∂cNw
∂x (t, ·)cNw (t, ·) is a polynomial of degree 2N −1, we may

write

1

2

d

dt

N∑
k=0

[
cNw (t, xk)

]2
wk −

∫ 1

−1

∂2cNw
∂x2

(t, x)cNw (t, x)w(x)dx (6.2)

+P é

∫ 1

−1

∂cNw
∂x

(t, x)cNw (t, x)w(x)dx =

N∑
k=0

f(cNw )cNw (t, xk)wk.
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Thanks to the following inequality (see Sect. 7.1.2 in [3])

−
∫ 1

−1

∂2cNw
∂x2

(t, x)cNw (t, x)w(x)dx ≥ 1

4

∫ 1

−1

[
∂cNw
∂x

(t, x)

]2

w(x)dx,

equation (6.2) becomes

1

2

d

dt

N∑
k=0

[
cNw (t, xk)

]2
wk +

1

4

∫ 1

−1

[
∂cNw (t, x)

∂x

]2

w(x)dx

+
P é

2

[
cNw (t, 1)

]2 ≤ N∑
k=0

f(cNw )cNw (t, xk)wk +
P é

2

[
cNw (t,−1)

]2
.

Integrating over the time interval [0, t], we arrive at

N∑
k=0

[
cNw (t, xk)

]2
wk+

1

2

∫ t

0

∫ 1

−1

[
∂cNw
∂x

(s, x)

]2

w(x)dxds+P é

∫ t

0

[
cNw (t, 1)

]2
ds

− P é
∫ t

0

[
cNw (t,−1)

]2
ds ≤ 2

∫ t

0

N∑
k=0

f(cNw )cNw (s, xk)wkds+

N∑
k=0

[
cNc (0, xk)

]2
wk.

Therefore, using the inequality 2xy ≤ x2 + y2 and the fact that the discrete
and continuous norms are equivalent, we have∫ 1

−1

[
cNw (t, x)

]2
w(x)dx+

1

2

∫ t

0

∫ 1

−1

[
∂cNw
∂x

(s, x)

]2

w(x)dxds (6.3)

+ P é

∫ t

0

[
cNw (t, 1)

]2
ds− P é

∫ t

0

[
cNw (t,−1)

]2
ds︸ ︷︷ ︸

T1

≤
∫ t

0

∫ 1

−1

(cNw (s, x))2w(x)dxds︸ ︷︷ ︸
T2

+

∫ t

0

N∑
k=0

(f(cNw ))2w(x)ds︸ ︷︷ ︸
T3

+

N∑
k=0

[
cNw (0, xk)

]2
wk.

Since the influx and outflux of the drug are identical, the term T1 is zero unless
some of it is absorbed, and some of it is wasted due to several factors such as
blood flow and plasma. In this case, T1 > 0 and we can ignore it.

Applying the mean value theorem for the term T2, we get

T2 =

∫ 1

−1

(cNw (η, x))2w(x)dx

∫ t

0

ds, η ∈ (0, t).

Since for every η ∈ (0, t), we have cNw (η, x) ≤ B0, we may write

T2 ≤ TfB2
0

∫ 1

−1

w(x)dx,
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where Tf = max{s : s ∈ (0, t)}.
Since βp > 0 and bNw (t, xk)/bmax > 0, we have

f(cNw (t, xk)) ≤ D∗wB0

[
B0 − bNw (t, xk)/βp

]
.

As a result, we have
f(cNw (t, xk)) ≤ D∗wB0.

Imposing the above inequalities into T3 and doing some manipulation, we ob-
tain

T3 ≤ Tf
∫ 1

−1

D∗wB
2
0w(x)dx,

therefore, inequality (6.3) may be rewritten as∫ 1

−1

[
cNw (t, x)

]2
w(x)dx+

1

2

∫ t

0

∫ 1

−1

[
∂cNw
∂x

(s, x)

]2

w(x)dxds ≤ Tf

×
∫ 1

−1

(cNw (0, x))2w(x)dx+Tf

∫ 1

−1

(f(cNw (Tf , x)))2w(x)dx+

N∑
k=0

[
cNw (0, xk)

]2
wk.

This shows that the scheme (4.9) is stable. Similarly, repeating the above
argument for Equation (3.2) we find that∫ 1

−1

[
cNc (t, x)

]2
w(x)dx+

D

2

∫ t

0

∫ 1

−1

[
∂cNc
∂x

(s, x)

]2

w(x)dxds ≤ Tf

×
∫ 1

−1

(cNc (η, 0))2w(x)dx+Tf

∫ 1

−1

(f(cNc (Tf , x)))2w(x)dx+

N∑
k=0

[
cNc (0, xk)

]2
wk,

which shows that the scheme (4.11) is stable.
Finally, to prove the convergence of the proposed scheme, we assume that

the exact solution is smooth enough and define the interpolation operator IN
by

INcJ =

N∑
k=0

c̃Jkpk, INcJ(xi) = cJ(xi), k = 0, 1, . . . , N, J = c and w,

where c̃Jk is called discrete polynomial coefficient of cJ and

c̃Jk =
1

αk

N∑
j=0

cJ(xj)pk(xj)wj , k = 0, 1, . . . , N,

in which

αk =

N∑
j=0

p2
k(xj)wj .

To get a convergence estimate, we set as usual

e(t, xk) = c̃J(t, xk)− cNJ (t, xk).
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Since for Chebyshev polynomial ∂(INcJ)/∂x 6= IN∂cJ/∂x, it follows that

∂c̃J
∂t

(t, xk)− ∂2c̃J
∂x2

(t, xk) = rJ(t, xk), rJ(t, xk) =
∂2(cJ − c̃J)

∂x2
.

Using the same analysis was discussed in the stability, yields

1

2

d

dt

N∑
k=0

[e(t, xk)]
2
wk +

1

4

∫ 1

−1

[
∂e(t, x)

∂x

]2

w(x)dx

≤
N∑
k=0

rJ(t, xk)e(t, xk)wk ≤
N∑
k=0

[rJ(t, xk)]
2
wk +

N∑
k=0

[e(t, xk)]
2
wk.

For any s on [0, t], we set

φ(s) =

N∑
k=0

[e(s, xk)]
2
wk, g(s) =

N∑
k=0

[rJ(s, xk)]
2
wk.

Thanks to Gronwall lemma [3], it reads

N∑
k=0

[e(s, xk)]
2
wk+

1

2

∫ t

0

∫ 1

−1

[
∂e(z, x)

∂x

]2

w(x)dxdz︸ ︷︷ ︸
T2

≤ exp(s)

∫ t

0

N∑
k=0

[rJ(z, xk)]
2
wkdz.

Since T2 ≥ 0, we get

N∑
k=0

[
c̃J(s, xk)− cNJ (s, xk)

]2
wk ≤ exp(s)

∫ t

0

N∑
k=0

[rJ(z, xk)]
2
wkdz.

According to
N∑
k=0

[rJ(t, xk)]
2
wk =

N∑
k=0

[INrJ(t, xk)]
2
wk

and using equivalence of discrete and continuous norms for L2
w norm, we have

N∑
k=0

[INrJ(t, xk)]
2
wk ≤ 2

∫ 1

−1

[INrJ(t, x)]
2
w(x)dx ≤ 4

(∫ 1

−1

×
[(∂2cJ

∂x2
−IN

∂2cJ
∂x2

)
(t, x)

]2
w(x)dx+

∫ 1

−1

[ ∂2

∂x2

(
cJ−INcJ

)
(t, x)

]2
w(x)dx

)
.

Again, utilizing equivalence of discrete and continuous norms, we get∫ 1

−1

[(∂2cJ
∂x2
−IN

∂2cJ
∂x2

)
(t, x)

]2
w(x)dx ≤

N∑
k=0

[(∂2cJ
∂x2
−IN

∂2cJ
∂x2

)
(t, xk)

]2
wk.
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As ∂2cJ
∂x2 (t, x) = IN

∂2cJ
∂x2 (t, x) holds for collocation nodes, the right-hand side of

the above equation is zero. Now, employing∫ 1

−1

[
∂2

∂x2
(cJ − INcJ) (t, x)

]2

w(x)dx ≤ ‖cJ − INcJ‖2H2
w(−1,1),

we find that

N∑
k=0

[rJ(t, xk)]
2
wk ≤ 4‖cJ − INcJ‖2H2

w(−1,1).

Making use of the following estimation for evaluation of the interpolation error
in all Sobolev norms (see, for example, (5.5.26) [3])

‖cJ − INcJ‖Hlw(−1,1) ≤ CN2l−1−m|cJ |Hm;N
w (−1,1),

leads to

N∑
k=0

[e(s, xk)]
2
wk ≤ 4C2N6−2m exp(s)

(∫ t

0

|cJ(z)|2
Hm;N
w (−1,1)

dz

)
, (6.4)

where C is a constant independent of N and cJ and | · | is a semi-norm defined
as

|cJ(z)|Hm;N
w (−1,1) =

(
N∑
k=0

‖c(k)
J ‖L2

w(−1,1)

) 1
2

.

The inequality (6.4) proves that the presented scheme is convergent.

Table 1. Values of parameters.

Parameters Symbol Value Unit

Determining the geometry [7] α 2
3

−
Diffusion cofficient [13] Dc 1.2 × 10−12 cm2s−1

Thickness of coating [13] lc 10−3 cm

Dissolution rate [14] βc 1 (mol cm−3)−
2
3

Initial concentration in coating [2] B 10−4 mol cm−3

Drug solubility [14] S B
10

−
Mass transfer coefficient [17] P 10−6 cms−1

Velocity [13] ν 5.8 × 10−6 cms−1

Diffusion coefficient in arterial wall [2] Dw 2.5 × 10−6 cm2s−1

Thickness of wall [11] lw 4.5 × 10−2 cm
Association (forward) rate constant [18] kf 2 × 106 (mol cm−3s)−1

Dissolution (backward) rate constant [18] kr 5.2 × 10−3 s−1

Local density of binding sites [18] bmax 3.66 × 10−7 mol cm−3

Conforming to experimental value [2] λw 108 cms−1
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7 Numerical results

To achieve the numerical results, we use uniform meshes in both intervals and
divide the domain of the polymer coating and the arterial wall into N0 and
N1 sub-interval, respectively. To demonstrate the applicability of the proposed
scheme, let us consider N0 = 8, N1 = 32, ∆t = 10−4 and ε = 10−6, stopping
criterion for Euler method, with data taken from Table 1. Figure 3 shows the
behavior of the concentration of the dissolved drug, cc, and the concentration
of the undissolved drug, bc, in the polymeric coating stent up to 10 hours. It

Figure 3. Concentration of the dissolved and undissolved drug in the polymeric coating
stent for T = 10 and ∆t = 10−4.

demonstrates that the concentration of the dissolved drug (solid line) increases
and the concentration of the undissolved drug (dash-dotted line) decreases as
the loaded drug transferred to the dissolved drug during the process.

Figure 4. Concentration of the dissolved and binding drug in the arterial wall for T = 1
and ∆t = 10−4.

Figures 4 and 5 show the behavior of the concentration of the dissolved drug,
cw, and the concentration of the binding drug, bw, in the arterial wall up to 1
and 10 hours, respectively. We observe that both concentrations are increasing
as a function of time since the dissolved drug diffuses into the arterial wall
whereas a number of it binds in the specified sites, which called the binding
drug. Comparisons show a good agreement between the current study and
available literature, while we have used much fewer mesh points.

Math. Model. Anal., 27(3):452–470, 2022.
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Figure 5. Concentration of the dissolved and binding drug in the arterial wall for T = 10
and ∆t = 10−4.

Tables 2 and 3 represent the maximum absolute error, MAE, given by

MAE = max
0≤j≤N

|U2(xj)− U1(xj)|,

for the approximate solutions with the different value of mesh sizes. Here, U2

and U1 stand for the approximate solutions of the function with refinement
mesh and coarse mesh, respectively. These tables report maximum absolute
error for bw and cw with (N0, N1) = (4, 16) and (N0, N1) = (8, 32) in some
specified collocation nodes, to be brief.

Table 2. Maximum absolute error for the dissolved drug (cw) in the arterial wall with
N0 = 4, N1 = 16 and N0 = 8, N1 = 32 in the modified Euler method.

k MAE k MAE k MAE k MAE

1 0.00E+00 65 2.35E-14 129 5.93E-14 193 9.78E-14
2 0.00E+00 66 2.40E-14 130 5.99E-14 194 9.83E-14
3 8.33E-17 67 2.45E-14 131 6.05E-14 195 9.89E-14
4 1.60E-16 68 2.50E-14 132 6.11E-14 196 9.95E-14
5 2.78E-16 69 2.55E-14 133 6.17E-14 197 1.00E-13
6 4.51E-16 70 2.60E-14 134 6.23E-14 198 1.01E-13
...

...
...

...
...

...
...

...

60 2.10E-14 124 5.63E-14 188 9.47E-14 252 1.33E-13
61 2.15E-14 125 5.70E-14 189 9.53E-14 253 1.33E-13
62 2.20E-14 126 5.75E-14 190 9.60E-14 254 1.34E-13
63 2.25E-14 127 5.82E-14 191 9.65E-14 255 1.35E-13
64 2.29E-14 128 5.87E-14 192 9.71E-14 256 1.35E-13

8 Conclusions

The present work considers the Lagrange collocation method in combination
with the modified Euler method to solve a comprehensive one-dimensional
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Table 3. Maximum absolute error for the dissolved drug (bw) in the arterial wall with
N0 = 4, N1 = 16 and N0 = 8, N1 = 32 in the modified Euler method.

k MAE k MAE k MAE k MAE

1 0.00E+00 65 4.45E-14 129 2.36E-13 193 6.01E-13
2 0.00E+00 66 4.63E-14 130 2.40E-13 194 6.09E-13
3 0.00E+00 67 4.81E-14 131 2.45E-13 195 6.16E-13
4 1.39E-17 68 4.99E-14 132 2.49E-13 196 6.23E-13
5 2.78E-17 69 5.17E-14 133 2.54E-13 197 6.30E-13
6 4.16E-17 70 5.36E-14 134 2.58E-13 198 6.38E-13
...

...
...

...
...

...
...

...

60 3.64E-14 124 2.15E-13 188 5.67E-13 252 1.09E-12
61 3.80E-14 125 2.19E-13 189 5.73E-13 253 1.10E-12
62 3.96E-14 126 2.23E-13 190 5.80E-13 254 1.11E-12
63 4.12E-14 127 2.27E-13 191 5.87E-13 255 1.12E-12
64 4.29E-14 128 2.32E-13 192 5.94E-13 256 1.13E-12

model of drug release from cardiovascular stents. In this paper, we have dis-
cretized the problem using nodal bases in the spatial dimension, using the
characteristic Lagrange polynomial ψl of degree N in (4.2) and Gauss-Lobatto
points as spatial discretization nodes. To reduce the effect of round-off errors
resulting from the subtraction of nearly equal quantities, we have used (4.7) to
calculate the nodal base derivative of the proposed spectral method. In the di-
mension of time, to make the method stable, we have used the backward Euler
method. As well as. we proved the existence and uniqueness of the solution
and performed consistency, stability, and convergence analyses of the proposed
scheme. Obtaining numerical results, we observed that the proposed method,
in addition to being stable and convergent, could give acceptable results with
much fewer mesh points.
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