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Abstract. The focus of functional data analysis has been mostly on independent
functional observations. It is therefore hoped that the present contribution will pro-
vide an informative account of a useful approach that merges the ideas of the ergodic
theory and the functional data analysis by using the local linear approach. More
precisely, we aim, in this paper, to estimate the conditional distribution function
(CDF) of a scalar response variable given a random variable taking values in a semi-
metric space. Under the ergodicity assumption, we study the uniform almost complete
convergence (with a rate), as well as the asymptotic normality of the constructed es-
timator. The relevance of the proposed estimator is verified through a simulation
study.
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1 Introduction and motivations

Over the almost last two decades, functional data analysis (FDA) has estab-
lished itself as a dynamic and important field of statistical research. It has
become very broad, with many specialized directions of research. This statistic
area offers effective new tools and has stimulated novel methodological devel-
opments. With the availability of large amounts of data as well as the de-
velopment of the computer instruments, (FDA) swept across various fields of
applied sciences (for instance biometrics, geophysics and econometrics). There
are many nonparametrc problems for functional data which have attracted a
growing interest; one may refer to the famous work of Ferraty and Romain [13],
the monograph of Ferraty and Vieu [14] and the pioneer book of Kokoszka and
Reimherr [16] as well as the references therein.

Despite the simplicity of the classical kernel estimate and its availability
in many statistical software packages, like R and Matlab make that it easy to
understand and implement, its simplicity leads to some weaknesses; the most
obvious of which is boundary bias effect. Moreover, it is well known that among
the smoothing procedures, the local polynomial approach has various advan-
tages over the classical kernel method. In particular, this method has better
properties concerning the bias terms on the other one (cf. Fan and Gijbels [10]
for an extensive discussion). In the context of the finite dimensional space,
the local linear method is well established, frequently used and it has been the
subject of considerable studies, and key references on this topic are Chen et
al. [6], Fan and Yao [11] and references therein. However, before the pioneer
work of Barrientos-Marin et al. [3], only few results are available for the local
linear modeling in the functional statistics setup. Indeed, the first results, in
this direction, were established by Bàıllo and Grané [2]. This paper focuses
on the local linear estimation of the regression operator when the explanatory
variable takes values in a Hilbert space. The general case, where the regres-
sors do not belong to a Hilbert space but to a semi-metric space, has been
considered not only by Barrientos-Marin et al. [3], but also by El Methni and
Rachdi [9], Demongeot et al. [8] and Laksaci et al. [19].

Recently, the paper of Bouanani et al. [4] has completed the theoretical ad-
vances presented by Laksaci et al. [19] by establishing the asymptotic normality
of the local linear estimates for several conditional models.

Weak dependencies have been considered by many authors in the context
of both discrete and continuous-time processes. We consider, in this paper, the
ergodic framework which is more general than the weak dependencies. More
precisely, we examine the local linear estimator’s properties of the (CDF) when
the data of our constructed estimator are ergodic.

In the literature, several real examples have been studied in order to empha-
size the usefulness of such dependency. For instance, the ergodicity assump-
tion models several phenomena in physics like the thermodynamic properties
of gases, atoms or plasma. In a more general way, the ergodic theory becomes
crucial because there are many phenomena which are neither independent nor
α-mixing either. In the past three decades, the study of statistical models
adapted to such kind of dependency has been impressively large but mostly
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restricted to the standard multivariate situation where both the response and
the explanatory variables are real or multivariate (see, Delecroix and Rosa [7]
and Läıb and Ould-Säıd [18]). However, there are very few advances in this
direction when the regressor is functional. One may refer to the work of Laib
and Louani [17]. The authors studied under ergodicity assumption the asymp-
totic properties of an estimator of the regression operator. Related works can
be found in the paper of Laib and Louani [17] when the data are completely
observed and Chaouch et al. [5] for the right censored ones.

As it is mentioned above, the main aim of this paper is to construct and
study under general conditions, the uniform almost complete convergence rate
as well as the asymptotic normality of a local linear estimator of the CDF.
For this purpose, it is assumed that the covariate takes its values in an infinite
dimensional space and the data are sampled from a stationary ergodic process.
Recall that uniform consistency results have been successfully used in the stan-
dard nonparametric setting (see for instance, Ferraty et al. [12], Ling et al. [20]
and Kara-Zaitri et al. [15]). Each of these papers considers the case of the local
constant method. However, in this contribution, we consider a more efficient
estimate of the CDF by the local linear method. To make this paper as much
self-contained as possible, the nonparametric model and its associated local
linear estimator are constructed in Section 2. In the same section, we report
some notations required for this contribution. The assumptions, under which
the main results are valid, are stated and discussed in Section 3. Then, we
derive theoretical results by giving a deep asymptotic study of the behaviour of
the estimate, including the almost complete convergence of the CDF uniformly
in the functional argument x as well as the asymptotic gaussian distribution.
The relevance of the proposed estimator is verified through a simulation study
in Section 4. Finally, the paper is ended with a technical appendix.

2 Local linear estimator construction

Let (Xi, Yi)i=1,...,n be a strictly stationary (in an ergodic sense) process of
F × R-valued random elements, where F is a semi-metric space with semi-
metric d. We assume that there exists a regular version of the conditional
distribution of Y given X, which is absolutely continuous with respect to the
Lebesgue measure on R.

Interest centers on the conditional behavior of Y given X. To this end it is
convenient to consider

F x(y) = P(Yi ≤ y|Xi = x).

Since the local linear approach requires a smoothing assumption that allows
us to approximate locally the nonparametric CDF, we estimate the function
F x(.) by assuming that it is smoothed enough to be locally approximated by a
linear function. For this aim, we introduce two locating functions δ and ρ (see
Barrientos et al. [3] for more discussion on these bilinear continuous operators)

and we consider a subset CF of F such that for xk ∈ CF , CF ⊂
⋃dn
k=1B(xk, rn)

where rn (resp. dn) is a sequence of positive real (resp. integer) numbers and
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B(xk, rn) = {x′k ∈ F/|δ(x′k, xk)| < rn}. Such approximation can be expressed,
for any z ∈ CF in the neighborhood of x by:

F z(y) = α+ βρ(z, x) + o(ρ(z, x)). (2.1)

We assume that the underlying process (Xi, Yi) is functional stationary ergodic.

Then the estimator F̂ x of F x can be seen as the solution of the following
minimization problem

min
(α,β)∈R2

n∑
i=1

(
J

(
y − Yi
hJ

)
− α− βρ(Xi, x)

)2

K

(
δ(x,Xi)

hK

)
, (2.2)

where the bi-functional δ(., .) is lied with the topological structure of the func-
tional space F , that means |δ(x, z)| = d(x, z), whereas, ρ controls the local
sharp of the model (see formula (2.1)). K is a kernel, J is a distribution func-
tion and hK = hK,n (respectively hJ = hJ,n) is a sequence of positive real

numbers. More precisely, the functional local linear estimator F̂ x(y) of F x(y)
is then α̂ which is the first component of the pair (α, β) solution of the mini-
mization problem (2.2). However, if the bi-functional operator ρ is such that

ρ(z, z) = 0,∀z ∈ F , then the quantity F̂ x (y) is explicitly defined by:

F̂ x(y) =

n∑
j=1

Γj(x)K

(
δ(x,Xj)

hK

)
J

(
y − Yj
hJ

)
n∑
j=1

Γj(x)K (δ(x,Xj)/hK)

, (2.3)

with

Γj(x) =

n∑
i=1

ρ2i (x)Ki(x)−

(
n∑
i=1

ρi(x)Ki(x)

)
ρj ,

where ρi(x) = ρ(Xi, x), and Ki(x) = K (δ(x,Xi)/hK) .

3 Main results

3.1 Uniform almost complete convergence

3.1.1 Assumptions and notations

First we need to introduce some further notations. For i = 1, . . . , n, let Fi
and Gi denote, respectively, the σ-field generated by ((X1, Y1), . . . , (Xi, Yi)),
and ((X1, Y1), . . . , (Xi, Yi), Xi+1). For any fixed y in R, Ny denotes a fixed
neighborhood of y. In the sequel, we will also need to define the small ball
probability function by φx(h1, h2) = P(h2 ≤ δ(X,x) ≤ h1) and we will denote
by C and C ′ some strictly positive generic constants. Finally, with some abuse
of notations, we write Jj(y) for J ((y − Yj)/hJ) and we shall write φ instead of
φx.

Our consistency results are summarized in Theorem 1 and rely on the fol-
lowing seven assumptions:

Structural hypotheses:
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On the ergodic functional variables:
We suppose that the strictly stationary ergodic process (Xi, Yi)i∈N∗ sat-
isfies: For all r > 0

(H1) ∀x ∈ CF , 0 < Cφ(r) ≤ P(X ∈ B(x, r)) ≤ C ′φ(r). Furthermore, ∃ η0 >
0,∀η < η0, φ

′(η) < C, where φ′ denotes the first order derivative of φ.

(H2) For all i = 1, . . . , n, there exist a determinist function φi such that:

i) 0 < Cφi(r) < P(Xi ∈ B(x, r)|Fi−1) ≤ C ′φi(r),

ii) 1
nφ(r)

n∑
i=1

φi(r) −→ 1 a.co.

Technical and regularity conditions:

(H3) On the regularity of the model:
There exist some positive constants b1 and b2 such that:
∀(x1, x2) ∈ CF ×B(x1, hK) and ∀(y1, y2) ∈ Ny ×Ny:

|F x1(y1)− F x2(y2)| ≤ C
(
|δ(x1, x2)|b1 + |y1 − y2|b2

)
,

(H4) On the bi-functional operators ρ and δ:

(i) ∀z ∈ F , C|δ (x, z) | ≤ |ρ (x, z) | ≤ C ′|δ (x, z) |,
(ii) ∀(x1, x2) ∈ CF × CF , |ρ (x1, x)− ρ (x2, x) | ≤ C ′|δ(x1, x2)|.

(H5) On the kernel K and the distribution function J :

(i) K is a nonnegative bounded and Lipschitz kernel on its support
[−1; 1].

(ii) J is a differentiable function such that
∫
|t|b2J (1)(t)dt <∞.

(iii) E(Jj(y)|Gj−1) = E(Jj(y)|Xj).

(H6) Taking rn = O (log n/n), the sequence dn satisfies:

(log n)2

nφ(hK)
< log dn <

nφ(hK)

log n
and

∞∑
n=1

d(1−%)n <∞ for some % > 1.

(H7) On the bandwidth hK with respect to ρ and φ :

(i) There is a positive integer n0, such that, ∀n > n0:

− 1

φ(hK)

∫ 1

−1
φ(zhK , hK)

d

dz

(
z2K(z)

)
dz > C,

(ii) lim
n→∞

hK = 0, lim
n→∞

hH = 0, and lim
n→∞

log n

nφ(hK)
= 0,

(iii) hK
∫
B(x,hK )

ρ (u, x) dP (u) = o
(∫

B(x,hK )
ρ2 (u, x) dP (u)

)
, where dP (x)

is the cumulative distribution of X.
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3.1.2 Comments on the hypotheses

(H1) involves the small ball techniques. It is clearly unrestrictive, since it is
the same as that frequently used in the FDA context. We precise that the
ergodic nature of the data is exploited by (H2) which is a very mild condition
in comparison of that imposed by Laib and Louani [17].
Concerning (H3), this condition is necessary to evaluate the bias term in our
asymptotic result. The constants b1 and b2 control the model’s regularity and
the only condition imposed is their positivity. In other words, this assumption
guarantees slower variance of the operator compared to X. More the param-
eters b1 and b2 are small, more the curves of the operator’s evolution as a
function of X are smooth, and less the estimate obtained is biased.

Condition (H4)(i) is unrestrictive condition and it is verified if ρ(., .) = δ(., .)
(in this special case, (H7) (iii) means that the local expectation of ρ is small
enough with respect to its moment of second order); or if

lim
δ(z,x)→0

|ρ(z, x)/δ(z, x)− 1| = 0.

Indeed, ∀z ∈ B(x, hK), we have:∣∣∣∣ρ(z, x)− δ(z, x)

hK

∣∣∣∣ ≤ ∣∣∣∣ρ(z, x)

δ(z, x)
− 1

∣∣∣∣ −→ 0 as δ(z, x)→ 0.

The Lipschitz condition (H4) (ii) on the locating function ρ is the same used by
Barrientos-Marin et al. [3] and it is typical in the context of local polynomial
smoothing.

(H5)(i) could be replaced by another assumption such as the boundness of
the kernel K. The slightly stronger assumption (H5) (i) just makes the proof of
uniform convergence simpler. (H5)(ii) and (iii) are technical conditions imposed
for brevity of proofs.

In (H6), the covering hypothesis on the subset CF is linked to the topological
structure of our functional space F . It controls Kolmogorov’s entropy of the
set CF . Such consideration has been discussed and commented by Ferraty et
al. [12]. The authors give several examples for which this condition is satisfied.

The assumption (H7) (i) precise the behaviour of the smoothing parameter
hK in relation with the small ball probabilities and the kernel function K. The
local behaviour of ρ which models the local shape of our model is controlled by
(H7)(iii).

We are now ready to state our first result which is the uniform almost
complete convergence of the estimator F̂ x (y) on the subset CF .

Theorem 1. As soon as assumptions (H1)–(H7) are fulfilled, we have

sup
x∈CF

|F̂ x (y)− F x (y) | = O
(
hb1K + hb2J

)
+O

(√
log dn
nφ (hK)

)
, a.co.

Before starting the proof of this theorem, we introduce the following further
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notations:

F̂ xN (y) :=
1

nE (Γ1K1)

n∑
j=1

ΓjKjJj , F̄ xN (y) :=
1

nE (Γ1K1)

n∑
j=1

E (ΓjKjJj |Fj−1) ,

F̂D (x) :=
1

nE (Γ1K1)

n∑
j=1

ΓjKj , F̄D (x) :=
1

nE (Γ1K1)

n∑
j=1

E (ΓjKj |Fj−1) .

Then, the proof of Theorem 1 is based on the following decomposition:

F̂ x(y)−F x(y)=Bn(x, y)+
1

F̂D (x)
[(Bn(x, y)+F x (y))An(x, y)+Rn(x, y)] ,

(3.1)
where

Bn(x, y) =
F̄ xN (y)

F̄D (x)
− F x (y) , An(x, y) = F̄D (x)− F̂D (x) ,

Rn(x, y) = F̂ xN (y)− F̄ xN (y) .

As immediate consequence of the decomposition (3.1), we need to prove the
following lemmas:

Lemma 1. Under assumptions (H1)–(H5) and (H7), we have that

sup
x∈CF

|Bn(x, y)| = O
(
hb1K + hb2J

)
.

Lemma 2. Under the hypotheses of Theorem 1, we obtain

sup
x∈CF

|Rn(x, y)| = Oa.co

(√
log dn/

(
nφ (hK)

))
.

Lemma 3. Under assumptions (H1)–(H5) (i), (H6) and (H7), we get

(i) sup
x∈CF

|An(x, y)| = Oa.co

(√
log dn
nφ(hK)

)
, (ii)

∞∑
n=1

P
(

inf
x∈CF

F̂D(x) <
1

2

)
<∞.

Thus, the proof of our main result is based on the previous lemmas combined
with Lemma 5 of Ayad et al. [1] and the technical lemma 1 of Laib and Louani
[17].

3.2 Asymptotic normality

Let us first focus on the supplementary assumptions we need to derive the
asymptotic normality of our estimator.

(B1) The hypothesis (H1) holds and there exists a function Ψ(·) such that:

∀t ∈ [−1, 1], lim
hK→0

φ(−hK , thK)

φ(hK)
= Ψ(t).
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(B2) The hypothesis (H3) holds and for all (x1, x2, y1, y2) ∈ CF×CF×Ny×Ny:
F : F × R −→ R, lim

|δ(x1,x2)|→0
F x1(y) = F x2(y),

lim
|y1−y2|→0

F x(y1) = F x(y2).

(B3) The locating functions ρ and δ satisfy (H4), and

sup
u∈B(x,r)

|ρ(u, x)− δ(x, u)| = o(r).

(B4) The hypothesis (H5) holds and the first derivative K ′ of the kernel K
satisfies:

K2(1)−
∫ 1

−1
(K2(u))′Ψ(u)du > 0.

(B5) Assumption (H7) holds and limn→∞(n − 1)khlKφ(hK) = 0, for k = 1, 2
and l = 4, 5.

In addition, we need to introduce the quantities Mc and N(a, b) which will
appear in the computation of E

(
Kc
j |Fj−1

)
.

Mc = Kc(1)−
∫ 1

−1
(Kc(u))′Ψ(u)du, where c = 1, 2,

and for all a > 0 and b = (2, 4), N(a, b) = Ka(1)−
∫ 1

−1(ubKa(u))′Ψ(u)du.

Theorem 2. Under assumptions (B1)–(B5), (H1) and (H6) and if the smooth-

ing parameters hK and hJ satisfy
√
nφ (hK)

(
hb1K + hb2J

)
→ 0 as n → ∞.

We have √
nφ (hK)

(
F̂ x (y)− F x (y)

)
D−→ N (0, VJK(x, y)) ,

where VJK(x, y) =
M2

M2
1

F x (y) (1− F x (y)) , and
D−→ means the convergence in

distribution.

The first step of the proof consists in rewriting the decomposition (3.1) in the
following way:

F̂ x(y)− F x(y) = Bn(x, y) +
Cn(x, y) +Qn(x, y)

F̂D (x)
,

where

Cn(x, y) = Bn(x, y)An(x, y), Qn(x, y) = Rn(x, y) + F x(y)An(x, y).

Then, to state asymptotic normality, we remark that the hypothesis (B2) en-
sures the asymptotic negligence of Bn(x, y). Moreover, according to Lemma 3
(i), Cn converges almost completely to zero when n goes to infinity. Conse-
quently, the proof of Theorem 2 can be deduced from the following lemmas for
which the proofs are relegated to the Appendix.
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Lemma 4. Under the assumptions of Theorem 2, we have√
nφ (hK)/VJK(x, y)Qn(x, y)

D−→ N(0, 1).

Lemma 5. Under assumptions (H1)–(H5) (i), (H6) and (H7), we have

F̂D (x)− 1 = op(1).

4 On simulated data

We now conduct a simulation study in which the finite sample performance of
the local linear estimator given in formula (2.3) is compared to the following
local constant estimator:

F̃ x(y) =

n∑
j=1

Kj(x)Jj(y)
/ n∑
j=1

Kj(x).

Let us use the following regression model:

Y = r(X) + ε,

where the random variable ε is normally distributed with a variance equal to
0.075. The explanatory functional variables are constructed by:

Xi(t) = 2wit
2 + 0.5 cos(πzit), i = 1, . . . 200, t ∈ [0, 1],

where wi are n independent real random variables uniformly distributed over
[0, 1] and zi = 1

3zi−1 + ζi. Here ζi are i.i.d. realizations of N(0, 1) and are inde-
pendent from wi and zi, which is generated independently by z0 ∼ N(0, 1). All
the curves Xi’s were discretized on the same grid generated from 200 equispaced
measurements in (0,1) and are plotted in Figure 1.

Time

0 50 100 150 200

−0
.5

0.0
0.5

1.0
1.5

2.0

Figure 1. The curves Xi.

On the other hand, the building of the scalar response Y is obtained by
considering the following regression operator:(∫ 1

0

X ′(t)dt

)2

.
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Recall that, the conditional distribution of Y given X = x corresponding to

this model is explicitly given by the law of εi shifted by
(∫ 1

0
X ′(t)dt

)2
.

When dealing with smooth curves such as those introduced herein, it is
necessary to measure the proximity by means of a semi-metric based on the L2

norm of some derivative of the curves. The smoothing parameters hK and hJ
are selected through automated cross validation, choosing a value that mini-
mizes the average error on the withheld data. The behavior of our estimator is
linked to the good choice of the functions δ and ρ. Because of the smoothness
of the curves we take

ρ(x, x′) =

∫ 1

0

θ(t)(x(1)(t)− x′(1)(t))dt,

δ(x, x′) =

(∫ 1

0

(x(1)(t)− x′(1)(t))2dt
)1/2

with the functional index θ is selected among the eigenfunction of the empirical

covariance operator 1
n

∑n
i=1(X

(1)
i −X(1))t ((X

(1)
i −X(1))) corresponding to the

biggest eigenvalues, where X = 1
n

∑n
i=1Xi.

For both competitors, the kernel K(u) = (1 − u2)11[0,1] is used and the
distribution function J is defined by:

J(u) =
3u

4

(
1− u2

3

)
11[−1,1] +

1

2
.

In this illustration, we have followed the following steps:

• Step 1: We generate m replications of (Xi, Yi)i=1,...,n .

• Step 2: We estimate the conditional local linear distribution (respectively
the conditional kernel distribution).

• Step 3: We compare these estimators to the Gaussian distribution.

0 50 100 150 200

0.0
0.2

0.4
0.6

0.8
1.0

local  linear estimator

Time

0 50 100 150 200

0.0
0.2

0.4
0.6

0.8
1.0

kernel estimator

Time

Figure 2. Comparison between the both estimators.

In order to eliminate the zero weight, we have removed the negative weigh-
ing. The obtained results are plotting in Figure 2. It is clear that the local
linear estimator of the CDF operator convincingly outperforms the local con-
stant one.
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Appendix

4.1 Preliminary technical lemmas

Firstly, we state the following lemmas which are needed to establish our asymp-
totic results.

Lemma. A.1 Under assumptions (H1), (H2), (H4)(i), (H5) and (H7), we
obtain

(i) sup
x∈CF

F̄D(x) = O(1), (ii) inf
x∈CF

F̄D(x) = O(1).

Lemma. A.2 Under assumptions (B1), (H2), (B2)–(B5), we have that

(i) hKE
(
ρjK

a
j |Fj−1

)
= o(h2Kφj(hK)) ∀a > 0,

(ii)
1

nφ(hK)

n∑
j=1

E
(
Kc
j |Fj−1

)
= Mc + o(1) for c = 1, 2, (iii)

1

nφ(hK)

×
n∑
j=1

E
(
Γ 2
j K

2
j |Fj−1

)
= (n− 1)2(N(1, 2))2h4Kφ

2(hK)M2 + o
(
h4Kφ

2(hK)
)
.

Proof of Lemma A.1. Before we start the proof of i), it is clear that by using
Lemma A.1 of [3], we obtain

nCh2Kφ (hK) ≤ E (Γ1(x)K1(x)) ≤ nC ′h2Kφ (hK) . (4.1)
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Then, by considering Lemma 5 of Ayad et al. [1] and (4.1) we get

sup
x∈CF

F̄D(x) = O(1) sup
x∈CF

1

nφ (hK)

n∑
j=1

φj (hK) .

So, the claimed result i) of this lemma is a direct consequence of the assumption
(H2)(ii). The proof of (ii) is similar to that of (i), and is therefore omitted. ut

Proof of Lemma A.2. Firstly, the proof of (i) and (ii) are similar to the proof
of (b) and (a) of Lemma A.1 in [21]. Secondly, in order to prove (iii), we use
the definition of the conditional variance. Indeed,

1

nφ(hK)

n∑
j=1

E
(
Γ 2
j K

2
j |Fj−1

)
=

1

nφ(hK)

n∑
j=1

(
Var (ΓjKj |Fj−1) + (E (ΓjKj |Fj−1))

2
)
. (4.2)

It remains to study each term of (4.2). For the first term on the right hand
side of this equation, we have

Var (ΓjKj |Fj−1)

= (n−1)
(
Var

(
ρ21(x)K1(x)Kj |Fj−1

)
+Var (ρ1(x)K1(x)ρjKj |Fj−1)

)
= (n−1)

(
E
(
ρ41(x)K2

1 (x)
)
E
(
K2
j |Fj−1

)︸ ︷︷ ︸
T1

−
(
E
(
ρ21(x)K1(x)

)
E (Kj |Fj−1)

)2︸ ︷︷ ︸
T2

+ E
(
ρ21(x)K2

1 (x)
)
E
(
ρ2jK

2
j |Fj−1

)︸ ︷︷ ︸
T3

− (E (ρ1(x)K1(x))E (ρjKj |Fj−1))
2︸ ︷︷ ︸

T4

)
.

Then, by using (i) of Lemma A.1 in [3] and (i) of Lemma 5 in [1], we find

n− 1

nφ(hK)

n∑
j=1

Ti = O
(
(n− 1)h4Kφ(hK)

)
for i = 1, 2, 3, 4.

It follows that

1

nφ(hK)

n∑
j=1

Var (ΓjKj |Fj−1) −→ 0, as n→∞.

On the other side, to complete the proof of (iii), we have to study the first term
on the right hand side of (4.2). For that, we write:

1

nφ(hK)

n∑
j=1

(E (ΓjKj |Fj−1))
2

=
1

nφ(hK)

n∑
j=1

(
E
( n∑
i=1

ρ2i (x)Ki(x)Kj

−
n∑
i=1

ρi(x)Ki(x)ρjKj |Fj−1
))2

= γn1 + γn2 + γn3,
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where

γn1 =
(n− 1)

2

nφ(hK)

(
E
(
ρ21(x)K1(x)

))2 n∑
j=1

(E (Kj |Fj−1))
2
,

γn2 =
(n− 1)

2

nφ(hK)
(E (ρ1(x)K1(x)))

2
n∑
j=1

(E (ρjKj |Fj−1))
2
, γn3 = −2 (n− 1)

2

nφ(hK)

× E
(
ρ21(x)K1(x)

)
E (ρ1(x)K1(x))

n∑
j=1

E (Kj |Fj−1)E (ρjKj |Fj−1) .

Concerning the term γn1, by applying Jensen’s inequality, we have

γn1 ≤
(n− 1)

2

nφ(hK)

(
E
(
ρ21(x)K1(x)

))2 n∑
j=1

E
(
K2
j |Fj−1

)
,

then, we apply (c) of Lemma A.1 in [21] and (ii) of Lemma A.2 to obtain:

γn1 = (n− 1)
2

((N(1, 2))
2
h4Kφ

2(hK)M2 + o
(
h4Kφ

2(hK)
)
. (4.3)

Concerning γn2, we apply (b) of Lemma A.1 in [21] and (i) of Lemma A.2 to
get:

γn2 = o
(

(n− 1)
2
h4Kφ(hK)

)
. (4.4)

For the last term, we apply (i) of Lemma A.1 in [3], (i) of Lemma 5 in [1] and
(i) of Lemma A.2 to get:

γn3 = o
(

(n− 1)
2
h5Kφ(hK)

)
. (4.5)

Combining (4.3), (4.4) and (4.5) permits to obtain the claimed result. ut

4.2 Proofs of main results

Proof of Lemma 1. We start by writing

sup
x∈CF

|Bn(x, y)| = sup
x∈CF

|B̃n (x, y) |
/

inf
x∈CF

|F̄D(x)|,

where B̃n (x, y) = F̄ xN (y)− F x (y) F̄D (x).

First, observe that B̃n (x, y) can be written as

B̃n (x, y) =
1

nE (Γ1K1)

n∑
j=1

{E (ΓjKjJj |Fj−1)− F x (y)E (ΓjKj |Fj−1)}

=
1

nE (Γ1K1)

n∑
j=1

{E (ΓjKjE (Jj |Gj−1) |Fj−1)− F x (y)E (ΓjKj |Fj−1)}

≤ 1

nE (Γ1K1)

n∑
j=1

{E (ΓjKj |E [Jj |Xj ]− F x (y)| |Fj−1)} . (4.6)
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The last inequality is obtained by using (H5) (iii).
Next, we have directly after integrating by parts, and changing of variables

|E [Jj |Xj ]− F x (y)| ≤
∫
R
J (1) (t) |F x (y − hJ t)− F x (y)| dt.

Thus, from assumptions (H3) and (H5)(i) we get:

11B(x,hk) (Xj) |E [Jj |Xj ]− F x (y)| ≤
∫
R
J (1) (t)

(
hb1K + |t|b2 hb2J

)
dt.

Since, J (1) is probability density function, and under the assumption (H5) (ii),
we find that:

11B(x,hk) (Xj) |E [Jj |Xj ]− F x (y)| ≤ C
(
hb1K + hb2J

)
. (4.7)

Hence, by combining (4.6) together with (i) of Lemma A.1, we obtain

sup
x∈CF

|B̃n (x, y) | = O
(
hb1K + hb2J

)
sup
x∈CF

F̄D (x) ,

and the claimed result of this lemma is now checked. ut

Proof of Lemma 2. First, by using (H4) (i) and because the kernel K is
bounded on [−1, 1], it can be easily seen that

|Γj(x)| ≤ nCh2K + nChK |ρj(x)|. (4.8)

Second, for all x ∈ CF , we denote: k(x) = arg min
k∈{1,2,...,dn}

|δ(x, xk)|

sup
x∈CF

|Rn(x, y)| ≤ sup
x∈CF

|F̂ xN (y)− F̂ xk(x)N (y)|︸ ︷︷ ︸
Q1

+ sup
x∈CF

|F̂ xk(x)N (y)− F̄ xk(x)N (y)|︸ ︷︷ ︸
Q2

+ sup
x∈CF

|F̄ xk(x)N (y)− F̄ xN (y)|︸ ︷︷ ︸
Q3

.

We will now treat each of the three terms involved in this decomposition. We
start by the consistency of the term Q1. By using (4.1) and the boundeness on
K and J , one can write:

Q1 ≤ sup
x∈CF

1

n

n∑
j=1

|Jj(y)| | 1

E (Γ1(x)K1(x))
Γj(x)Kj(x)11B(x,hK)(Xj)

− 1

E
(
Γ1(xk(x))K1(xk(x))

)Γj(xk(x))Kj(xk(x))11B(xk(x),hK)(Xj)|

≤
( C

n2h2Kφ(hK)
sup
x∈CF

n∑
j=1

|Γj(x)11B(x,hK)(Xj)|
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× |Kj(x)−Kj(xk(x))11B(xk(x),hK)(Xj)|
)

+
( C

n2h2Kφ(hK)
sup
x∈CF

n∑
j=1

Kj(xk(x))11B(xk(x),hK)(Xj)

× |Γj(x)11B(x,hK)(Xj)− Γj(xk(x))|
)

:= F1 + F2.

Let us first deal with the term F1. Because the kernel K satisfy the Lipschitz
condition, and by using the inequality (4.8), we have

|Γj(x)|11B(x,hK)(Xj)|Kj(x)−Kj(xk(x))11B(xk(x),hK)(Xj)|

≤ nCh2K
(
rn
hK

11B(x,hK)∩B(xk(x),hK)(Xj) + 11
B(x,hK)∩B(xk(x),hK)

(Xj)
)
,

which implies that:

F1 ≤
Crn

nhKφ(hK)
sup
x∈CF

n∑
j=1

11B(x,hK)∩B(xk(x),hK)(Xj)

+
C

nφ(hK)
sup
x∈CF

n∑
j=1

11
B(x,hK)∩B(xk(x),hK)

(Xj).

Concerning the term F2, we have that:

11B(xk(x),hK)(Xj)|Γj(x)11B(x,hK)(Xj)− Γj(xk(x))|
≤ 11B(xk(x),hK)∩B(x,hK)(Xj)|Γj(x)− Γj(xk(x))|︸ ︷︷ ︸

A

+ nCh2K11
B(xk(x),hK)∩B(x,hK)

(Xj)︸ ︷︷ ︸
B

.

Now, we calculate the first part of the right side of this inequality

A = 11B(xk(x),hK)∩B(x,hK)(Xj)
∣∣∣( n∑

i=1

ρ2i (x)Ki(x)− ρ2i (xk(x))Ki(xk(x))
)

−
(( n∑

i=1

ρi(x)Ki(x)
)
ρj(x)

)
−
( n∑
i=1

ρi(xk(x))Ki(xk(x))ρj(xk(x))
)∣∣∣≤A1+A2,

where

A1 =11B(xk(x),hK)∩B(x,hK)(Xj)
∣∣∣ n∑
i=1

ρ2i (x)Ki(x)− ρ2i (xk(x))Ki(xk(x))
∣∣∣,

A2 =11B(xk(x),hK)∩B(x,hK)(Xj)
∣∣∣( n∑

i=1

ρi(x)Ki(x)
)
ρj(x)

−
( n∑
i=1

ρi(xk(x))Ki(xk(x))
)
ρj(xk(x))

∣∣∣
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Let us now examine the terms A1 and A2 by putting

T k,l = 11B(xk(x),hK)∩B(x,hK)(Xj)
∣∣∣( n∑

i=1

ρki (x)Ki(x)
)
ρlj(x)

−
( n∑
i=1

ρki (xk(x))Ki(xk(x))
)
ρlj(xk(x))

∣∣∣ with k = 1, 2 and l = 0, 1.

Therefore,
T k,l ≤ T k,l1 + T k,l2

with

T k,l1 =11B(xk(x),hK)∩B(x,hK)(Xj)
( n∑
i=1

|ρki (x)|Ki(x)× |ρlj(x)− ρlj(xk(x))|
)
,

T k,l2 =11B(xk(x),hK)∩B(x,hK)(Xj)
(
|ρlj(xk(x))|

× |
n∑
i=1

(ρki (x)Ki(x)− ρki (xk(x))Ki(xk(x))|
)
.

By the assumption (H4)(ii) for l = 1, we can write:

11B(xk(x),hK)∩B(x,hK)(Xj)|ρj(x)−ρj(xk(x))|≤Crn11B(xk(x),hK)∩B(x,hK)(Xj).

So, for l = 0, k = 2
T k,l1 = 0, (4.9)

and for l = 1, k = 1

T k,l1 ≤ nCrnhK11B(xk(x),hK)∩B(x,hK)(Xj). (4.10)

We now turn to the term T k,l2

T k,l2 ≤ 11B(xk(x),hK)∩B(x,hK)(Xj)

(
n∑
i=1

|ρlj(xk(x))|Ki(x)× |ρki (x)− ρki (xk(x))|

)

+ 11B(xk(x),hK)∩B(x,hK)(Xj)

(
n∑
i=1

|ρlj(xk(x))||ρki (xk(x))|
∣∣Ki(x)−Ki(xk(x))

∣∣) .
Observe that:

11B(xk(x),hK)∩B(x,hK)(Xj)|ρ2i (x)−ρ2i (xk(x))|
≤ CrnhK11B(xk(x),hK)∩B(x,hK)(Xj),

which implies that for k = 1, 2

11B(xk(x),hK)∩B(x,hK)(Xj)|ρki (x)−ρki (xk(x))|

≤ Crnhk−1K 11B(xk(x),hK)∩B(x,hK)(Xj).
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Therefore, for l = 0, and k = 2

T k,l2 ≤ nCrnhK11B(xk(x),hK)∩B(x,hK)(Xj), (4.11)

and for l = 1, and k = 1

T k,l2 ≤ nCrnhK11B(xk(x),hK)∩B(x,hK)(Xj). (4.12)

Then, by combining (4.9) with (4.11), we find that

A1 ≤ nCrnhK11B(xk(x),hK)∩B(x,hK)(Xj).

In addition, by combining (4.10) with (4.12), allows us to find

A2 ≤ nCrnhK11B(xk(x),hK)∩B(x,hK)(Xj),

which implies that

A ≤ nCrnhK11B(xk(x),hK)∩B(x,hK)(Xj).

Thus,

F2 ≤
Crn

nhKφ(hK)
sup
x∈CF

n∑
j=1

11B(xk(x),hK)∩B(x,hK)(Xj)

+
C

nφ(hK)
sup
x∈CF

n∑
j=1

11
B(xk(x),hK)∩B(x,hK)

(Xj).

Consequently, we obtain

Q1 ≤ C sup
x∈CF

(Q1.1 +Q1.2 +Q1.3) ,

where

Q1.1 =
C

nφ(hK)

n∑
j=1

11
B(xk(x),hK)∩B(x,hK)

(Xj),

Q1.2 =
Crn

nhKφ(hK)

n∑
j=1

11B(x,hK)∩B(xk(x),hK)(Xj),

Q1.3 =
C

nφ(hK)

n∑
j=1

11
B(x,hK)∩B(xk(x),hK)

(Xj).

Now, we evaluate those last terms by an application of the standard inequality
for sums of bounded random variables with Zj identified such that:

Zj =



1

φ(hK)
[11
B(xk(x),hK)∩B(x,hK)

(Xj)] for Q1.1,

rn
hKφ(hK)

[11B(x,hK)∩B(xk(x),hK)(Xj)] for Q1.2,

1

φ(hK)
[11
B(x,hK)∩B(xk(x),hK)

(Xj)] for Q1.3.
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It is clear that for Q1.1 and Q1.3, we have under the second part of (H1):

Zj = O

(
1

φ(hK)

)
, E[Zj ] = O

(
rn

φ(hK)

)
, E

(
Z2
j

)
= O

(
rn

φ(hK)2

)
.

Therefore,

Q1.1 = O

(
rn

φ(hK)

)
+Oa.co

(√
rn log n

/
nφ(hK)2

)
.

With the same manner, the assumption (H6) allows to get, for Q1.2:

Zj = O

(
rn

hKφ(hK)

)
, E[Zj ] = O

(
rn
hK

)
, E

(
Z2
j

)
= O

(
r2n

h2Kφ(hK

)
,

which implies that:

Q1.2 = Oa.co

(√
log dn

/
nφ(hK)

)
.

To finish the study of the term Q1, we need to put together all the intermediate
result and to employ the second part of (H6) to obtain

Q1 = Oa.co

(√
log dn

/
nφ(hK)

)
.

Concerning the term Q2, we have for all ε > 0,

P
(
Q2 > ε

√
log dn

/
nφ(hK)

)
= P

(
max

k∈1,...,dn
|F̂ xk(x)N (y)− F̄ xk(x)N (y)| > ε

)
≤ dn max

k∈1,...,dn
P
(
|F̂ xk(x)N (y)− F̄ xk(x)N (y)| > ε

√
log dn

/
nφ(hK)

)
.

Let

F̂
xk(x)
N (y)− F̄ xk(x)N (y) =

1

E(Γ1K1)

n∑
j=1

Sj

with

Sj = Γj(xk(x))Kj(xk(x))Jj(y)− E
(
Γj(xk(x))Kj(xk(x))Jj(y)|Fj−1

)
,

where Sj is a triangular array of bounded martingale differences with respect
to the sequence of σ-fields (Fj−1)j≥1 . So, we have

E
(
S2
j |Fj−1

)
= E

(
(ΓjKj)

2
J2
j |Fj−1

)
− E ((ΓjKjJj |Fj−1))

2

≤ E
(

(ΓjKj)
2
J2
j |Fj−1

)
.

As Jj ≤ 1, we deduce that

E
(
S2
j |Fj−1

)
≤ E

(
Γ 2
j K

2
j |Fj−1

)
.
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By using Equation (4.8), (H4)(i) and (H5)(i), we obtain that:

E
(
S2
j |Fj−1

)
≤ 2Cn2h4Kφj (hK) .

Now, we use the exponential inequality of Lemma 1 of [17] (with
d2j = Cn2h4Kφj(hK)) to obtain for all ε > 0,

P
(∣∣F̂ xk(x)N (y)− F̄ xk(x)N (y)

∣∣ > ε
√

log dn
/
nφ(hK)

)
= P

(∣∣∣ 1

nE (Γ1K1)

n∑
j=1

Sj

∣∣∣ > ε
√

log dn
/
nφ(hK)

)
≤ 2 exp

{
−Cε2 log dn

}
.

Thus, by choosing ε such that Cε2 = ς, we get

dn max
k∈{1,...,dn}

P
(
|F̂ xk(x)N (y)− F̄ xk(x)N (y)| > ε

√
log dn

/
nφ(hK)

)
≤ Cd1−ςn .

Since
∑∞
n=1 d

1−ς
n <∞, we obtain that:

Q2 = Oa.co

(√
log dn

/
nφ(hK)

)
.

For the term Q3, clearly we have

Q3 ≤ E
(

sup
x∈CF

|F̂ xk(x)N (y)− F̄ xk(x)N (y)||Fj−1
)
.

Subsequently, we follow the same steps used in studying the term Q1 to find

Q3 = Oa.co

(√
log dn

/
nφ(hK)

)
.

This is enough to complete the proof of Lemma 2. ut

Proof of Lemma 3.

i) This result can be deduced from Lemma 2 by taking Jj = 1. In this case,
(H5) (ii) and (iii) are not necessary.

ii) It is easy to see that infx∈CF |F̂D(x)| ≤ 1
2 implies that there exist x ∈ CF

such that

1− F̂D(x) ≥ 1

2
=⇒ sup

x∈CF
|1− F̂D(x)| ≥ 1

2
.

According to (i) of this lemma, we have:

P
(

inf
x∈CF

|F̂D(x)| ≤ 0.5

)
≤ P

(
sup
x∈CF

|1− F̂D(x)| ≥ 0.5

)
.

Consequently,
∞∑
n=1

P
(

inf
x∈CF

|F̂D(x)| ≤ 1

2

)
<∞,
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which ends the proof. ut

Proof of Lemma 4. For all j = 1, . . . , n, let us denote

ηn,j =

√
nφ (hK)

nE (Γ1K1)
(Jj − F x(y))ΓjKj ,

and define ξn,j = ηn,j − E (ηn,j |Fj−1) . It is clear that

√
nφ (hK)Qn(x, y) =

n∑
j=1

ξn,j . (4.13)

The summands in Equation (4.13) form a triangular array of stationary martin-
gale differences with respect to the σ-fields Fj−1. Accordingly, the asymptotic
normality of Qn(x, y) can be established by applying the central limit theo-
rem for discrete time arrays of real-valued martingales. Therefore, to show
Lemma 4, it suffices to prove the following two claims:

n∑
j=1

E
(
ξ2n,j |Fj−1

) P−→ VJK(x, y), (4.14)

∀ε > 0 nE
(
ξ2n,j11[|ξn,j |>ε]

)
= o(1) (Lindeberg condition). (4.15)

Let us start the proof of (4.14) by remarking that

E
(
ξ2n,j |Fj−1

)
= E

(
η2n,j |Fj−1

)
− (E (ηn,j |Fj−1))

2
.

Thus, it remains to check that

lim
n→∞

n∑
j=1

(
E (ηn,j |Fj−1)

)2
= 0 in probability, (4.16)

lim
n→∞

n∑
j=1

E
(
η2n,j |Fj−1

)
= VJK(x, y) in probability. (4.17)

Concerning the proof of (4.16), by applying Equation (4.7), Equation (4.1) and
Lemma 5 of Ayad et al. [1], we get that

|E (ηn,j |Fj−1)| =

√
nφ (hK)

nE (Γ1K1)

∣∣∣E( (Jj − F x(y))ΓjKj |Fj−1
)∣∣∣

≤ C
√
nφ (hK)

(
hb1K + hb2J

) 1

nφ (hK)
φj (hK) .

Thus, by using (H2) (ii), we find

n∑
j=1

(
E (ηn,j |Fj−1)

)2
= Oa.co

(
nφ (hK)

(
hb1K + hb2J

)2 )
.
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For the proof of Equation (4.17), we use (H5)(iii) to obtain

n∑
j=1

E
(
η2n,j |Fj−1

)
=

φ (hK)

n (E (Γ1K1))
2

n∑
j=1

E
(
Γ 2
j K

2
j (Jj − F x(y))

2 |Fj−1
)

=
φ (hK)

n (E (Γ1K1))
2

n∑
j=1

E
(
Γ 2
j K

2
jE
[
(Jj − F x(y))

2 |Xj

]
|Fj−1

)
.

Next, by using the definition of the conditional variance, we find

E
[
(Jj − F x(y))

2 |Xj

]
= Var [Jj |Xj ] + [E (Jj |Xj)− F x(y)]

2
:= βn1 + βn2.

Concerning the term βn1, we have

Var [Jj |Xj ] = E
(
J2
j |Xj

)
− (E (Jj |Xj))

2
. (4.18)

An integration by part followed by a change of variable with the assumption
(B2) permit us to deduce

E [Jj |Xj ] =

∫
R
J (1) (t) [F x (y − hJ t)− F x (y)] dt+ F x (y) = F x (y) . (4.19)

Similarly, the first term on the right hand side of Equation (4.18) is treated
directly by using again (B2) combined with an integration by part and a change
of variable. It follows that

E
[
J2
j |Xj

]
=

∫
R
J2 ((y − z)/hJ) fx(z)dz

=

∫
R

2J (t) J (1) (t) [F x (y−hJ t)−F x (y)] dt+

∫
R

2J (t) J (1) (t)F x (y) dt.

Since
∫
R 2J (t) J (1) (t)F x (y) dt = F x (y) , we infer that:

E
[
J2
j |Xj

]
−→ F x (y) , as n→∞. (4.20)

Now, by combining the result (4.19) with (4.20), we arrive directly at the
following result:

Var [Jj |Xj ] = F x (y) (1− F x (y)) . (4.21)

Concerning the term βn2, we deduce by (4.19) that βn2 −→ 0, as n → ∞.
Therefore,

n∑
j=1

E
(
η2n,j |Fj−1

)
=

φ (hK)

n (E (Γ1K1))
2

n∑
j=1

E
(
Γ 2
j K

2
j βn1|Fj−1

)
.

Combining (d) of Lemma A.1 [21], (iii) of Lemma A.2 and Equation (4.21)
allow to obtain

n∑
j=1

E
(
η2n,j |Fj−1

)
−→ M2

M2
1

F x (y) (1− F x (y)) = VJK(x, y), as n→∞,
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which completes the proof of the claim (4.14).
Concerning the proof of (4.15), the Lindeberg condition implies that

nE
(
ξ2n,j11[|ξn,j |>ε]

)
≤ 4nE

(
η2n,j11[|ηn,j |> ε

2 ]

)
.

By using Markov’s and Hölder’s inequalities, we can write for all ε > 0,

E
(
η2n,j11[|ηn,j |> ε

2 ]

)
≤ E (|ηn,j |)2a

(ε/2)
2a/b

.

Taking a = 1 + δ
2 for any δ > 0, such that Ḡ2+δ = E

(
|Jj − F x(y)|2+δ|Xj

)
is a

continuous function. It follows that

4nE
(
η2n,j11[|ηn,j |> ε

2 ]

)
≤ C

(
φ(hK)

n

) 2+δ
2 n

(E (Γ1K1))
2+δ

E
(

[| (Jj − F x(y)) |ΓjKj ]
2+δ
)

≤ C
(
φ(hK)

n

) 2+δ
2 n

(E (Γ1K1))
2+δ

E
(
|ΓjKj |2+δ

[
E (|Jj − F x(y)) |2+δ|Xj

])
≤ C

(
φ(hK
n

) 2+δ
2 n

(E (Γ1K1))
2+δ

E
(
|ΓjKj |2+δ

)
Ḡ2+δ

= O
(

(nφ(hK))
−δ
2

)
as n→∞,

and the claimed result is checked. ut

Proof of Lemma 5. Observe that

F̂D (x)− 1 = F̂D (x)− F̄D (x)︸ ︷︷ ︸
I1

+ F̄D (x)− 1︸ ︷︷ ︸
I2

.

Since I2 −→ 0 almost completely as n→∞ in view of (H2) (ii), it suffices to
show that I1 = o(1) as n→∞ Indeed, by using Lemma 3 (i) we obtain

F̂D (x)− F̄D (x) = o(1) almost completely asn→∞.

Which completes the proof of Lemma 5. ut
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