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Abstract. In this study, we propose a function-on-function linear quantile regres-
sion model that allows for more than one functional predictor to establish a more
flexible and robust approach. The proposed model is first transformed into a finite-
dimensional space via the functional principal component analysis paradigm in the
estimation phase. It is then approximated using the estimated functional principal
component functions, and the estimated parameter of the quantile regression model
is constructed based on the principal component scores. In addition, we propose a
Bayesian information criterion to determine the optimum number of truncation con-
stants used in the functional principal component decomposition. Moreover, a step-
wise forward procedure and the Bayesian information criterion are used to determine
the significant predictors for including in the model. We employ a nonparametric
bootstrap procedure to construct prediction intervals for the response functions. The
finite sample performance of the proposed method is evaluated via several Monte
Carlo experiments and an empirical data example, and the results produced by the
proposed method are compared with the ones from existing models.
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1 Introduction

With advancements in technology and data storage, it is progressively common
to obtain data whose sample elements are collected and saved over a continuum,
such as space grids, time, depth, and wavelength. By interpolation and smooth-
ing, these data are represented in curves, images, shapes, or more general ob-
jects called functional data. The availability of functional data has regularly
increased in almost all scientific branches. The need for developing statistical
approaches for this kind of data is also increasing. Consult [9,11,14,15,30,31,32]
and [21] for the theoretical results and case studies of functional data analysis
methods. Among many others, function-on-function regression (FFR) models
have received considerable attention among researchers from the statistics com-
munity to investigate the relationship between a functional response and one
or more functional explanatory variables. See, e.g., [6, 8, 13,17,26,35] and [2].

Let {Yi,Xi : i = 1, . . . , n} denote a random sample from a pair (Y,X ),
where both the response Y and predictor X variables are square-integrable
random functions, Y = (Y(t))t∈I and X = (X (s))s∈S , on the bounded and
closed intervals I, S ∈ R. Without loss of generality, we assume that both the
response and predictor are mean-zero processes so that E[Y(t)] = E[X (s)] = 0.
Then, the FFR model of Y on X is defined as follows:

E[Y(t)|X (s)] =

∫
s∈S
X (s)β(s, t)ds+ ε(t), (1.1)

where β(s, t) is the smooth bivariate coefficient function and ε(t) is the error
function with mean-zero. In the FFR model, the conditional mean of the
functional response Y given a functional predictor X , E[Y|X ], is recovered via

optimizing least squares (LS) loss, i.e.,
[
Y(t)−

∫
s∈S X (s)β(s, t)ds

]2
. However,

the LS loss is sensitive to outliers, which are observations far from the bulk
of the data. Outliers are very common in empirical applications. In such
cases, biased regression estimates are obtained under the LS loss, leading to
unreliable inferences. Also, optimal regression estimates for the FFR model
in (1.1) may not be obtained when the error term follows a non-normal heavy-
tailed distribution. To remedy these problems, the quantile regression may be
used as an alternative to model (1.1).

Quantile regression (QR), which was introduced by [20], has become a gen-
eral framework to investigate the effects of predictors at different quantile levels
of the response. QR renders it possible to characterize the entire conditional
distribution of the response variable. Thus, it provides a more general picture
of the response variable’s conditional distribution function that might not be
reflected by mean regression. There are several advantages of QR over mean
regression: 1) QR is more robust to outliers than mean regression when out-
lying points are present in the response variable since it belongs to a robust
model family [18]; 2) Compared with mean regression, QR produces more ef-
ficient results when the errors follow a non-normal heavy-tailed distribution;
and 3) QR provides more efficient results than mean regression in the presence
of conditional heteroscedasticity, the case when the variance depends on one
or more predictors. Besides, QR allows obtaining prediction intervals based on
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several quantiles of the response. Consult [18] for the theoretical materials and
empirical applications of QR.

In FRMs, several QR models have been proposed when one of the observed
response or predictor variables consists of random functions rather than scalar
observations. See, e.g., [4, 5, 10, 25, 34, 36, 37] and [23]. The numerical results
obtained from the studies mentioned above have shown that the QR produces
better prediction and estimation accuracy than standard linear FRMs when
the errors follow a non-normal heavy-tailed distribution and in the presence of
outliers.

To the best of our knowledge, there has been no comprehensive work for
QR in the case of function-valued response and predictors (function-on-function
regression). In this paper, we propose a function-on-function linear quantile re-
gression (FFLQR) model, which allows for more than one functional predictor
by extending the traditional FFR model into the QR setting to establish a
more flexible and robust approach. Our proposal also aims to present a more
comprehensive description of the relationship between the functional response
and predictors by focusing on conditional quantiles at different quantile lev-
els. In traditional QR, directly modeling conditional quantiles and estimating
the regression coefficients is performed by minimizing the check loss function.
Although they are practically observed in discrete-time points in the func-
tional data framework, the functional random variables intrinsically belong to
an infinite-dimensional space. Thus, as in FRM, the direct estimation of the
proposed method is an ill-posed problem. The common practical approach to
remedy this problem is based on projecting infinite-dimensional functional ob-
jects onto a finite-dimensional space using dimension reduction methods. For
this purpose, several general basis expansion methods, such as B-spline, Fourier,
and wavelet basis have been proposed [17, 30, 32]. However, general basis ex-
pansion methods may require a large number of basis functions to project func-
tional objects onto a finite-dimensional space, leading to poor estimation and
prediction accuracy. On the other hand, the dimension reduction techniques
including the functional principal component (FPC) analysis provide more in-
formative approximation since they are data-driven and uses the information
of functional predictors gathered from their covariance functions [12]. There-
fore in this paper, the FPC analysis is first used to transform the functional
random variables into a finite-dimensional space. This approximation allows
converting infinite-dimensional FFLQR into a multivariate regression model of
principal component scores. In what follows, we estimate the proposed FFLQR
model using the FPC approximations of the functional response and predictor
variables. The prediction performance of the proposed method is based on the
truncation constants used in the decompositions of the functional objects. In
this paper, the optimum values of the truncation constants are determined via
a Bayesian information criterion (BIC). In practice, the exact form of the ac-
tual model is unspecified since the model’s significant predictors are unknown.
To this end, we employ a stepwise forward procedure along with the BIC to
determine significant predictors. We apply a nonparametric bootstrap method
to construct pointwise prediction intervals for the response function at different
quantile levels.
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The remainder of this paper is organized as follows. Section 2 presents the
methodology of the proposed method. The results of Monte Carlo experiments
and empirical data analysis are given in Section 3. Section 4 concludes the
paper.

2 Methodology

We consider a random sample {Yi,X i : i = 1, . . . , n} from a pair (Y,X ), where

Y = (Y(t))t∈I is a functional response and X = [Xi1, . . . ,XiM ]
>

with Xm =
(Xm(s))s∈S is an M dimensional vector of functional predictors, defined on the
bounded and closed intervals I, S ∈ R. Without loss of generality, we assume
that I, S = [0, 1] and both the response and predictors are mean-zero processes
so that E[Y(t)] = E[Xm(s)] = 0 for m = 1, . . . ,M .

Given any τ ∈ (0, 1), let Qτ [Y(t)|X ] denote the conditional quantile of
the response function Y given the vector of functional predictors X . Let us
assume that Qτ [Y(t)|X ] can be written as a linear functional of X along with
smooth bivariate functions [β1τ (s, t), . . . , βMτ (s, t)]. Then, we define the pro-
posed FFLQR model as follows:

Qτ [Yi(t)|X i] =

M∑
m=1

∫ 1

0

Xim(s)βmτ (s, t)ds. (2.1)

We consider minimizing the check loss function, ρτ (u) = u {τ − 1(u < 0)}
where 1{·} denotes an indicator function [18, 20], to solve the τ th conditional
quantile Qτ [Yi(t)|X i] as follows:

arg min
β1τ (s,t),...,βMτ (s,t)

N∑
i=1

ρτ

[
Yi(t)−

M∑
m=1

∫ 1

0

Xim(s)βmτ (s, t)ds

]
. (2.2)

As stated in Section 1, the functional objects intrinsically belong to an infinite-
dimensional space. Consequently, the minimizing problem stated in (2.2) is an
ill-posed problem due to the infinite-dimensional nature of Y and X . To over-
come this problem, we consider FPC decomposition for each functional object
in (2.1). Let CY(t1, t2)=Cov[Y(t1),Y(t2)], CXm(s1, s2) = Cov[X (s1),X (s2)],
respectively, denote the covariance functions of Y(t) and Xm(s) satisfying∫ 1

0

∫ 1

0
C2Y(t1, t2)dt1dt2 < ∞ and

∫ 1

0

∫ 1

0
C2Xm(s1, s2)ds1ds2 < ∞. Then, by Mer-

cer’s theorem, the covariance functions can be represented as follows:

CY =
∑
k≥1

wkφk(t1)φk(t2), ∀t1, t2 ∈ [0, 1],

CXm =
∑
l≥1

κmlψml(s1)ψml(s2), ∀s1, s2 ∈ [0, 1],

where {φk(t) : k = 1, 2, . . .} and {ψml(s) : l = 1, 2, . . .} denote the orthonormal
eigenfunctions corresponding to the non-negative eigenvalues {wk : k=1, 2, . . .}
and {κml : l = 1, 2, . . .} with wk ≥ wk+1 and κm1 ≥ κml+1, respectively. To
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obtain FPC decompositions of functional variables, we use predetermined trun-
cation constants KY (for Y(t)) and KXm (for Xm(s)). By Karhunen-Loève ex-
pansion, the functional response and functional predictors can be represented
as follows:

Yi(t) ≈
KY∑
k=1

ξikφk(t) = ξ>i φ(t), ∀t ∈ [0, 1],

Xim(s) ≈
KXm∑
l=1

ζimlψml(s) = ζ>imψm(s), ∀s ∈ [0, 1],

where the random variables ξik =
∫ 1

0
Yi(t)φk(t)dt, ζiml =

∫ 1

0
Xim(s)ψml(s)ds

are the projections of Yi(t) and Xim(s) onto their corresponding orthonor-
mal bases, respectively. Similarly, the smooth bivariate coefficient functions
βmτ (s, t) can be expressed in terms of eigenfunctions as follows:

βmτ (s, t) ≈
KXm∑
l=1

KY∑
k=1

β
(τ)
mlkψml(s)φk(t) = ψ>m(s)β(τ)

m φ(t), ∀t, s ∈ [0, 1],

where β
(τ)
mlk =

∫ 1

0

∫ 1

0
βm(s, t)ψml(s)φk(t)dsdt links the smooth dependence of

βmτ (s, t) on the quantile τ .
Next, using a similar parameterization as in [6,16] and by orthonormalities

of φ(t) and ψm(s), the τ th conditional quantile of the response function in
(2.1) can be expressed as follows:

Qτ [Yi(t)|X i] =

M∑
m=1

∫ 1

0

ζ>imψm(s)ψ>m(s)β(τ)
m φ(t),

ξ>i φ(t) =

M∑
m=1

ζ>imβ
(τ)
m φ(t),

ξ>i

∫ 1

0

φ(t)φ>(t)dt =

M∑
m=1

ζ>imβ
(τ)
m

∫ 1

0

φ(t)φ>(t)dt,

ξ>i =

M∑
m=1

ζ>imβ
(τ)
m .

Let Ξ =
[
ξ>1 , . . . , ξ

>
n

]>
, Π = [ζ1, . . . , ζn]

>
, where ζi =

[
ζ>i1, . . . , ζ

>
iM

]>
and

B =
[
β
(τ)
1 , . . . ,β

(τ)
M

]>
denote the matrices of the FPC scores and coefficient

vectors. Then, we have the following multivariate model in matrix form:

Ξ = ΠB.

In what follows, the parameter matrix B can be estimated by minimizing the
check loss function as follows:

B̂ = arg min
B

[
N∑
i=1

ρτ (Ξi −ΠiB)

]
,
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where B̂ =
[
β̂
(τ)
1 , . . . , β̂

(τ)
M

]>
. Note that the input of ρτ in the minimization

problem given above is a vector, and thus, minimization is done according to
each coordinate of the vector separately to obtain the estimates of each element
of B. Accordingly, the mth estimated coefficient function can be reconstructed
as

β̂mτ (s, t) =

KXm∑
l=1

KY∑
k=1

ψml(s)β̂
(τ)
mlkφk(t) = ψ>m(s)β̂

(τ)

m φ(t),

and for a given τ ∈ (0, 1), the estimated conditional quantile of response in (2.1)
is obtained

Q̂τ [Yi(t)|X i] =

M∑
m=1

∫ 1

0

Xim(s)β̂mτ (s, t)ds. (2.3)

Note that, if the functional response and/or one or more functional predictors
are not mean-zero processes, i.e., E[Y(t)] 6= 0 and/or E[Xm(s)] 6= 0 (m ∈
[1, . . . ,M ]), then the conditional quantile of Y(t) given X includes an intercept
function, say β0τ (t), as follows:

Qτ [Yi(t)|X i] = β0τ (t) +

M∑
m=1

∫ 1

0

Xim(s)βmτ (s, t)ds.

In such a case, the estimate of the intercept function can be obtained by in-
cluding the FPC decomposition of β0τ (t), i.e., β0τ (t) =

∑KY
k=1 gkφk(t), into the

check loss function.
The results given above demonstrate that: 1) the infinite-dimensional mini-

mization problem (2.2) can be reduced to a simple finite-dimensional QR prob-
lem using the metrics {ψm(s) : m = 1, . . . ,M} and φ(t) in the spaces of FPC

scores
{
ζ>im : m = 1, . . . ,M

}
and ξ>i ; and 2) the coefficient functions in the

proposed FFLQR model can be approximated using the FPC basis functions
and the estimated parameter of the QR model constructed based on the FPC
scores. This finite-dimensional QR model can be easily estimated using the
available package “quantreg” [19].

The performance of the proposed FFLQR depends on the truncation param-
eters KY and KXm (for m = 1, . . . ,M). In this paper, the optimum numbers
of truncation constants are determined based on the BIC.

Let us denote all the possible models by

J =
{
KY ,KXm |KY = 1, . . . ,KYmax

, KXm = 1, . . . ,KXm,max

}
.

Then, we assume that there exists an optimal estimate for the FFLQR associ-
ated with KY0

, KXm0
∈ J as follows:

Q̂τ [Yi(t)|X i] =

M∑
m=1

∫ 1

0

Xim(s)β̂
(KY0

,KX0
)

mτ (s, t)ds,

where β̂
(KY0

,KX0
)

mτ (s, t) is the estimated coefficient function with KY0
and KXm0

and KX0
=
{
KX10

, . . . ,KXM0

}
. For computational simplicity, we apply the
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same truncation constant KX to all the predictors. For each combination of
KY and KX , the estimates of coefficient functions are obtained by

β̂
(KY ,KX )

τ (s, t) =

arg min
β
(KY ,KX )

1τ (s,t),...,β
(KY ,KX )

Mτ (s,t)

N∑
i=1

ρτ

[
Yi(t)−

M∑
m=1

∫ 1

0

Xim(s)β(KY ,KX )
mτ (s, t)ds

]
,

where β̂
(KY ,KX )

τ (s, t) =
[
β̂
(KY ,KX )
1τ (s, t), . . . , β̂

(KY ,KX )
Mτ (s, t)

]>
. Then, ac-

cording to the definition of BIC given by [33], we obtain the following BIC for
the FFLQR:

BIC(KY ,KX ) =

∥∥∥∥ ln

[
n∑
i=1

ρτ

(
Yi(t)−

M∑
m=1

∫ 1

0

Xim(s)β̂(KY ,KX )
mτ (s, t)ds

)]∥∥∥∥
L2

+ ω ln(n),

where ω = KY +KX and ‖ ·‖L2 denotes the L2 norm. In short, KYmax×KXmax

different models (i.e., KY = 1, . . . ,KYmax
, KX = 1, . . . ,KXmax

) are built and

the optimum KY and KX (K̃Y and K̃X , respectively) are determined by(
K̃Y , K̃X

)
= arg min

KY ,KX

BIC(KY ,KX ).

2.1 Variable selection procedure

When considering the proposed FFLQR model (2.1), the vector of functional
predictors X may include too many variables, and not all of them may have
a significant effect on the model. Consequently, there may need a variable
selection procedure to determine only the significant functional predictors. To
this end, we consider a forward variable selection procedure together with the
extension of BIC introduced by [22] to the proposed method. Denote by D =
{d1, . . . , da} ⊂ {1, . . . ,M} the candidate model having the functional predictors
{Xd1 , . . . ,Xda} in the model. Using the check loss function, the estimates of
coefficient function for this model are given by

β̂
D
τ (s, t) = arg min

βD
d1τ

(s,t),...,βD
daτ

(s,t)

N∑
i=1

ρτ

[
Yi(t)−

∑
m∈D

∫ 1

0

Xim(s)βDmτ (s, t)ds

]
,

where β̂
D
τ (s, t) =

[
β̂Dd1τ (s, t), . . . , β̂Ddaτ (s, t)

]>
. Let |D| denote the cardinality a

of D. Then, following the definition of BIC presented by [22], the BIC for the
candidate model is defined as follows:

BIC (D) =

∥∥∥∥ ln

[
n∑
i=1

ρτ

(
Yi(t)−

∑
m∈D

∫ 1

0

Xim(s)β̂Dmτ (s, t)ds

)]∥∥∥∥
L2

+|D| ln(n)

2n
.

Accordingly, we present the considered variable selection procedure as follows.
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Step 1. Construct M - FFLQR models based on the typical functional response
and a functional predictor variable:

Qτ [Yi(t)|Xim] =

∫ 1

0

Xim(s)βmτ (s, t)ds, m = 1, . . . ,M

and calculate the BIC (D) for each of these models. Then, determine

the initial model to having smallest BIC (D). Let X (1)
i (s) and BIC(1) (D)

denote the functional predictor in the initial model and its BIC (D) value,
respectively.

Step 2. Construct (M − 1) - FFLQR model based on the common functional
response and a vector of functional predictors:

Qτ [Yi(t)|X im] =

2∑
m=1

∫ 1

0

Xim(s)βmτ (s, t)ds,

where X im =
[
X (1)
i (s),Xim(s)

]
and Xim(s) 6= X (1)

i (s), and calculate the

BIC (D) for each of these models. The vector of functional predictors

having the smallest BIC (D), say X (2), is chosen as the predictor vector

for the current model if BIC(2) (D) /BIC(1) (D) < 0.95, where BIC(2) (D)

is the computed BIC (D) when X (2) is used in the current model. In other
words, the second predictor enters the model if it contributes at least 5%
to the model (the threshold value 5% is determined via an extensive
Monte Carlo experiment). Repeat this procedure until all the significant
functional predictors are included in the model.

Note that applying the above variable selection procedure, together with
the procedure of determination of optimum truncation constants discussed in
Section 2, may not be computationally efficient when there are a large number
of predictors to be considered. In our numerical analyses, we first determine the
significant variables using fixed truncation constants, say KY = KX = 2. Then,
the optimum values of KY and KX are determined based on the significant
functional predictors. In this context, we perform several simulations (but not
reported in the paper for the sake of space), and the results have shown that the
choices of KY and KXm do not have a significant effect on the determination of
significant predictors. In high-dimensional settings, a parallel implementation
of the determination of optimum truncation constants and significant variables
(such as using “doParallel” [7] and “foreach” [27] packages) can be used to
reduce computational costs.

2.2 Computational framework

In this section, we summarize the computational framework of the proposed
method. We note that all the numerical calculations for the proposed method
are performed using version 4.1.1 on an Intel Core i7 6700HQ 2.6 GHz PC. In
the proposed method, first, the FPC decomposition of the functional variables
are obtained using some available functions such as create.bspline.basis

Math. Model. Anal., 27(2):322–341, 2022.
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and pca.fd in the package “fda” [29]. Then, the rqs.fit function in the
package “quantreg” [19] along with the computed principal component scores
is used to approximate the coefficient functions in the finite-dimensional space.
Finally, the functional forms of the estimated coefficient functions are obtained
using the estimated FPC basis functions. We build some functions for other
calculations such as BIC and variable selection procedure. An example code
(with definitions) for the proposed method can be found at https://github.
com/UfukBeyaztas/FFLQR.

3 Numerical results

In this section, several Monte Carlo experiments under different scenarios and
empirical data analysis are performed to investigate the finite-sample predictive
performance of our proposed FFLQR model. We compare our results with
those calculated via the LS [32], functional partial least squares (FPLS) [3],
and classical FPC based FFR models. The LS method uses a general basis
function expansion method (B-spline basis function is used in our calculations)
to project the functional variables into the finite-dimensional space. Then,
the LS loss function is used to estimate the model parameters. In FPLS, an
iterative procedure similar to FPC is used to obtain the FPLS basis functions
and corresponding coefficients. Then, the LS estimator is used to approximate
the functional coefficients.

3.1 Monte Carlo experiments

In the Monte Carlo experiments, we perform MC = 200 Monte Carlo sim-
ulation runs, each of which consists of M = 5 functional predictors X i =
{Xi1(s), . . . ,Xi5(s)} with i = 1, 2, . . . , 500 observed at 100 equally spaced points
in the unit interval s ∈ [0, 1]. We consider the following process, which is a mod-
ified version of those considered by [24], to generate the functional predictors:

Xim(s) = 10 +
∑̀
j=0

Vi,m+j(s)√
`+ 1

, (3.1)

where [Vi,1(s), Vi,2(s), . . . , Vi,9(s)] are generated from a Gaussian process with

mean-zero and a positive definite covariance function ΣΣΣV (s, s′) = e−100(s−s
′)2 .

In (3.1), the parameter ` (` > 0) denotes the lag parameter that controls the
correlation level between predictor functions. Herein, the large ` corresponds to
high correlations between the predictors. In our analyses, we consider ` = 4 to
generate functional predictors. In addition, we consider the following processes
to generate the smooth bivariate regression coefficients:

β1(s, t) = (1− s)2(t− 0.5)2, β2(s, t) = e−3(s−1)
2−5(t−0.5)2 ,

β3(s, t) = e−5(s−0.5)
2−5(t−0.5)2 + 8e−5(s−1.5)

2−5(t−0.5)2 ,

β4(s, t) = sin(1.5πs) sin(πt), β5(s, t) =
√
st.

https://github.com/UfukBeyaztas/FFLQR
https://github.com/UfukBeyaztas/FFLQR
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Then, the functions of the response variable are generated as follows:

Yi(t) =
∑
m∈D

∫ 1

0

Xim(s)βm(s, t)ds+ εi(t),

where D = {2, 4, 5} denotes the index set of significant functional predictors.
The error functions εi(t) are generated from the Ornstein-Uhlenbeck process:

εi(t) = γ + [ε0(t)− γ] e−θt + σ

∫ t

0

e−θ(t−u)dWu,

where γ, θ and σ > 0 are real constants, and Wu denotes the Wiener process.
Given ε0(t), which is the initial value of εi(t) and independently taken from
Wu, the functions εi(t) are generated from the joint distribution of {εi(t)}ni=1.
To investigate the robustness of the QR over the mean regression, we consider
two distributions for the error terms: (i) N(0, 1) (symmetric) and (iii) χ2

(1)

(skewed). In addition, we consider two signal-to-noise ratio levels: σ = 0.1 and
σ = 1. Examples of the generated functions for the response and predictor
variables are presented in Figure 1.
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Figure 1. Plots of the generated 50 functions of the functional variables when σ = 1 and
error terms follow χ2

(1)
distribution. The functions of the response variable are generated as

Yi(t) =
∑
m∈D

∫ 1
0 Xim(s)βm(s, t)ds+ εi(t), where D = {2, 4, 5}.

To further investigate the robust nature of the proposed method, we con-
sider a second scenario for the response variable, where the observations associ-
ated with the response variable are contaminated by outliers at [5%, 10%, 20%]
contamination levels. Since the QR characterizes the conditional distribution of
the response variable, only the generated functional response is contaminated
by the outliers. The outlier-contaminated response functions are generated by
contaminating n × [5%, 10%, 20%] randomly selected functions by a random

function; Ỹi = Yi + |N(10, 0.04)|.
The mean squared prediction error (MSPE) metric is considered to compare

the methods’ predictive performance. In doing so, the generated data are first

Math. Model. Anal., 27(2):322–341, 2022.



332 U. Beyaztas and H.L. Shang

divided into training and test samples with sizes ntrain = 200 and ntest = 300.
Then, the training samples are used to construct models, and the functions in
the test sample are used for validation. The MSPE is computed as follows:

MSPE =
1

ntest

ntest∑
i=1

∥∥∥Yi(t)− Ŷi(t)∥∥∥2
L2

,

where Ŷi(t) is the prediction of the i
th

observation in the test sample and
is calculated using (2.3). To construct pointwise prediction intervals for the
response function in the test sample, we employ a case-sampling-based boot-
strap. In doing so, R = 100 bootstrap pseudo-samples, (Y∗,X ∗), with sizes
ntrain are drawn with replacement from (Y,X ). Then, based on the bootstrap
pseudo-samples, the smooth bivariate functional coefficients are estimated to
obtain R = 100 sets of bootstrap replicates of the predicted response functions{
Ŷ∗,1i (t), . . . , Ŷ∗,Ri (t)

}
. Finally, the 100(1− α)% bootstrap prediction interval

for Yi(t) is obtained taking the α/2th and 1−α/2th quantiles of the generated
R sets of bootstrap replicates of the ith predicted response:[

Qiα/2(t), Qi1−α/2(t)
]
,

where Qiα(t) denote the αth quantile of the bootstrap replicates. We consider
the coverage probability deviance (CPD) and interval score (score) metrics to
evaluate the performance of the methods:

CPD = (1− α)− 1

ntest

ntest∑
i=1

1
{
Qiα/2(t) ≤ Yi(t) ≤ Qi1−α/2(t)

}
,

score =
1

ntest

ntest∑
i=1

∥∥∥[{Qi1−α/2(t)−Qiα/2(t)
}

+
2

α

(
Qiα/2(t)− Yi(t)

)
1
{
Yi(t)<Qiα/2(t)

}
+

2

α

(
Yi(t)−Qi1−α/2(t)

)
1
{
Yi(t) > Qi1−α/2(t)

}]∥∥∥
L2

.

The CPD is the absolute difference between the nominal and empirical cover-
age probabilities. The small CPD value indicates that the prediction interval
constructed by the method covers most of the observations in the test sample.
In contrast, its large values indicate the prediction interval fails to cover obser-
vations. The interval score simultaneously evaluates the coverage probability
and width of the constructed prediction interval, and a smaller interval score
corresponds to a sharp prediction interval (more accurate and narrower). Note
that we also calculate pointwise prediction intervals for the response variable
using the proposed FFLQR by fitting the same model on the generated data for
two quantile levels τ1 = α/2 and τ2 = (1− α/2), and compare its performance
with the metrics obtained from the bootstrap method.

Before presenting results, we note that we compare our proposed FFLQR
method with the LS, FPLS, FPC under three models: 1) the full model, where
all five predictors are included in the model; 2) the true model, where only
the significant predictors in the index set D = {2, 4, 5} are included to the
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model; and 3) the selected model, where the variables used in the model are
determined using the variable selection procedure discussed in Section 2.1. To
make a logical comparison, throughout the simulations, we set τ = 0.5 under
our FFLQR model, and we focus on evaluating function-on-function median
regression versus mean regression.

●

●

●●
●

●
● ●

0.0

0.2

0.4

0.6

s = 0.1 s = 1

M
S

P
E

Full model

●
●

●

●

●

0.0

0.2

0.4

0.6

s = 0.1 s = 1

True model

●
●

●

●
●

●

●
●

●

●

●

0.0

0.2

0.4

0.6

s = 0.1 s = 1

Selected model

●

●

●●

●

●

●

●
●

0.0

0.5

1.0

1.5

2.0

2.5

s = 0.1 s = 1
Cases

M
S

P
E

●●

●

●

●

●

●

●

●
●

0.0

0.5

1.0

1.5

2.0

2.5

s = 0.1 s = 1
Cases

●●

●

●

●

●

●

●●

0.0

0.5

1.0

1.5

2.0

2.5

s = 0.1 s = 1
Cases

Methods LS FPLS FPC FFLQR

Figure 2. Predictive model performances: Calculated MSPE values of the LS, FPLS,
FPC, and FFLQR methods when no outliers are present in the data; full model (first
column), true model (second column), and selected model (third column). Data are

generated based on two cases where the signal-to-noise ratio levels are s = 0.1 and s = 1
and two error distributions; N(0, 1) (first row) and χ2

(1)
(second row).

The calculated MSPE values when no outliers are present in the data are
given in Figure 2. The results demonstrate that: 1) Both true and selected
models produce significantly smaller MSPE values than those of full models
for all methods. An interesting but not too surprising result produced by
our simulations is that, compared with true models, selected models tend to
produce smaller MSPEs. This result could be because some true coefficient
functions have a smaller effect on the response function than others. In such
a case, to estimate the true model, the functional predictors corresponding to
these coefficient functions have to be estimated, which increases the number
of coefficients to be estimated and reduces the prediction accuracy. See, for
example [24] for similar results. 2) For all settings, all the methods produce
larger MSPE values with increasing signal-to-noise ratio levels. 3) When the
error terms follow symmetric distribution (i.e., N(0, 1)), the proposed FFLQR
model produces competitive performance compared with the existing methods.
However, when the errors follow the non-normal χ2

(1) distribution, the proposed
method significantly outperforms the LS, FPLS, and FPC methods.

When no outliers are present in the data, the calculated CPD and interval
score values are shown in Figures 3 and 4, respectively.

The proposed method produces improved CPD and score values, among
others, under the symmetric errors from these figures. This result indicates
that the proposed method produces more accurate bootstrap prediction inter-
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Figure 3. Predictive model performances: Calculated CPD values of the LS, FPLS,
FPC, and FFLQR methods when no outliers are present in the data; full model (first
column), true model (second column), and selected model (third column). Data are

generated based on two cases where the signal-to-noise ratio levels are s = 0.1 and s = 1
and two error distributions; N(0, 1) (first row) and χ2

(1)
(second row). “FFLQR2” denotes

the performance metrics obtained directly from the proposed FFLQR.
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Figure 4. Predictive model performances: Calculated score values of the LS, FPLS,
FPC, and FFLQR methods when no outliers are present in the data; full model (first
column), true model (second column), and selected model (third column). Data are

generated based on two cases where the signal-to-noise ratio levels are s = 0.1 and s = 1
and two error distributions; N(0, 1) (first row) and χ2

(1)
(second row). “FFLQR2” denotes

the performance metrics obtained directly from the proposed FFLQR.

vals with narrower prediction interval lengths compared with other methods.
The prediction intervals obtained directly from the proposed FFLQR model
(not bootstrap-based) produce competitive or even better CPD values than
the bootstrap-based prediction intervals constructed by the proposed method.
However, they have generally larger score values than the bootstrap predic-
tion intervals. In other words, the non-bootstrap-based prediction intervals are
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wider than those of bootstrap-based prediction intervals.

The calculated MSPE, CPD, and interval score values, when the data are
contaminated by outliers, are presented in Figure 5.
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Figure 5. Predictive model performances: Calculated MSPE (first row), CPD (second
row), and score (third row) values of the LS, FPLS, FPC, and FFLQR methods when
[5%, 10%, 20%] of the data are contaminated by magnitude outliers; full model (first
column), true model (second column), and selected model (third column). Data are

generated when the signal-to-noise ratio level is [s = 1 and the error terms follow N(0, 1)
distribution. “FFLQR2” denotes the interval scores obtained directly from the proposed

FFLQR.

The results indicate that the proposed method produces smaller predic-
tion errors than the existing methods for all models and contamination levels.
Also, the proposed method produces significantly smaller bootstrap-based in-
terval score values than those obtained by LS, FPLS, and FPC methods. The
non-bootstrap-based prediction intervals produce competitive CPD values with
larger score values (i.e., wider prediction interval lengths) to the bootstrap-
based prediction intervals. Therefore, the bootstrap procedure seems a better
approach to construct prediction intervals.

We also compare the proposed method with LS, FPLS, and FPC methods
regarding their computing times. In doing so, the data are generated under
N(0, 1) errors with signal-to-ratio level σ = 1. Then, all the methods under
the selected model are performed, and the computing times of the methods
are recorded. Our results indicate that the proposed method requires more
computing time compared with the other three methods. For one Monte Carlo
experiment, our proposed method requires approximately nine seconds, while
other methods require approximately four seconds.
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3.2 Data analysis: Drosophila life cycle gene expression time-series
data

We consider the microarray data obtained by a cDNA microarray experiment,
reported by [1]. The original microarray data consist of gene expression lev-
els for 4028 genes involved in Drosophila melanogaster’s life cycle during four
stages of morphogenesis: embryo, larva, pupa, and adult. [1] reported gene ex-
pression patterns for nearly one-third of all Drosophila genes and identified the
groups of co-expressed genes. In this study, we consider three specific groups of
genes involved during the first three stages in the life cycle of Drosophila, e.g.,
embryo, larva, and pupa: 1) “transient early zygotic” consisting of 21 genes,
2) “muscle-specific” consisting of 23 genes, and 3) “eye-specific” consisting of 33
genes. Transient early zygotic genes, which are the blastoderm-specific genes,
are expressed at high levels only during the critical period of development when
cellularization of the syncytial blastoderm embryo occurs [1]. These genes have
a single-peak expression pattern in the embryo stage. Muscle-specific genes,
which are tissue-specific genes, present a two-peak expression pattern that co-
incides with larval and pupa muscle development. Eye-specific genes, on the
other hand, have a single-peak expression pattern in the pupa stage. The
graphical displays of the gene expression profiles for all three groups of genes
are presented in Figure 6.
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Figure 6. Graphical displays of the gene expression profiles; transient early zygotic genes
(left panel), muscle-specific genes (middle panel), and eye-specific genes (right panel).

Our aim with the gene expression levels is to explore the relationship be-
tween temporal patterns of gene expression levels measured at different de-
velopment stages of Drosophila melanogaster. More precisely, our goal is to
predict the later life gene expression profiles (pupa stage) of the three groups
above of genes based on the gene expression patterns measured at embryo and
larval stages. Using a mean regression-based FFR model, [28] studied the 23
muscle-specific gene expression levels to explore the dependence of adult gene
expression patterns on larval patterns. In addition, they studied 27 strictly ma-
ternal gene expression levels and assessed gene expression pattern dependencies
between the early embryo and the female pattern adult germline. The results
produced by the analyses of [28] demonstrated that the gene expression pro-
files for pupa and adult phases are strongly related to the profiles of the same
genes obtained during the embryo phase. Furthermore, their results showed a
positive relationship in expression for muscle development-related genes and a
negative relationship for Drosophila’s strictly maternal genes.
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In this study, we consider the following FFR model to explore the depen-
dence of pupa gene expression patterns on embryo and larval patterns:

Y(t) = β0(t) +

∫ 31

s1=1

X1(s1)β1(s1, t)ds1 +

∫ 10

s2=1

X2(s2)β2(s2, t)ds2, t ∈ [1, 17],

where Y(t), X1(s1), and X2(s2) denote the gene expression levels measured
at pupa, embryo, and larval stages, respectively. From Figure 6, the muscle-
specific genes are generally expressed at similar levels. On the other hand, some
of the transient early zygotic and eye-specific genes are observed at higher or
lower levels (potential outliers). Therefore, our proposed FFLQR model may
robustly predict these groups’ later life gene expression profiles compared with
the existing models. To compare the prediction performance of our proposed
method with the LS, FPLS, and FPC-based FFR models, we repeat the fol-
lowing procedure 100 times. For each group of genes, the entire datasets are
randomly divided into two parts: 1) roughly, half of the datasets are used to
construct models and 2) the remaining observations are used for validation.

For each replication, the MSPE is computed for each method. In addition,
We apply the case-sampling-based bootstrap to construct pointwise prediction
intervals for the later life gene expression profiles. We calculate performance
metrics based on five FPCs and B-spline basis expansion functions. Note that,
for the gene expression levels, we calculate the performance metrics under two
models: the full model, which includes both X1 and X2 in the model, and
the selected model, which includes only the significant predictor variable(s)
determined by the proposed variable selection procedure.

The results produced by our analyses are presented in Figure 7. This figure
shows that the selected model produces smaller prediction performance metrics
than the full model for all the methods. When considering the performance
of selected models, compared with the LS FPLS, and FPC methods, FFLQR
produces smaller MSPE values for transient early zygotic and eye-specific genes.
In contrast, it produces slightly larger error values than the FPLS and FPC
for muscle-specific genes. This finding is because some of the transient early
zygotic and eye-specific genes are observed at higher or lower levels (potential
outliers). At the same time, all the muscle-specific genes are generally expressed
at similar levels. Therefore, our proposed method produces robust results for
the transient early zygotic and eye-specific genes. In addition, the proposed
method produces generally smaller CPD and interval score values than the LS,
FPLS, and FPC methods.

We construct a model for all genes using the observed gene expression pro-
files to determine the significant variables. For transient early zygotic genes,
the only larval stage (X2) is selected into the final model by the LS, FPLS,
and FPC methods. In contrast, only the proposed method selected the embryo
(X1) as significant. For muscle-specific and eye-specific genes, on the other
hand, the only larval stage (X2) is selected as significant by the LS, FPC, and
FFLQR methods, while both embryo (X1) and larval (X2) stages are selected as
significant by the FPLS method. The estimated regression coefficient functions
by the proposed method for all genes are presented in Figure 8.
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Figure 7. Predictive model performances: Calculated MSPE (first row), CPD (second
row), and interval score (third row) values of the LS, FPLS, FPC, and FFLQR methods for

the Drosophila life cycle gene expression time-series data; full model (first column) and
selected model (second row).
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4 Conclusions

We propose a QR approach for the FFR models, an extension of the traditional
FFR model to the QR framework. In our proposed method, all the functional
objects are first transformed into a finite-dimensional space using the FPC
method to overcome the ill-posed problem caused by the infinite-dimensional
nature of the functional variables. It approximates the regression coefficient
functions using the FPC decomposition of the functional response and predic-
tor variables. A forward variable selection procedure and the proposed FFLQR
method are introduced to determine the significant functional predictors for the
model. Moreover, we employ a nonparametric bootstrap approach to investi-
gate further the uncertainty of predictions produced by the proposed FFLQR
method. Our method’s finite-sample performance is investigated via several
Monte Carlo experiments and empirical data analysis, and they are compared
favorably with existing methods.

All the numerical analyses performed in our study have demonstrated that
the proposed FFLQR method produces superior performance over the existing
function-on-function mean regression models when the error terms follow a
non-normal distribution or in the presence of outliers.
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