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Abstract. A complete hypersingular integral equation of the second kind was ob-
tained as a boundary integral equation for the diffraction and scattering problem
of electromagnetic waves in space separated by the periodically placed non-perfectly
conducting strips. The equation includes a singular integral that distinguishes it from
the studied second-kind hypersingular equation. Our motivation is the need to have
a numerical method for the equation, its applicability borders, and guaranteed con-
vergence. The numerical method has the type of Nyström. The justification of the
method envelops a proof of the theorem of existence and uniqueness of the solution
and an estimate of the convergence rate of sequence of the approximate solutions to
an exact solution.
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1 Introduction

There is a wide set of important applied and theoretical problems of elec-
tromagnetic wave propagation in space separated by a periodic strip lattice.
Particularly and just for in-house examples some of them are shown in [10,31].
The theoretical description for such problems is collected in [10] and some ap-
plied results for resonances are enveloped by [31]. One approach to solving
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such problems is to reduce the original boundary value problem for the sys-
tem of Maxwell’s equations to boundary integral equations and their numerical
analysis. The main advantage of this analytical and numerical approach is the
transformation of the problem in the infinite domain to the problem in the
finite one. That is a very important point for numerical analysis. The analyti-
cal transformation provides us an opportunity to take into account the subtle
effects of medium-frequency wave processes. Three types of the different-kind
boundary integral equations are obtained using this approach. These are a hy-
persingular equation, a singular equation, and an equation with a logarithmic
kernel.

The complete hypersingular integral equation includes all special singular
character integrals. These are the hypersingular integral, the singular integral,
and the logarithmic kernel integral. In [17] and [19] we obtained this equation
when constructing a mathematical model of diffraction and scattering of waves
in space separated by a periodic lattice of non-perfectly conducting impedance
strips. Let us note that the lattice can be supplemented with an active resonant
layer. By the way, the form of the hypersingular equation will be preserved.
A pair of the lattice and layer is less studied and attracts attention as shown
for example in [30]. Also, the application area of the hypersingular integral
equation is well-known to include the problems of acoustics, the extra attrac-
tive problems of the mathematical theory of the laser, and the problems of
description and analysis of the metamaterials. As an example, a related laser
theory problem with a hypersingular equation is shown in [2]. In [32], a meta-
material surface is described. A full frequency analysis of its electrodynamics
in the terahertz range is presented. The analysis is based on a hypersingular
integral equation. The subtle effects of the interaction of the lattice and waves
are caught and described.

The paper is about the complete hypersingular integral equation of the
second kind, the numerical method for solving this hypersingular equation,
and the justification of the method. The justification includes the criterion
for the existence and uniqueness of a solution of the hypersingular equation
and the estimation of the convergence rate of the numerical method. It is
about estimating a norm of the difference between the approximate and exact
solutions. The presentation of these results is the aim of this paper. Also, the
aim of the paper is the demonstrate and analyze the numerical convergence of
the method using the model problem. The model problem is the special case of
the complete hypersingular integral equation of the second kind with its known
exact solution. Based on the results for the model problem, we characterized
the numerical convergence of the method.

The presented results continue, develop, and are based on the series of
works [11,12,16,18] devoted to the qualitative theory of hypersingular integral
equations and numerical methods. Another standing shoulder for the presented
results is the book [22].

The paper consists of ten sections and a list of references. The opening
and final sections have a traditional and natural character. In Section 2, we
state the problem and define the hypersingular and singular integrals. Sec-
tion 3 includes the definitions of polynomial Hilbert spaces, their completions
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in the norms, linear operators generated by the hypersingular integral equa-
tion and its properties. Sections 4 and 5 contain the results on regularization
of operators and their polynomial discretization by Nyström way and using
the quadrature formulae. These are the main results of the numerical method
for solving the hypersingular equation. Section 6 is about the questions of the
existence and uniqueness of a solution. The section contains the main result
on the justification of the numerical method. This is a criterion for the exis-
tence and uniqueness of a solution. In Section 7 we have the second part of
the justification of the numerical method. It is the estimation of the rate of
convergence of a sequence of approximate solutions to an exact one. Section 8
presents the model problem and analysis of numerical convergence. The final
section summarizes the presented results and concludes the paper.

2 Problem statement

The complete hypersingular integral equation of the second kind has the fol-
lowing form:

hu (y)
√
1− y2 − 1

π

∫ 1

−1

u (t)

(y − t)
2

√
1− t2dt

+
a

π

∫ 1

−1

u (t)

t− y

√
1− t2dt+

b

π

∫
−11ln |t− y|u (t)

√
1− t2dt

+
1

π

∫ 1

−1

K (t, y)u (t)
√

1− t2dt = f (y) ,

(2.1)

where the variable y belongs to the interval (−1, 1). The parameters h, a, and
b are given non-zero arbitrary constants. These numbers can be complex.

In all terms on the left-hand side of Equation (2.1), the unknown func-
tion u is multiplied by the square root function. At a first glance, this point
complicates the form of the equation. Intuitively, it is natural to introduce
a new unknown function and simplify the equation. But this is not rational.
Firstly, similar equations are connected with the set of important and attrac-
tive applied problems as shown in [2,10,11,17,19,22,24,30,31,32] and discussed
above. The square root factor corresponds to a condition of the boundary value
problems. Secondly, in the general case, the functions u and

√
1− t2 have dif-

ferent smoothness. Thirdly, the function
√
1− t2 is the orthogonality weight

of Chebyshev polynomials of the second kind. This is a good basis for choos-
ing and using these polynomials in numerical analysis. But let us note that
there are many important applied problems connected with the hypersingular
integral equations without the square root function. Moreover, for example
in [1, 5, 28], similar hypersingular equations are investigated. We also want to
note that the terms from the left-hand side of Equation (2.1) have trigonometric
analogs without the square root function. These are

1

2π

∫ 2π

0

u (φ)

2 sin2 θ−φ
2

dφ,
1

2π

∫ 2π

0

cot

(
θ−φ
2

)
u (φ) dφ,

1

2π

∫ 2π

0

ln
∣∣∣ sin θ−φ

2

∣∣∣u (φ) dφ.
Such hypersingular integral equations are a separate branch of the theory but
are qualitatively close to Equation (2.1).
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The second term on the left-hand side of Equation (2.1) is called the hy-
persingular integral. It is understood in the following sense: for any smooth
function u that has α-Hölder continuous first derivative we have∫ 1

−1

u (t)

(t− y)
2

√
1− t2dt

= lim
ε→0

(∫ y−ε

−1

u (t)

(t−y)2
√
1− t2dt+

∫ 1

y+ε

u (t)

(t− y)
2

√
1− t2dt− 2

u (y)

ε

√
1− y2

)
.

The third term on the left-hand side of Equation (2.1) is called the singular
integral. It is understood in the following sense: for any α-Hölder continuous
function u we have∫ 1

−1

u (t)

y − t

√
1− t2dt = lim

ε→0

(∫ y−ε

−1

u (t)

y − t

√
1− t2dt+

∫ 1

y+ε

u (t)

y − t

√
1− t2dt

)
.

The fourth term on the left-hand side of Equation (2.1) is naturally called the
logarithmic kernel integral. It is understood as an improper integral.

We say that Equation (2.1) is called complete since it contains all special
singular character integrals mentioned above. Let Cr,α

[−1,1] be the set of contin-

uous on the segment [−1, 1] functions having all derivatives up to r-order and
r-derivative is α-Hölder continuous. Suppose the function f belongs to the set
C0,α

[−1,1], the two-variables function K belongs to the set C1,α
[−1,1] in each variable

uniformly with respect to other one, and unknown function u belongs to the set
C1,α

[−1,1]. So, the function u belonging to the set C0,α
[−1,1] is the sufficient condition

for the existence of the singular integral. Let us show it. We have that∫ y−ε

−1

u (t)

t− y

√
1− t2dt+

∫ 1

y+ε

u (t)

t− y

√
1− t2dt =

∫ l

−1

u (t)− u (y)

t− y

√
1− t2dt

+

∫ y−ε

l

u (t)−u (y)
t− y

√
1−t2dt+

∫ r

y+ε

u (t)−u (y)
t− y

√
1−t2dt+

∫ 1

r

u (t)−u (y)
t− y

×
√
1− t2dt+ u (y)

∫ y−ε

−1

1

t− y

√
1− t2dt+u (y)

∫ 1

y+ε

1

t− y

√
1− t2dt.

So, there are six integrals on the right-hand side. The first and fourth exist as
improper integrals. The second and third exist too. The function

√
1− t2 is

differentiable on the segment [l, r]. Since the function u is α-Hölder continuous,

we have a constant C that the function u(t)−u(y)
t−y is majorized by the integrable

function C
|t−y|1−α and is integrable. The sum of the fifth and sixth integrals is

equal to πyu (y) when the number ε tends to 0. Finally, this means that∫ 1

−1

u (t)

t− y

√
1− t2dt =

∫ 1

−1

u (t)− u (y)

t− y

√
1− t2dt+ πyu (y) .

In the same way, the function u belonging to the set C1,α
[−1,1] is the sufficient

condition for the existence of the hypersingular integral.
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The parameters h, a, and b have an added physical sense for the diffraction
and scattering problems as presented in [17,19,32]. The parameters depend on
a strip width and an incident wave number. Also, the parameter h characterizes
conductivity. If |h| is equal to 0, then it corresponds to the perfect conductivity.
The parameter a depends on an angle between a wave vector of the incident
electromagnetic field and the normal vector of the lattice plane. If |a| is equal
to 0, then it corresponds to the orthogonal direction of the incident field. If
the parameter b is equal to 0, then it corresponds to the equation of the wing
aerodynamics problem. Let us note again that some problems of aerodynamics
can be reduced to the hypersingular equation of form (2.1). These parameters
and the corresponding terms in the hypersingular equation appeared as the
form and content of strip lattice became more complicated.

Some special cases of Equation (2.1) have already been studied. The case
|h| is equal to 0 was considered by Prof. Yuriy Gandel and Oleksii Kononenko
in [12]. The case |a| is equal to 0 was analyzed in our paper [16]. Thus,
this paper has a base, expands, and enriches theory of hypersingular integral
equations. Also, the presented results increase the scope of the diffraction and
scattering theory.

Therefore the integral equations of form (2.1) are helping to solve the ap-
plied problems of mathematics. As mentioned above, in particular, similar
equations can be successfully applied to the mathematical modelling of wave
processes. The practical value of these applied problems formed the topicality
and urgency of our investigation.

Finally, let us note that the qualitative theory of hypersingular integral
equations and the numerical methods for solving them are developing and are
of interest. For example, see sources [1, 3, 4, 5, 6, 13, 26, 27, 28, 29] and their
references. Note that papers [3] and [5] are close to our study.

3 Function spaces, operators, and their properties

Let ΠI and ΠII be the two Hilbert spaces of polynomials with respect to the
following inner products:

(u, v)ΠI=

∫ 1

−1

u (t) v (t)
√
1−t2dt+

∫ 1

−1

(
u (t)

√
1−t2

)′(
v (t)

√
1−t2

)′√
1−t2dt,

(u, v)ΠII =

∫ 1

−1

u (y) v (y)
√

1− y2dy. (3.1)

Denote by Tn the first-kind Chebyshev polynomial of degree n; let the
function Un−1 be the second-kind Chebyshev polynomial of degree (n− 1); let

the set
{
tn0j
}n−1

j=1
be the set of roots of the polynomial Un−1 and tn0j = cos j

nπ

for j = 1, n− 1.

The set
{√

2
π

Um−1(t)√
1+m2

}n

m=1
forms an orthonormal system in the space ΠI

and the set
{√

2
πUm−1 (y)

}n

m=1
is an orthonormal system in the space ΠII .
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These sets are the bases of the spaces ΠI and ΠII respectively. Denote
by uIn−2 (t) a polynomial of degree (n− 2) from the space ΠI . Then, this

polynomial can be represented in the form uIn−2 (t) =
∑n−1

m=1 c
I
m

√
2
π

Um−1(t)√
1+m2

,

where cIm =
(
uIn−2,

√
2
π

Um−1√
1+m2

)
ΠI

. Denote by uIIn−2 (y) a polynomial of degree

(n− 2) from the space ΠII . Then, this polynomial can be represented in the

form uIIn−2 (y) =
∑n−1

m=1 c
II
m

√
2
πUm−1 (y), where c

II
m =

(
uIIn−2,

√
2
πUm−1

)
ΠII

.

Now note that inner products (3.1) have an extra form of sum. For any pair
of polynomials uIn−2 and vIn−2 of the space ΠI , we have that

(
uIn−2, v

I
n−2

)
ΠI =∑n−1

m=1 c
I
md

I
m, where the numbers cIm and dIm are the coefficients of the series

for the functions respectively. In the same way, for any pair of polynomials of
the space ΠII , we have

(
uIIn−2, v

II
n−2

)
ΠII =

∑n−1
m=1 c

II
m d

II
m . Also, for the norms

now we have similar extra forms. For any function uIn−2 of the space ΠI , we

have
∥∥uIn−2

∥∥
ΠI =

√∑n−1
m=1 |cIm|2 and for any function uIIn−2 of the space ΠII ,

we have
∥∥uIIn−2

∥∥
ΠII =

√∑n−1
m=1 |cIIm |2.

Let us introduce the following linear operators:

(Ru) (y) = u (y)
√
1− y2, (Au) (y) =

1

π

∫ 1

−1

u (t)

(t− y)
2

√
1− t2dt,

(
Γ−1u

)
(y) =

1

π

∫ 1

−1

u (t)

y − t

√
1−t2dt, (Bu) (y) = 1

π

∫ 1

−1

ln |t−y|u (t)
√
1−t2dt,

(Ku) (y) =
1

π

∫ 1

−1

K (t, y)u (t)
√
1− t2dt.

It is known that the operator A takes a second-kind Chebyshev polynomial
to a similar polynomial and preserves its degree; the operator Γ−1 takes a
polynomial to polynomial too and increasing its degree by one; the operator
B takes a polynomial to a polynomial and increasing its degree by two. The
operators A, Γ−1, and B are defined on all of the space ΠI and acting to the
space ΠII . So, for any natural number m we have the following rules:

A : Um−1 (t) → −mUm−1 (y) , Γ
−1 : Um−1 (t) → Tm (y) ,

B : U0 (t) →
1

2

(
T2 (y)

2
− ln 2

)
if m = 1,

B : Um−1 (t) →
1

2

(
Tm+1 (y)

m+ 1
− Tm−1 (y)

m− 1

)
form ≥ 2.

The operators R and K take the polynomials to the general-form functions.
Let the function uIn−2 belongs to the space ΠI as above. Then the operators
A, Γ−1, and B have the following form in the space ΠII :

(
AuIn−2

)
(y) =

n−1∑
m=1

cIm
−m√
1 +m2

√
2

π
Um−1 (y),
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(
Γ−1uIn−2

)
(y) =

n∑
m=1

(
Γ−1uIn−1,

√
2

π
Um−1

)
ΠII

√
2

π
Um−1 (y), (3.2)

(
BuIn−2

)
(y) =

n+1∑
m=1

(
BuIn−2,

√
2

π
Um−1

)
ΠII

√
2

π
Um−1 (y). (3.3)

These ΠII -representations of operators are important base points for our nu-
merical method for solving hypersingular equation (2.1).

Further note that the operator A is invertible. If a function g belongs to
the set C0,α

[−1,1], then the equation Au = g is solvable in a unique way and

the unknown function u (t) = − 1
π

∫ 1

−1
1

y−t

∫ y

−1
g (τ) dτ dy√

1−y2
, where the outer

integral is singular. The invert operator

(
A−1g

)
(t) = − 1

π

∫ 1

−1

1

y − t

∫ y

−1

g (τ) dτ
dy√
1− y2

takes the polynomial Um−1 (y) to the polynomial − 1
mUm−1 (t), and acts from

the space ΠII to the space ΠI . Since a function uIIn−2 belongs to the space
ΠI , we have that the operator A−1 has the following form in the space ΠI :

(
A−1uIIn−2

)
(t) =

n−1∑
m=1

cIIm
−
√
1 +m2

m

√
2

π

1√
1 +m2

Um−1 (t).

Complete hypersingular integral equation of the second kind (2.1) in oper-
ator terms has the following form:

h (Ru) (y)− (Au) (y) + a
(
Γ−1u

)
(y) + b (Bu) (y) + (Ku) (y) = f (y) . (3.4)

A solution of Equation (3.4) is called an exact solution and the equation is
called the equation for an exact solution.

Denote by LI and LII the supplements of Hilbert spaces ΠI and ΠII

with respect to the norms generated by corresponding inner products (3.1).
The extensions of defined above linear operators to the introduced spaces
LI and LII are denoted by the same symbols. The orthonormal systems{√

2
π

Um−1(t)√
1+m2

}∞

m=1
and

{√
2
πUm−1 (y)

}∞

m=1
are the bases of the spaces LI

and LII respectively. Then, for any function uI (t) of the space LI we have

following representation: uI (t) =
∑∞

m=1 c
I
m

√
2
π

Um−1(t)√
1+m2

, where the coefficient

cIm =
(
uI ,
√

2
π

Um−1√
1+m2

)
ΠI

; for any function uII (y) of the space LII we have

the following representation: uII (y) =
∑∞

m=1 c
II
m

√
2
πUm−1 (t), where the coef-

ficient cIIm =
(
uII ,

√
2
πUm−1

)
ΠII

.

Now and as above we have the extra forms of sum for inner products in the
spaces LI and LII . So, for any functions uI and vI of the space LI , we have(
uI , vI

)
LI =

∑∞
m=1 c

I
md

I
m, where the numbers cIm and dIm are the coefficients

of the series. By the way, for any pair of functions uII and vII of the space

Math. Model. Anal., 28(4):689–714, 2023.
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LII , we have
(
uII , vII

)
LII =

∑∞
m=1 c

II
m d

II
m . The norms have the extra forms

of the sum too. We have
∥∥uI∥∥

LI =
√∑∞

m=1 |cIm|2 for any function uI of the

space LI and
∥∥uII∥∥

LII =
√∑∞

m=1 |cIIm |2 for any function uII of the space LII .

As mentioned above the operators R and K take the polynomials of the
space ΠI to the general-form functions of the space LII . Let uIn−1 be a poly-
nomial from the space ΠI as above. Then the operators R and K have the
following form in the space LII :

(
RuIn−1

)
(y) =

∞∑
m=1

(
RuIn−1,

√
2

π
Um−1

)
LII

√
2

π
Um−1 (y), (3.5)

(
KuIn−1

)
(y) =

∞∑
m=1

(
KuIn−1,

√
2

π
Um−1

)
LII

√
2

π
Um−1 (y).

The ΠII - and LII -representations of operators are good optics for looking
at their properties. Let us consider and collect them. Let us start with the
operators A and A−1. Since∥∥AuIn−1

∥∥2
ΠII =

∑n

m=1

m2

1+m2

∣∣cIm∣∣2 ⩽
∑n

m=1

∣∣cIm∣∣2 =
∥∥uIn−1

∥∥2
ΠI ,

we have
∥∥AuIn−1

∥∥2
ΠII ⩽ 1. We clearly have

∥∥∥A√ 2
π

Um−1√
1+m2

∥∥∥2
LII

= m2

1+m2 and∥∥∥√ 2
π

Um−1√
1+m2

∥∥∥2
LI

= 1. Then the ratio of numbers
∥∥∥A√ 2

π
Um−1√
1+m2

∥∥∥2
LII

and∥∥∥√ 2
π

Um−1√
1+m2

∥∥∥2
LI

is equal to m2

1+m2 −−−−→
m→∞

1. Thus, we obtain ∥A∥LI→LII =

1. By the way and for the operator A−1, from the chain
∥∥A−1uIIn−1

∥∥2
ΠI =∑n

m=1
1+m2

m2

∣∣cIIm ∣∣2 ⩽ 2
∥∥uIn−1

∥∥2
ΠI , it follows that we have

∥∥A−1uIIn−1

∥∥2
ΠI ⩽ 2.

Finally, since
∥∥∥A−1

√
2
πU0

∥∥∥2
LI

= 2, we see that
∥∥A−1

∥∥
LII→LI =

√
2.

Let us move to the operators Γ−1 and B. It is easy to see that the op-
erator Γ−1 is anti-self-adjoint and the operator B is self-adjoint. Using the
properties of adjoint, Cauchy-Bunyakovsky inequality, sum form for norms,

and equalities
∥∥∥Γ−1

√
2
πU0

∥∥∥2
LII

= 1
8 ,
∥∥∥Γ−1

√
2
π

Um−1√
1+m2

∥∥∥2
LII

= 1
2

1
1+m2 for m ⩾ 2,∥∥∥B√ 2

πU0

∥∥∥2
LII

= 1
64

(
8ln22 + 4 ln 2 + 1

)
,
∥∥∥B√ 2

π
Um−1√
1+m2

∥∥∥2
LII

= 17
720 if m = 2,

and
∥∥∥B√ 2

π
Um−1√
1+m2

∥∥∥2
LII

= 1
8

1
1+m2

(
1

(m−1)2
+ 1

m2−1 + 1
(m+1)2

)
for m ⩾ 3, we get

that the operators Γ−1 and B are bounded too. We will bit touch on this point
in Section 4.

It is obvious that the operator R is bounded. So, we have
∥∥RuI∥∥2

LII ⩽∫ 1

−1

∣∣∣√1− y2uI (y)
∣∣∣2√1− y2dy ⩽ max

−1<y<1

(
1− y2

) ∫ 1

−1

∣∣uI (y)∣∣2√1− y2dy ⩽∥∥uI∥∥2
LI . It now follows that

∥∥∥R√ 2
πU0

∥∥∥2
LII

= 3
8 and

∥∥∥R√ 2
π

Um−1√
1+m2

∥∥∥2
LII

=
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1
2

1
1+m2 for m ⩾ 2. The operator K is bounded too; we have the follow-

ing estimations:
∥∥KuI∥∥2

LII ⩽ 1
π2

∫ 1

−1

∫ 1

−1
|K (t, y)|2

√
1− t2dt

√
1− y2dy

∥∥uI∥∥2
LI

and
∥∥∥K√ 2

π
Um−1√
1+m2

∥∥∥2
LII

⩽ 1
π2

∫ 1

−1

∫ 1

−1
|K (t, y)|2

√
1− t2dt

√
1− y2dy 1

1+m2 for

m ⩾ 1.

The main idea of the developed numerical method for integral equation
(3.4) is the assumption that a solution has a polynomial form. The main task
of the development is the left-hand side of Equation (3.4) takes a polynomial
to a general-form function. Therefore, the main task is, as a possible minimum
in the LII -norm sense, to change Equation (3.4) that the left-hand side takes
a polynomial to polynomial and preserves its degree. We shall say that the
changed integral equation is called the equation for an approximate solution,
and the change procedure is called regularization.

4 Interpolation polynomial and regularization of
operators

As mentioned above the operators R, A, Γ−1, B, and K take the elements of
the space ΠI to the different functions. This is an obstacle to the polynomial
discretization of the complete hypersingular integral equation of the second
kind. For eliminating this obstacle, the operators R, Γ−1, B, and K were
regularized. We say that the regularization of an operator is called an operator
that preserves the degree of a polynomial and is close to the regularized operator
in the norm. As we know, this definition was first given to the regularization
of the operator by Prof. Ivan Lifanov in [21]. This definition has become
widespread. It was used in key works [8,12,14,20]. Now the term regularization
of operator continues to be used in this sense.

Let the function un−2 be a polynomial of degree (n− 2). Then, the in-
terpolation polynomial of the function un−2 has following form: un−2 (t) =∑n−1

j=1 un−2

(
tn0j
)
ln−2,j (t), where the function ln−2,j (t) = Un−1(t)

U ′
n−1(tn0j)(t−tn0j)

for

j = 1, n− 1 and are the barycentric form of the Lagrange basis polynomial.

For now, let u be a general-form function and un−2 be the interpolation
polynomial of the function u. Further, we shall denote the interpolation poly-
nomial of a function by an intuitive subscript corresponding to the polynomial
degree. As this is shown in the previous sentence. Let us estimate in the
space LII the deviation of the interpolation polynomial from a function u that
belongs to the set Cr,α

[−1,1]. Denote by En−2 the least deviation of (n− 2)-

degree polynomials of the space ΠII from the function u. So, we have En−2 =
infun−2∈ΠImaxt∈[−1,1] |un−2 (t)− u (t)|. As shown in [23], we have Jackson’s
inequality for the value En−2 and En−2 ⩽ cu

(n−2)r+α , where the number n is at

least r+3 and the constant cu is n-independent. From [23], we have that there
exists a polynomial ũn−2 (t) such that maxt∈[−1,1] |ũn−2 (t)− u (t)| = En−2.
Using the parallelogram inequality, we have ∥un−2 − u∥LII ⩽ ∥ũn−2 − u∥LII +
∥un−2 − ũn−2∥LII . For the first term of the inequality right-hand side, we

clearly have ∥ũn−2 − u∥2LII =
∫ 1

−1
|ũn−2 (y)− u (y)|2

√
1− y2dy ⩽ π

2E
2
n−2. For

Math. Model. Anal., 28(4):689–714, 2023.
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the second term, using the function un−2 − ũn−2 is the (n− 2)-degree polyno-

mial and is equal to
∑n−1

j=1

(
u
(
tn0j
)
− ũn−2

(
tn0j
))
ln−2,j (t), and the rule for the

Lagrange basis polynomials (ln−2,j1 , ln−2,j2)LII = δj1j2

(
1−

(
tn0j1
)2)

, we have

the chain ∥un−2 − ũn−2∥2LII = π
n

∑n−1
j=1

∣∣u (tn0j)− ũn−2

(
tn0j
)∣∣2 (1− (tn0j)2) ⩽

πE2
n−2. Thus, we obtain the following inequality:

∥un−2 − u∥LII ⩽ 2
√
πcu/(n− 2)

r+α
, (4.1)

where the number n is at least r + 3 and the constant cu is n-independent.

Let us shift to the regularization of operators. Denote by Rn−2 the regular-
ization of operator R. Since the operator R has LII -form (3.5), the operator
Rn−2 has the following form:

(Rn−2un−2) (y) = (Run−2) (y)−
∞∑

k=n

(
Run−2,

√
2

π
Uk−1

)
LII

√
2

π
Uk−1 (y)

and (Rn−2un−2) (y) =
∑n−1

k=1

(
Run−2,

√
2
πUk−1

)
LII

√
2
πUk−1 (y). By construc-

tion, the operator Rn−2 takes a polynomial of the space ΠI to a polyno-
mial of the space ΠII and preserves its degree. Since the function Rn−2un−2

is a polynomial and the interpolation polynomial is unique, it follows that

(Rn−2un−2) (y) =
∑n−1

k=1

√
1− (tn0k)

2
un−2 (t

n
0k) ln−2,k (y). Note that we will use

this interpolation form of the operator Rn−2 for our numerical method. Now,
let us estimate the LII -space norm of the difference between operators Rn−2

and R. We have ∥Rn−2un−2 −Run−2∥2LII =
∑∞

k=n

∣∣∣(Run−2,
√

2
πUk−1

)
LII

∣∣∣2.
We need to estimate the value

∣∣∣(Run−2,
√

2
πUk−1

)
LII

∣∣∣ at the top. By defi-

nition,
(
Run−2,

√
2
πUk−1

)
LII

=
∫ 1

−1
un−2 (y)

√
1− y2

√
2
πUk−1 (y)

√
1− y2dy.

Using the way of integration by parts, we get that
(
Run−2,

√
2
πUk−1

)
LII

=

− 1√
2π

∫ 1

−1

(
un−2 (y)

√
1− y2

)′ (
Uk(y)
k+1 − Uk−2(y)

k−1

)√
1− y2dy. By the Cauchy-

Bunyakovsky inequality, we obtain the estimation
∣∣∣(Run−2,

√
2
πUk−1

)
LII

∣∣∣2 ⩽
1
2 ∥un−2∥2LI

1
(k−2)2

. Thus, we clearly have the chain ∥Rn−2un−2 −Run−2∥2LII ⩽
1
2 ∥un−2∥2ΠI

∑∞
k=n

1
(k−2)2

= 1
2 ∥un−2∥2ΠI ψ(1) (n− 2) ⩽ 1

n−2 ∥un−2∥2ΠI , whereby

ψ(1) denoted the polygamma function of order 1 and we used the wiki-known
two-sided estimation 1

n−2+
1

2(n−2)2
⩽ ψ(1) (n− 2) ⩽ 1

n−2+
1

(n−2)2
for all natural

numbers n starting from three. Finally, we obtain the operator Rn−2 is close
to the operator R with respect to the LII -space norm. There is the following
inequality:

∥Rn−2 −R∥ΠI→LII ⩽ 1/
√
n− 2, (4.2)

where the number n is at least three.
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Let Γ−1
n−2 be the regularization of operator Γ−1. Since the operator Γ−1

has ΠII -form (3.2), the operator Γ−1
n−2 has the form

(
Γ−1
n−2un−2

)
(y) =

(
Γ−1un−2

)
(y)−

(
Γ−1un−2,

√
2

π
Un−1

)
LII

√
2

π
Un−1 (y)

and acting from the space ΠI to the space ΠII preserving the degree of the
polynomial. Since the operator Γ−1 is anti-self-adjoint and takes the poly-

nomial Un−1 to Tn, it follows that
(
Γ−1un−2,

√
2
πUn−1

)
LII

√
2
πUn−1 (y) =

− 2
π

∫ 1

−1
un−2 (t)Tn (t)

√
1− t2dtUn−1 (y). By the way, for the operator Γ−1

n−2,

we have
(
Γ−1
n−2un−2

)
(y) = 1

π

∫ 1

−1

(
1

y−t + 2Tn (t)Un−1 (y)
)
u (t)

√
1− t2dt. We

will use this integral form of the operator Γ−1
n−2 for the numerical method. Let us

estimate the closeness of operators Γ−1
n−2 and Γ−1 with respect to the LII -space

norm. We have
∥∥Γ−1

n−2un−2 − Γ−1un−2

∥∥2
LII =

∣∣∣(Γ−1un−2,
√

2
πUn−1

)
LII

∣∣∣2.
Let us estimate the value

∣∣∣(Γ−1un−2,
√

2
πUn−1

)
LII

∣∣∣ at the top. Following

the way of the integration by parts and Cauchy-Bunyakovsky inequality, which

we passed with the operator Rn−2, we obtain
∣∣∣(Γ−1un−2,

√
2
πUn−1

)
LII

∣∣∣2 ⩽
1
2 ∥un−2∥2ΠI

1
(n−2)2

. Thus, we have obtained the operator Γ−1
n−2 is close to the

operator Γ−1 with inequality

∥∥Γ−1
n−2 − Γ−1

∥∥
ΠI→LII ⩽

√
2

2

1

n− 2
, (4.3)

where the number n is at least three.
By Bn−2 denote the regularization of operator B. Since the operator B has

ΠII -form (3.3), the operator Bn−2 has the following form:

(Bn−2un−2) (y) = (Bun−2) (y)−

(
Bun−2,

√
2

π
Un−1

)
LII

√
2

π
Un−1 (y)

−

(
Bun−2,

√
2

π
Un

)
LII

√
2

π
Un (y) .

The operator Bn−2 is acting from the space ΠI to the space ΠII and takes
the (n− 2)-degree polynomial to the polynomial of the same degree. Since the
operator Bn−2 is self-adjoint and takes the polynomial Un−1 to the polynomial
1
2

(
Tm+1(y)
m+1 − Tm−1(y)

m−1

)
for all natural numbers m without 1, it follows that

the second term from the right-hand side of the representation of the operator

Bn−2 is equal to 1
π

∫ 1

−1
un−2 (t)

(
Tn+1(t)
n+1 − Tn−1(t)

n−1

)√
1− t2dtUn−1 (y) and the

third term is 1
π

∫ 1

−1
un−2 (t)

(
Tn+2(t)
n+2 − Tn(t)

n

)√
1− t2dtUn (y). So, by the way,

for the operator Bn−2, we get the following integral form: (Bn−2un−2) (y) =
1
π

∫ 1

−1

(
ln |t− y| −

(
Tn+1(t)
n+1 − Tn−1(t)

n−1

)
Un−1 (y) −

(
Tn+2(t)
n+2 − Tn(t)

n

)
Un (y)

)
·
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un−2 (t)
√
1− t2dt. We will use this form for the numerical method. Let us

estimate the difference between operators Bn−2 and B with respect to the LII -

space norm. We have ∥Bn−2un−2 −Bun−2∥2LII =
∣∣∣(Bun−2,

√
2
πUn−1

)
LII

∣∣∣2 +∣∣∣(Bun−2,
√

2
πUn

)
LII

∣∣∣2. We need to estimate at the top the values of two

terms from the right-hand side. Using the integration by parts and Cauchy-

Bunyakovsky inequality, we get two inequalities
∣∣∣(Bun−2,

√
2
πUn−1

)
LII

∣∣∣2 ⩽

3
8 ∥un−2∥2ΠI

1
(n−2)4

and
∣∣∣(Bun−2,

√
2
πUn

)
LII

∣∣∣2 ⩽ 3
8 ∥un−2∥2ΠI

1
(n−2)4

. Finally,

we have obtained that the operator Bn−2 is close to the operator B and the
following inequality is true:

∥Bn−2 −B∥ΠI→LII ⩽

√
3

2

1

(n− 2)
2 , (4.4)

where the number n is at least three.
Let the function Kn−2 be the (n− 2)-degree interpolation polynomial of

the two-variables function K with the nod set
{
tn0j
}n−1

j=1
and with respect to

each variable. Then, we have equalities Kn−2

(
tn0j , t

n
0k

)
= K

(
tn0j , t

n
0k

)
for j =

1, n− 1 and k = 1, n− 1. By Kn−2,1 denote the (n− 2)-degree interpolation

polynomial for the first variable of the functionK with the nod set
{
tn0j
}n−1

j=1
and

by Kn−2,1 denote the (n− 2)-degree interpolation polynomial for the second
variable. Denote by Kn−2 the regularization of operator K and for (n− 2)-
degree polynomial from the space ΠI , we have

(Kn−2un−2) (y) =
1

π

∫ 1

−1

Kn−2 (t, y)un−2 (t)
√
1− t2dt.

The operator Kn−2 takes a polynomial to a polynomial and preserves its degree.
Let us show that the operator Kn−2 is close to operator K with respect to the
LII -space norm. Since the functionK belongs to the set C1,α

[−1,1] in each variable

uniformly with respect to another one, we have two following inequalities by
estimation (4.1):(∫ 1

−1

|Kn−2,1 (t, y)−K (t, y)|2
√
1− t2dt

)1/2
⩽

2
√
πcK

(n− 2)
1+α , (4.5)

(∫ 1

−1

|Kn−2,2 (t, y)−K (t, y)|2
√

1− y2dy
)1/2

⩽
2
√
πcK

(n− 2)
1+α ,

where the number n is at least three, the constant cK is independent of n, and
the constant α is the Hölder exponent and greater than zero. Using the Cauchy-
Bunyakovsky inequality, we get the estimation ∥Kn−2un−2 −Kun−2∥LII ⩽
1
π

√∫ 1

−1

∫ 1

−1
|Kn−2 (t, y)−K (t, y)|2

√
1− t2dt

√
1− y2dy∥un−2∥LI . Let us add

and subtract the interpolation polynomialKn−2,2 from the functionKn−2 −K.
By the triangle inequality, we get that the cumbersome second factor of the
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estimation is less than or equal to the sum of two following no less cum-

bersome terms:

√∫ 1

−1

(∫ 1

−1
|Kn−2,1 (t, y)−K (t, y)|2

√
1− t2dt

)
n−2,2

√
1− y2dy

and
√∫ 1

−1

∫ 1

−1
|Kn−2,2 (t, y)−K (t, y)|2

√
1− t2dt

√
1− y2dy. Remind that the

subscript is related to interpolation and denotes the degree of the polyno-
mial and the number of variable. Also, the first term is based on the rule∫ 1

−1
|un−2 (t)|2

√
1− t2dt =

∫ 1

−1

(
|u (t)|2

)
n−2

√
1− t2dt. Using the quadrature

formula
∫ 1

−1
un−2 (t)

√
1− t2dt = π

n

∑n−1
j=1 un−2

(
tn0j
) (

1−
(
tn0j
)2)

and inequal-

ity (4.5), we obtain that the first term is equal to the cumbersome expression√
π
n

∑n−1
j=1

(∫ 1

−1

∣∣Kn−2,1

(
t, tn0j

)
−K

(
t, tn0j

)∣∣2√1− t2dt
)
n−2,2

(
1−

(
tn0j
)2)

and

is not greater than the miniature fraction 2πcK
(n−2)1+α . To estimate the second

term, we use inequality (4.5). So, the second term is bounded by the fraction
πcK

(n−2)1+α . Thus, we obtain that the operator Kn−2 is close to the operator K
with respect to the LII -space norm. There is the following inequality:

∥Kn−2 −K∥ΠI→LII ⩽ 3cK/(n− 2)
1+α

, (4.6)

where the number n is at least three, the constant cK is independent of n, and
the constant α is the Hölder exponent and greater than zero.

Thus, the operators Rn−2, Γ
−1
n−2, Bn−2, and Kn−2 are defined as the result

of the regularization procedure. All of them are acting from the space ΠI to
the space ΠII , preserve a polynomial degree, and are closed in norm to the
operators R, Γ−1, B, and K respectively. We have that the left-hand side
of Equation (3.4) is boundedly changed with estimates (4.2)–(4.6). It takes a
polynomial to a polynomial and preserves its degree.

Note that there are other regularization methods. For example, in the
book [24], an interpolation polynomial was used to regularize the operator.

Denote by fn−2 (y) the (n− 2)-degree interpolation polynomial of the func-

tion f (y) with nod set
{
tn0j
}n−1

j=1
. Then, we have equalities fn−2

(
tn0j
)
= f

(
tn0j
)

for j = 1, n− 1. Since estimation (4.1), the following inequality is true:

∥fn−2 − f∥LII ⩽
2
√
πcf

(n− 2)
α , (4.7)

where the number n is at least three, the constant cf is independent of n, and
the constant α is the Hölder exponent and greater than zero.

Finally, the equation for an approximate solution is defined as the result
of the regularization procedure. It is the regularized complete hypersingular
integral equation of the second kind and it has the following operator form:

h (Rn−2un−2) (y)− (Aun−2) (y)
+a
(
Γ−1
n−2un−2

)
(y) + b (Bn−2un−2) (y)

+ (Kn−2un−2) (y) = fn−2 (y) .
(4.8)

Math. Model. Anal., 28(4):689–714, 2023.
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5 Discretization: quadrature formulae and system of
linear algebraic equations

This section is about the discretization of Equation (4.8) for an approximate
solution. Using quadrature formulae of interpolation type by the Nyström
way, we transform it to a system of linear algebraic equations. Suppose that
a solution of Equation (4.8) has the form of (n− 2)-degree polynomial. Then,
the left-hand and right-hand sides of Equation (4.8) are polynomials of degree
(n− 2). The coincidence of these polynomials at (n− 1) different points is
necessary and sufficient for the identity of the left-hand and right-hand sides
of Equation (4.8). Assume that y is equal to tn0j for j = 1, n− 1. Then,
Equation (4.8) is transformed to (n− 1) equalities

h (Rn−2un−2)
(
tn0j
)
− (Aun−2)

(
tn0j
)
+ a

(
Γ−1
n−2un−2

) (
tn0j
)

(5.1)

+ b (Bn−2un−2)
(
tn0j
)
+ (Kn−2un−2)

(
tn0j
)
= fn−2

(
tn0j
)
, for j = 1, n− 1.

Now let us reduce system (5.1) to the system of linear algebraic equations.
We use the quadrature formulae of interpolation type [9, 12]. These formulae
are representations of the operators Rn−2, A, Γ

−1
n−2, Bn−2, and Kn−2 in the

polynomial space ΠII . For the operator Rn−2, we have the following formula:

(Rn−2un−2)
(
tn0j
)
=

n−1∑
k=1

a
(1)
jk un−2 (t

n
0k), for j = 1, n− 1, (5.2)

where the coefficient a
(1)
jk = 0 for k ̸= j and a

(1)
jk =

√
1− (tn0k)

2
for k = j, and

k = 1, n− 1. For the operator A we have

(Aun−2)
(
tn0j
)
=

n−1∑
k=1

a
(2)
jk un−2 (t

n
0k), for j = 1, n− 1,

where the coefficient a
(2)
jk = 1

n

(
1− (tn0k)

2
)

(−1)k+j+1+1

(tn0j−tn0k)
2 for k ̸= j and a

(2)
jk = −n

2

for k = j, and k = 1, n− 1. For the operator Γ−1
n−2 we have

(
Γ−1
n−2un−2

) (
tn0j
)
=

n−1∑
k=1

a
(3)
jk un−2 (t

n
0k), for j = 1, n− 1,

where the coefficient a
(3)
jk = 1

n

(
1− (tn0k)

2
)

(−1)j+k+1+1
tn0j−tn0k

for k ̸= j and a
(3)
jk = 0

for k = j, and k = 1, n− 1. The quadrature formula is different too. Let us
show the way of this quadrature formula of interpolation type. The derivation
of other formulae goes similarly.

So, we have un−2 (t) =
∑n−1

j=1 un−2

(
tn0j
)
ln−2,j (t) and

(
Γ−1
n−2un−2

)
(y) =∑n−1

j=1 un−2

(
tn0j
) (
Γ−1
n−2ln−2,j

)
(y). Further, it is easy to see that

(
Γ−1
n−2ln−2,j

)
(y) =

1
n (−1)

j
(
1−

(
tn0j
)2) Tn(y)−Tn(tn0j)

y−tn0j
+ 2

n (−1)
j
(
1−

(
tn0j
)2)

Un−1 (y). Using
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L’Hospital’s rule in a neighborhood of the point tn0j , we get
(
Γ−1
n−2ln−2,j

) (
tn0j
)
=

0 for j = 1, n− 1. If y = tn0k and k ̸= j, then(
Γ−1
n−2ln−2,j

)
(tn0k) =

1
n

(
1− (tn0k)

2
)

(−1)j+k+1+1
tn0j−tn0k

.

For the operator Bn−2 we have

(Bn−2un−2)
(
tn0j
)
=

n−1∑
k=1

a
(4)
jk un−2 (t

n
0k), for j = 1, n− 1,

where the coefficient a
(4)
jk = − 1

n

(
1− (tn0k)

2
)(

ln 2 + 2
∑n−1

M=1

TM (tn0k)TM(tn0j)
M +

2(−1)j+k

n − (−1)jTn+2(t
n
0k)

n+2

)
for k = 1, n− 1. For the operator Kn−2 we have

(Kn−2un−2)
(
tn0j
)
=

n−1∑
k=1

a
(5)
jk un−2 (t

n
0k), for j = 1, n− 1, (5.3)

where the coefficient a
(5)
jk = 1

n

(
1− (tn0k)

2
)
Kn−2

(
tn0j , t

n
0k

)
for k = 1, n− 1.

After transformation by quadrature formulae (5.2)–(5.3), the left-hand side
of system (5.1) will take the form of a linear combination of the values of the
unknown function at the interpolation nodes un−2

(
tn0j
)
, j = 1, n− 1. Thus, we

obtain the system of linear algebraic equations for the vector
(
un−2

(
tn0j
))n−1

j=1

and that has form

n−1∑
k=1

ajkun−2 (t
n
0k) = fn−2

(
tn0j
)
, for j = 1, n− 1, (5.4)

where the coefficients ajk = ha
(1)
jk − a

(2)
jk + aa

(3)
jk + ba

(4)
jk + a

(5)
jk .

Note that the terms a
(2)
jk for k = j have the greatest value in the coefficients

ajk, j = 1, n− 1, k = 1, n− 1. The term −n
2 is included in each diagonal

element of the matrix of system of equations (5.4). All other terms that form
the coefficients of the matrix are bounded or decrease as the ratio 1

n with
increasing the number n. Therefore, the diagonal elements exceed the other
elements of the matrix rows respectively. This is a useful point and highlights
the presented numerical method.

After system of linear algebraic equations (5.4) is solved and the compo-

nents of the vector
(
un−2

(
tn0j
))n−1

j=1
are obtained, an approximate solution of

Equation (2.1) is constructed as follows: un−2 (t) =
∑n−1

j=1 un−2

(
tn0j
)
ln−2,j (t).

Finally, we have the following summary theorem.

Theorem 1. The interpolation polynomial constructed by the solution of sys-
tem of linear algebraic equations (5.4) is an approximate solution of complete
hypersingular integral equation of the second kind (2.1).
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6 Theorem on existence and uniqueness of a solution of
the complete second-kind hypersingular integral
equation

In the section, we shall prove an existence and uniqueness criterion for a solution
of second-kind complete hypersingular integral Equation (2.1). To prove it, we
need the following theorems.

Theorem 2. The operator A acting from the space LI to the space LII is
bounded with the equality ∥A∥LI→LII = 1 and boundedly invertible, i.e., there
exists the operator A−1 acting from the space LII to the space LI with the
equality

∥∥A−1
∥∥
LII→LI =

√
2.

Indeed, this theorem has already been proved in Section 3 and sums up the
obtained results.

Further, we need equipment to characterize the compactness of operators.

Theorem 3. Let the set {em}∞m=1 be an orthonormal basis of a Hilbert space
X, let Y be a Banach space, let Q be a bounded linear operator, and the series∑∞

m=1 ∥Qem∥2Y is convergent; then the operator Q is compact.

Proof. The idea is to approximate the operator Q by a sequence of compact
operators. Let us denote the sequence of operators by Qn for all natural num-
bers n. We will construct the sequence of operators acting from the Hilbert
space X to the Banach space Y based on the operator Q. Let us start by defin-
ing the operator Qn on the basis {em}∞m=1 of the spaceX. Let Qnem = Qem for
m ⩽ n and Qnem = 0 for m > n. Now let us extend the operator Qn to all ele-
ments of the space X. Denote by x any element of the space X. Then we have
x =

∑∞
m=1 (x, em)Xem and Qnx =

∑n
m=1 (x, em)XQnem. So, we have con-

structed the sequence Qn. All operators in the sequence are finite-dimensional.
Hence all of them are compact.

It is clear, that the operator Q has the form Qx =
∑∞

m=1 (x, em)XQem.
Let us estimate the value ∥Qx−Qnx∥Y . Using Hölder’s inequality for the

series, we get the chain

∥Qx−Qnx∥Y =
∥∥∥ ∞∑
m=n+1

(x, em)XQem

∥∥∥
Y
⩽

∞∑
m=n+1

|(x, em)X | ∥Qem∥Y

⩽
( ∞∑
m=n+1

|(x, em)X |
)1/2( ∞∑

m=n+1

∥Qem∥Y
)1/2

.

By Bessel’s inequality, we have
∑∞

m=n+1 |(x, em)X | ⩽
∑∞

m=1 |(x, em)X | ⩽

∥x∥2X . Then

∥Q−Qn∥X→Y = sup
x ̸=0

∥Qx−Qnx∥Y
∥x∥X

⩽
( ∞∑
m=n+1

∥Qem∥Y
)1/2

.

Since the series
∑∞

m=1 ∥Qem∥2Y converges by assumption, it follows in the usual
way that limn→∞

∑∞
m=n+1 ∥Qem∥Y = 0 for the tail of the convergent series.
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Finally, we obtain limn→∞∥Q−Qn∥x→Y = 0 and the operator Q is compact
by the Theorem of the subspace of compact operators. ⊓⊔

Now, having Theorem 3, we can easily analyze the compactness of the
operators that form the left-hand side of Equation (2.1).

Theorem 4. The operators R, Γ−1, B, and K acting from the space LI to the
space LII are compact.

Proof. It is almost trivial, using Theorem 3 and the preproved supports.
Sections 3 and 4 are presented that the linear operators R, Γ−1, B, and K
are bounded in the pair of Hilbert spaces LI and LII . We have the ba-

sis
{√

2
π

Um−1(t)√
1+m2

}∞

m=1
for the space LI . Also, the values

∥∥∥R√ 2
π

Um−1√
1+m2

∥∥∥2
LII

,∥∥∥Γ−1
√

2
π

Um−1√
1+m2

∥∥∥2
LII

,
∥∥∥B√ 2

π
Um−1√
1+m2

∥∥∥2
LII

, and
∥∥∥K√ 2

π
Um−1√
1+m2

∥∥∥2
LII

are such that

their series over all natural numbers m are convergent.
So, by Theorem 3, the operators R, Γ−1, B, and K acting from the space

LI to the space LII are compact. ⊓⊔

Now note that the operator hR + aΓ−1 + bB + K is compact as a sum of
the compact operators.

In [15] was presented the next theorem.

Theorem 5. Let T be a compact operator and let I be the identity operator.
The operators acting from a Banach space to Banach space. Then the follow-
ing conditions are equivalent: a) the equation (I − T )x = y is solvable for
any right-hand side; b) the equation (I − T )x = 0 does not have non-trivial
solutions; c) the equation (I − T )x = y is solvable in a unique way for any
right-hand side.

To prove the existence and uniqueness criterion for a solution of Equa-
tion (2.1), we also need the well-known statement on the compactness of the
composition of compact and bounded operators, e.g., this statement is given
in [15].

Now we present and prove the existence and uniqueness criterion for a
solution of the second-kind complete hypersingular integral equation.

Criterion 1. Second-kind complete hypersingular integral equation (2.1) has a
unique solution in the space LI for any right-hand side from the space LII if
and only if the corresponding homogeneous equation has no non-zero solution.

Proof. Suppose that the homogeneous complete hypersingular integral equa-
tion of the second kind has no non-zero solution. Let us prove that a solution
of Equation (3.4) exists and is unique. We transform hypersingular equation
(3.4). Let us apply to both sides of Equation (3.4) the operator −A−1 acting
from the space LII to the space LI . By Theorem 2, this operator exists. We
have

(Iu) (y)−
((
A−1

(
hR+ aΓ−1 + bB +K

))
u
)
(y) = −

(
A−1f

)
(y) .
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By remark to Theorem 4, the operator hR + aΓ−1 + bB + K acting from
the space LI to the space LII is compact. By Theorem 2, the operator A−1

is bounded. Then, the operator A−1
(
hR+ aΓ−1 + bB +K

)
acting from the

space LII to the space LI is compact too as the composition of compact and
bounded operators. Since, by assumption, the homogeneous complete hyper-
singular integral equation does not have a non-zero solution, by Theorem 5 the
equation is uniquely solvable for any right-hand side from the space LII .

Suppose that a solution of Equation (3.4) exists and is unique. Then, by
Theorem 5, we have that the corresponding homogeneous complete hypersin-
gular integral equation of the second kind has not a non-zero solution. ⊓⊔

Let us note that Criterion 1 corresponds to a Fredholm’s theorem. Also,
note that the boundary second-kind complete hypersingular integral equation,
obtained by solving the diffraction and scattering problems and presented in
[17, 19], satisfies the criterion for the existence and uniqueness of a solution
mentioned above. The corresponding homogeneous complete hypersingular
integral equation does not have a non-zero solution. The basis of this is that
the integral equation is obtained by equivalent transformations of a pair sum
equation which is based on the Fourier series.

Let us justify the solvability of system of linear algebraic equations (5.4).
Since the regularized operators are qualitatively identical to the original ones,
we have that Criterion 1 naturally extend to regularized complete hypersingular
integral equation of the second kind (4.8). Thus, we obtain criteria for the
existence and uniqueness of a solution to equation (4.8) in the corresponding
spaces. Suppose that a solution of complete hypersingular integral equation
of the second kind (2.1) exists and is unique. Then, a solution of regularized
complete hypersingular equation (4.8) also exists and is unique. As mentioned
above, the interpolation polynomial constructed by the solution of system (5.4)
is an exact solution of the system. If system of linear algebraic equations (5.4)
is incompatible or has many solutions, then we get a contradiction to a solution
of regularized equation (4.8) exists and is unique. A solution of the regularized
equation is an interpolation polynomial, which is constructed uniquely. Finally,
we have that if a solution of complete hypersingular integral equation (2.1)
exists and is unique, then a solution of system of linear algebraic equations
(5.4) also exists and is unique.

7 Rate of convergence of a sequence of approximate
solutions to an exact solution

The estimate of the norm of the difference of an exact solution of Equation (2.1)
and its approximate solution, i.e., the solution of Equation (4.8), is obtained
by the following theorem from [7].

Theorem 6. Let X and Y be the Banach spaces, let {Xn}∞n=1 and {Yn}∞n=1 be
the subsequences of their finite-dimensional subspaces, respectively, let Q and
Qn be the linear operators acting from the space X to the space Y and from
the spaces {Xn}∞n=1 to the spaces {Yn}∞n=1, respectively, and let Qx = y and
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Qnxn = yn be the equations. Assume that the following conditions are satisfied:
a) the operator Q is invertible; b) the quantity ε(n) = ∥Q−Qn∥Xn→Y −−−−→

n→∞
0;

c) for any number n we have dimXn = dimYn < ∞; d) the quantity δ(n) =
∥y − yn∥Y −−−−→

n→∞
0.

Then, for all n satisfying the inequality pn =
∥∥Q−1

∥∥
Y→X

∥Q−Qn∥Xn→Y <
1 the equation Qnxn = yn has a unique solution denoted by x∗n for any right-
hand side and there are two inequalities ∥x∗n∥Xn

⩽
∥∥Q−1

∥∥
Y→Xn

∥yn∥Yn
and∥∥Q−1

∥∥
Y→Xn

⩽
∥Q−1∥

Y →X

1−pn
. The rate of convergence of the sequence of ap-

proximate solutions to exact solution denoted by x∗ can be estimated as fol-
lows: αn

∥Q∥X→Y
⩽ ∥x∗ − x∗n∥X ⩽ αn

∥∥Q−1
∥∥
Y→X

, where the number αn =

∥(y − yn) + (Qn −Q)x∗n∥Y , and

∥x∗ − x∗n∥X ⩽

∥∥Q−1
∥∥
Y→X

1− pn
(∥y − yn∥Y + pn∥y∥Y ) = O

(
ε(n) + δ(n)

)
.

Thus, Theorem 6, estimates (4.2), (4.3), (4.4), (4.6), (4.7), and the paral-
lelogram inequality∥∥hR− hRn−2 + aΓ−1 − aΓ−1

n−2 + bB − bBn−2 +K−Kn−2

∥∥
ΠI→LII

+∥fn−2 − f∥LII ⩽
|h|√
n− 2

+

√
2

2

|a|
n− 2

+

√
3

2

|b|
(n− 2)

2 +
3cK

(n− 2)
1+α

+
2
√
πcf

(n− 2)
α <

max
{
|h| ,

√
2
2 |a| ,

√
3
2 |b| , 3cK , 2

√
πcf

}
(n− 2)

min{ 1
2 ,α}

are the basis for the main theorem of the section. Furthermore, this large
inequality is a good point of view on the convergence of the presented numerical
method. It is clearly seen that inequalities (4.2) and (4.7) determined the
rate of convergence. Their right-hand sides are proportional to the fractions

1√
n−2

and 1
(n−2)α respectively. The parameter α comes from belonging the

function f to the set C0,α
[−1,1]. Quite often, in practice, the function f has large

numerical indicators of smoothness. By the way, the estimation is improving.
But inequality (4.2) keeps the rate of convergence at the level 1√

n−2
. Of course,

if the parameter |h| is equal to 0 and the right-hand side of Equation (2.1) has
better smoothness, then the convergence rate is better, but that is another
issue.

So, we have the main theorem on the convergence of the numerical method.

Theorem 7. If the exact solution of complete hypersingular integral equation
of the second kind (2.1) exists, for sufficiently large values of the number n, an
approximate solution of Equation (2.1) is close to the exact solution and there
is the following inequality:

∥u− un−2∥LI ⩽
c

(n− 2)
min{ 1

2 ,α}
, (7.1)

where the number n is at least three, the constant c is n-independent and equal to

the maximum of the numbers |h|,
√
2
2 |a|,

√
3
2 |b|, 3cK , and 2

√
πcf from estimates

(4.2), (4.3), (4.4), (4.6), and (4.7).
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Let us remark that inequality (7.1) is an important point for the analysis
of applied problems. It helps to estimate the rate of convergence of the phys-
ical sense linear functionals of an approximate solution to their values of an
exact solution. For example, we have to calculate such functionals for solving
the diffraction and scattering problems which are reduced to the considered
complete hypersingular integral equation of the second kind.

8 Model problem and numerical convergence

In this section, we illustrate the presented numerical method. We use it to solve
a model problem. The model problem is the complete hypersingular integral
equation of the second kind and its exact solution. The model problem was
constructed using the methods of exact calculations of singular integrals were
shown in [25] and the relationship between singular and hypersingular integrals
was presented in [9]. We will obtain the subsequence of approximate solutions
and compare them with an exact solution. This allows us to estimate the
numerical convergence of our method and characterize it empirically.

The model hypersingular integral equation includes the first four terms of
the left-hand side of Equation (2.1). Three of them were regularized and have
influenced the rate of convergence of numerical method with estimates (4.2)–
(4.4). So, the model complete hypersingular integral equation of the second
kind has the following form:

hu (y)
√
1− y2 − 1

π

∫ 1

−1

u (t)

(t− y)
2

√
1− t2dt+

a

π

∫ 1

−1

u (t)

t− y

√
1− t2dt

+
b

π

∫ 1

−1

ln |t− y|u (t)
√
1− t2dt = h sin ysh

√
1− y2 + sin ych

√
1− y2

+
y√

1− y2
cos ysh

√
1− y2 + a

(
cos ych

√
1− y2 − 1

)
+ b

∫ y

0

(
cos τch

√
1− τ2 − 1

)
dτ. (8.1)

The exact solution of integral equation (8.1) has the next form: u (t) =

− sin t sh
√
1−t2√

1−t2
. Denote by un−2 an approximate solution of Equation (8.1).

Note that the function u is uneven and real. Then, it is natural to expect that
the function un−2 is uneven and real too.

Let us remark that Equation (8.1) is close in form to the equations of the
mathematical theory of diffraction and scattering of waves presented in [17,19].
Comparison of the exact solution of Equation (8.1) with the approximate solu-
tions obtained using the numerical method is an empirical validation test and
a characteristic of the method applicability. As noted above, the regulariza-
tion of operators influences the rate of convergence and the comparison results
numerically estimate this effect.

Table 1 shows the results of a numerical analysis of model complete hyper-
singular integral equation of second kind (8.1) by the numerical method.

For the numerical analysis we suppose that the parameters h = 0.1− 0.3i,
a = 2i, and b = 8. Such parameter values are associated with applied problems
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Table 1. The values of exact and approximate solutions.

Modulus of
Real Imaginary difference between

Exact part of approxi- part of approxi- exact and approxi-
solution, mate solution, mate solution, mate solutions,

n j u
(
tn0j

)
Re

(
un−2

(
tn0j

))
Im

(
un−2

(
tn0j

)) ∣∣∣(u− un−2)
(
tn0j

)∣∣∣
4 1 −0.766001565264209 −0.744006372879521 2.20× 10−2 2.20× 10−2

2 −0.352087876852657 −0.364834348544664 −6.21× 10−3 1.27× 10−2

9 1 −0.827047091227887 −0.827045749330590 −2.33× 10−7 1.34× 10−6

2 −0.766001565264209 −0.766002675648515 9.98× 10−8 1.11× 10−6

3 −0.617019617229588 −0.617018843519980 −1.18× 10−8 7.74× 10−7

4 −0.352087876852657 −0.352088266848951 −7.62× 10−8 3.90× 10−7

15 1 −0.836215500091829 −0.836215500092045 2.25× 10−14 2.16× 10−13

2 −0.817565113714310 −0.817565113714107 −1.77× 10−14 2.02× 10−13

3 −0.777525770694384 −0.777525770694565 1.12× 10−14 1.82× 10−13

4 −0.705142985386376 −0.705142985386223 −4.65× 10−15 1.53× 10−13

5 −0.590335631293662 −0.590335631293782 −1.21× 10−15 1.19× 10−13

6 −0.428845903728567 −0.428845903728486 5.84× 10−15 8.15× 10−14

7 −0.226464167898581 −0.226464167898622 −8.28× 10−15 4.12× 10−14

and do not reduce the contribution of the regularized operators. Since the
functions u and un−2 are uneven and the identity tn0n−j = −tn0j for j = 1, n,
the j-index value runs over all integers from 1 to the integer part of the ratio
n
2 . In numbers presented in Table 1, the significant digits are underlined.

Let us estimate the numerical convergence of the method. The data listed in
Table 1 show that an increase in the number n leads to a better approximation
of the exact solution by approximate solutions. So, when the number n = 4,
then we have a difference between exact and approximate solutions starting
from the second digit after a decimal sign. When the number n = 9, then the
difference is starting from the sixth digit. And when the number n = 15, we
have the difference starting from the twelfth and thirteenth digits. Since the
graphic accuracy is achieved when an approximate solution has three or four
significant digits, we have very good numerical convergence. Note that the
numerical convergence significantly exceeds a priori estimate (7.1). This is a
positive point of the method.

The approximate solutions have a non-trivial imaginary part. This is be-
cause parameters h and a are complex numbers. But the imaginary part of an
approximate solution is expected close to zero. A real part is close to the exact
solution. The modulus of the difference between the exact and approximate
solutions is small and increases slightly as the argument is approaching an edge
of interval (−1, 1). Figure 1 a) shows the graphs of the functions u and un−2

when the number n = 4. We see that the functions are very close. Although
as shown in Table 1, the approximate solution has just two significant digits.
Some differences in the graphs appear near the edges of interval (−1, 1).

For analyzing the numerical convergence and error of the method, the ob-
tained data were averaged. We used the following rules:

Math. Model. Anal., 28(4):689–714, 2023.
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- 1 , 0 - 0 , 5 0 , 0 0 , 5 1 , 0- 1 , 0

- 0 , 5

0 , 0

0 , 5

1 , 0
u(t

), R
e(u

n-2
(t))

t

 u ( t )
 R e ( u n - 2 ( t ) ) ,  n = 4

a)

- 1 , 0 - 0 , 5 0 , 0 0 , 5 1 , 0- 1 , 0

- 0 , 5

0 , 0

0 , 5

1 , 0

u(t
), R

e(u
n-2

(t))

t

 u ( t )
 R e ( u n - 2 ( t ) ) ,  n = 9

b)

Figure 1. The graphs of exact and approximate solutions.

� En−2 =
∫ 1

−1
|u (t)− un−2 (t)| dt, the sample mean for estimating of

error;

�

√
Dn−2 =

√∫ 1

−1
(|u (t)− un−2 (t)| dt− En−2)

2
dt, the square root of

the unbiased sample variance for estimating the mean deviation;

� Mn−2 = max−1≤t≤1 |u (t)− un−2 (t)|, the maximum distance between
the exact and approximate solutions for estimating the maximum devia-
tion;

� ∥u− un−2∥LI , the norm of the difference between exact and approxi-
mate solutions for estimating the deviation in the space LI ;

� ∥u− un−2∥LII , for estimating the deviation in the space LII .

Table 2 presents the averaged data about error analysis of the numerical
method. There are the mean error, the mean deviation, the maximum devi-
ation, and deviations in the spaces LI and LII . These results were obtained
by using the numerical method for integral equation (8.1) with the above pa-
rameters. We see that an increase in the number n leads to a quick decrease
of the mean error from 4.37 × 10−2 when the number n = 4 to 2.35 × 10−13

when the number n = 15. The other error characteristics are quickly decreasing
too. Let us remark that this exceeds the a priori estimate of the method and
characterizes the numerical convergence as good.

Figure 1 b) presents the graphs of the functions u and un−2 when the num-
ber n = 9. We see that the functions graphically coincide. The approximate
solution has six significant digits, as shown in Table 2. Thus, changing the
number n from 4 to 9 leads to the graphic coincidence of the approximate and
exact solutions on all points of interval (−1, 1).

As presented in Table 1 and Table 2, when the number n = 15, the functions
u and un−2 are closer. The values of function un−2 have twelfth and thirteenth
significant digits.

The presented numerical analysis results of model second-kind hypersingu-
lar integral equation (7.1) by the developed method are shown a slight difference
between the exact and approximate solutions in the neighbourhood of the edges
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Table 2. The averaged error analyze data.

Mean Mean Maximum Deviation in Deviation in
error, deviation, deviation, the space LI , the space LII ,

n En−2

√
Dn−2 Mn−2 ∥u− un−2∥LI ∥u− un−2∥LII

3 1.84× 10−1 1.85× 10−1 3.34× 10−1 1.51 6.79× 10−1

4 4.37× 10−2 4.15× 10−2 9.24× 10−2 3.27× 10−1 1.23× 10−1

5 7.94× 10−3 8.75× 10−3 2.37× 10−2 1.01× 10−1 2.66× 10−2

6 7.88× 10−4 7.95× 10−4 2.44× 10−3 2.16× 10−3 5.12× 10−3

7 1.33× 10−4 1.57× 10−4 5.73× 10−4 2.60× 10−3 4.75× 10−4

8 9.27× 10−6 9.46× 10−6 3.62× 10−5 5.30× 10−4 8.58× 10−5

9 1.40× 10−6 1.74× 10−6 7.86× 10−6 4.06× 10−5 5.54× 10−6

10 7.54× 10−8 7.82× 10−8 3.53× 10−7 7.42× 10−6 9.13× 10−7

11 1.05× 10−8 1.32× 10−8 6.93× 10−8 4.16× 10−7 4.53× 10−8

12 4.44× 10−10 4.71× 10−10 2.42× 10−9 6.77× 10−8 6.72× 10−9

13 5.56× 10−11 7.27× 10−11 4.30× 10−10 2.99× 10−9 2.70× 10−10

14 2.01× 10−12 2.15× 10−12 1.22× 10−11 4.35× 10−10 3.62× 10−11

15 2.35× 10−13 3.04× 10−13 1.98× 10−12 1.59× 10−11 1.22× 10−12

of interval (−1, 1) when the number n is small. In the central part of the inter-
val, accuracy is increasing. The number of significant digits of the real part of
the approximate solution increases and the imaginary part tends to zero. When
the number n increases the mean error and deviations are quickly decreasing.
The deviation is much smaller than a priori estimate (7.1). When the num-
ber n = 9, the graphs of exact and approximate solutions graphically coincide
as shown in Figure 1 b). Finally, the obtained numerical results marked the
numerical convergence of our method as good.

9 Conclusions

We presented the new Nyström-type numerical method for solving the complete
hypersingular integral equation of the second kind.

The main advantage of the numerical method lies in the content of the
matrix of the system of linear algebraic equations for the values of the un-
known function at the interpolation nodes. All elements of the main diagonal
of the matrix are proportional to the number n. The other matrix elements
are inversely proportional to the number n or limited. Thus, we have a well-
conditioned matrix and it looks like diagonal dominance one. Moreover, in the
numerical analysis of diffraction and scattering problems, we always have the
experimentally substantiated diagonal dominance of the matrices.

The numerical method is justified. The criterion of existence and uniqueness
is proved. The criterion has related the existence and uniqueness of a solution
of the hypersingular equation by a solution of the corresponding homogeneous
equation. It is convenient to use the criterion in solving the diffraction and
scattering problems.

The estimate of the norm of the difference between exact and approximate
solutions is obtained. It is inversely proportional to the number not exceed-
ing

√
n− 2. However, the numerical convergence exceeds this estimate. The

Math. Model. Anal., 28(4):689–714, 2023.
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numerical analysis results of the model problem are shown. These data are
characterized the numerical method as good enough.
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ing resonances on periodic arrays of sub-wavelength wires and strips: from dis-
coveries to photonic device applications. In Shulika O. and I. Sukhoivanov(Eds.),
Contemporary Optoelectronics. Springer Series in Optical Sciences. Vol. 199,
pp. 65–79. Springer, Dordrecht, 2016. https://doi.org/10.1007/978-94-017-7315-
7 4.

[32] T.L. Zinenko, A. Matsushima and A.I. Nosich. Terahertz range reso-
nances of metasurface formed by double-layer grating of microsize graphene
strips inside dielectric slab. Proceedings of the Royal Society A.
Mathematical, Physical and Engineering Sciences, 476(2240):1–16, 2020.
https://doi.org/10.1098/rspa.2020.0173.

http://www.mathnet.ru/links/70e74f34da40d0102dd7e1e5e0ba9467/dan44096.pdf
http://www.mathnet.ru/links/70e74f34da40d0102dd7e1e5e0ba9467/dan44096.pdf
https://doi.org/10.1201/9780203402160
https://doi.org/10.1134/S0012266117020094
https://doi.org/10.1016/j.cam.2018.04.052
https://doi.org/10.1007/s10092-021-00407-8
https://doi.org/10.1016/j.jcp.2015.09.053
https://doi.org/10.1080/09205071.2020.1722258
https://doi.org/10.1007/978-94-017-7315-7_4
https://doi.org/10.1007/978-94-017-7315-7_4
https://doi.org/10.1098/rspa.2020.0173

	Introduction
	Problem statement
	Function spaces, operators, and their properties
	Interpolation polynomial and regularization of operators
	Discretization: quadrature formulae and system of linear algebraic equations
	Theorem on existence and uniqueness of a solution of the complete second-kind hypersingular integral equation
	Rate of convergence of a sequence of approximate solutions to an exact solution
	Model problem and numerical convergence
	Conclusions
	References

