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Abstract. Shielding properties of a cylindrical thick-walled ferrofluid layer that pro-
tects against externally applied uniform magnetic fields are numerically investigated.
We take into account the diffusion of magnetic nanoparticles in the ferrofluid with
magnetic dipole-dipole, steric and hydrodynamic interactions between particles. Per-
meability of the ferrofluid is considered to be dependent on the magnetic-field strength
and the particle concentration. A combined method of finite differences and boundary
elements is applied to solve a nonlinear transmission problem of magnetostatics in the
whole space, augmented by nonlinear algebraic equations based on the mass transfer
equation for magnetic nanoparticles in ferrofluids. Numerical experiments revealed
that the diffusion of particles has negligible influence on the shielding properties at
weak and strong intensities of the applied magnetic field when comparing with the
results of computations for a uniform particle distribution.
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1 Introduction

Shielding problems of electromagnetic fields have been actively studied for solid
thin-walled layers, see, e.g., references in [9], whereas a ferrofluid, as a soft
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magnetic material, could potentially be used in shielding applications. For ex-
ample, conducting ferrofluid composites are investigated in [12] as a promising
candidate for microwave shielding applications.

Other composites, based on textile materials with ferrofluid, with the pur-
pose of shielding from the electromagnetic fields of a wide frequency range
were developed and studied in [7]. Experimental measurements and analysis of
the shielding effectiveness of a ferrofluid under radio frequency electromagnetic
fields were performed in [5, 6]. Moreover, in patent [13] a magnetic field mea-
surement system was suggested and described. In that system the ferrofluid is
arranged to create magnetically shielded areas that contain the magnetometers
of the measurement system to reduce or eliminate the ambient background mag-
netic field (e.g., the Earth’s magnetic field) at the magnetometers. Magnetic
shielding of an external uniform magnetic field by ferrofluids is numerically
studied in the current research, based on various mathematical models.

Ferrofluids are stable colloidal suspensions of ferromagnetic nanoparticles
in a nonmagnetic carrier-liquid [1, 2, 3, 20]. When no external magnetic field is
applied, the ferroparticles of a diameter about 10 nm are in Brownian motion
inside the carrier-liquid. Once affected by an externally applied magnetic field,
the particle diffusion in the direction of field gradient, named as magnetophore-
sis, occurs inside the ferrofluid as well.

A traditional strategy for reducing quasi-static magnetic fields in a specific
region consists of inserting a shield of an appropriate material, whose properties
allow to decrease the magnetic field magnitude, emitted by the source, inside
the specific region [4]. An infinite cylindrical shield, made of a thick ferrofluid
layer, in an externally applied uniform magnetic field is investigated in the
current research via numerical modelling.

Numerical investigations of magnetic shielding by a cylindrical thick-walled
ferrofluid layer have their origins in [9, 15]. Mathematical models in [9, 15]
were constructed on the basis of Maxwell’s equations under the assumption
that the magnetic particles inside the ferrofluid are uniformly distributed for
any intensities of the externally applied field, thereby excluding the effects of
magnetophoresis. The present study continues research in [9, 15] by taking
into account the diffusion of nanosized ferroparticles (magnetophoresis) and
particle interactions in the carrier-liquid, in order to estimate an influence of
the steady-state particle redistribution on the degree of shielding.

Three mathematical models are constructed in which the magnetostatics
equations in [9] and the diffusion equations are coupled with each other. Com-
putations are made for three differently concentrated ferrofluids. These ferroflu-
ids are described in [21, Table II], with the volume fraction of the magnetic
phase equaled to 0.05, 0.1 and 0.16, respectively.

2 Mathematical model

The geometry for the problem under consideration is similar to the one in [9,15],
see Figure 1. The two-dimensional geometry description is possible due to the
assumptions that a cylindrical ferrofluid layer is infinitely long in the z-direction
and that an applied magnetic field is uniform with the only non-zero component
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h0 = const > 0 in the y-direction, see Figure 1. Additionally, it results in a
symmetry of the problem statement relative to the coordinate axes Ox and Oy
of the Cartesian coordinate system Oxy. Therefore, the layer is described only
by its cross-section Ω2 at the positive quadrant of the Cartesian coordinate
system Oxy, see Figure 1. The inner domain Ω1, which defines the shielded
region, and the outer domain Ω3, which defines the region of the magnetic-field
source, are filled with vacuum of the permeability µ0 = 4π·10−7 H/m. Domains
Ω1 and Ω3 are separated by the layer Ω2 and have the common boundaries with
the layer such as γ1 := Ω1 ∩Ω2 and γ2 := Ω2 ∩Ω3. Refer to Figure 1.

� 2
� 1

� 2

� 3

 

 

� 1

x

y

r

1 �0

� =
 π/

2

�  =  0

�

( 0 , h 0 )

Figure 1. Two-dimensional geometry of the problem under consideration with an
internal domain of a cylinder Ω1 and an external domain Ω3, corresponding to

nonmagnetic media, and a domain Ω2, filled with the ferrofluid.

Space variables x and y together with space variable r of the corresponding
polar coordinate system Orϕ, see Figure 1, are dimensionless over the inner
radius of the cylindrical layer Ω2. The dimensionless outer radius of the layer
δ is considered as a parameter for the problem under consideration. Values of
δ ∈ [1.01, 2] are used for computations. The magnetic field h is dimensionless
over H∗ for the problem under consideration, where H∗ = kT/(µ0m), k =
1.38 · 10−23 J/K is Boltzmann’s constant, T is the absolute temperature of the
fluid, m is magnetic moment of a ferroparticle.

To investigate the magnetic shielding by weakly, moderately and highly
concentrated ferrofluids, the mathematical models in the form of the Maxwells
equations for different magnetization laws of ferrofluids are considered in [9]
under an assumption of a uniform particle distribution inside the ferrofluid.
These mathematical models, formulated in the polar coordinates (r, ϕ) in terms
of magnetostatic potentials ui(r, ϕ) : Ωi → R, i = 1, 3, consist of the nonlinear
Laplace-type equation in the ferrofluid domain

1

r

∂

∂r

(
µ(h2)r

∂u2

∂r

)
+

1

r2

∂

∂ϕ

(
µ(h2)

∂u2

∂ϕ

)
= 0 in Ω2 (2.1)

with the intensity of the magnetic field hi := hi(r, ϕ) : Ωi → R, i = 1, 3, where

hi(r, ϕ) =
(
(∂ui∂r )2 + ( 1

r
∂ui
∂ϕ )2

)1/2
. The relative magnetic permeability of the
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ferrofluid µ(h) is defined by following three distinct formulations:

µ(1)(h) = 1 + 3χLL(h)/h, (2.2)

µ(2)(h) = 1 + 3χLL
(
h(2)

)
/h, h(2) = h+ χLL(h), (2.3)

µ(3)(h) = 1 + 3χL
L
(
h(3)

)
h

, h(3) = h+ χLL(h) +
χ2
L

16
L(h)

dL(h)

dh
. (2.4)

Each of them describes weakly, moderately and highly concentrated ferrofluids,
respectively. Refer to [9] for details. Here, χL = Ms/ (3H∗) is the Langevin
susceptibility, Ms saturation magnetization of the ferrofluid. The function
L(h) = coth (h) − 1/h is the Langevin function, and the magnetic field in-
tensity h, dimensionless over H∗, as the argument of the Langevin function,
is also named as the Langevin parameter, see e.g. [20]. h(2) and h(3) denote
the effective fields, corresponding to the magnetization laws, suggested in [19]
and [8] for moderately and highly concentrated ferrofluids, respectively. The
Equation (2.1) in the layer is coupled with the boundary integral equation on
the inner boundary γ1 of the layer, see [9] for details,∫ π/2

0

q1(ϕ)
[
u∗
(
ξ0, ξ

[1]
1

)
+ u∗

(
ξ0, ξ

[1]
2

)
− u∗

(
ξ0, ξ

[1]
3

)
− u∗

(
ξ0, ξ

[1]
4

)]
dϕ

= πu1(ξ0) for ξ0 ∈ γ1, (2.5)

where q1(ϕ) := ∂u1

∂r (1, ϕ). Equation (2.1) is also coupled with the boundary
integral equation on the outer boundary γ2 of the layer, see [9] for details,∫ π/2

0

q3(ϕ)
[
u∗
(
ξ0, ξ

[δ]
1

)
+ u∗

(
ξ0, ξ

[δ]
2

)
− u∗

(
ξ0, ξ

[δ]
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)
− u∗

(
ξ0, ξ

[δ]
4

)]
dϕ

= −π
δ
u3(ξ0) for ξ0 ∈ γ2, (2.6)

where q3(ϕ) := ∂u3

∂r (δ, ϕ). Boundary integral equations (2.5) and (2.6) are
formulated with the help of the fundamental solution for the plane Laplace
equation u∗(ξ0, ξ) = − ln |ξ−ξ0| and with a special notation for space variables
on γ1 and γ2 to handle the symmetry relative to the coordinate axes Ox, Oy

ξ
[σ]
1 = (σ, ϕ), ξ

[σ]
2 = (σ, π−ϕ), ξ

[σ]
3 = (σ, π+ϕ), ξ

[σ]
4 = (σ, 2π−ϕ) for σ ∈ {1, δ}.

Equations (2.1), (2.5) and (2.6) are augmented by the transmission conditions
on the boundaries γ1 and γ2, such as

u1 =u2,
∂u1

∂r
= µ(h2)

∂u2

∂r
on γ1, (2.7)

u2 =u3 + h0δ sinϕ, µ(h2)
∂u2

∂r
=
∂u3

∂r
+ h0 sinϕ on γ2, (2.8)

and the symmetry conditions on the coordinate axis Ox (ϕ = 0) and the
coordinate axis Oy (ϕ = π/2), such as

u1|ϕ=0 = u2|ϕ=0 = u3|ϕ=0 = 0,
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2

= 0. (2.9)
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Note that the potential u3(r, ϕ) in the formulation (2.1)–(2.9) tends to zero
at the infinity due to the change of variables in the original problem state-
ment u3(r, ϕ) = uoriginal3 (r, ϕ) − h0r sinϕ, where the potential h0r sinϕ corre-
sponds to the applied field (0,h0). The unknown functions of the mathematical
model (2.1)–(2.9) are the potential function u2(r, ϕ) : Ω2 → R and the normal
derivatives of the potential on the layer boundaries q1(ϕ) : [0, π/2] → R and
q3(ϕ) : [0, π/2]→ R.

Due to the assumption of a uniform particle distribution in the ferrofluid
layer, made in [9], the mathematical model (2.1)–(2.9) is valid only for the short-
term equilibrium, when the time of the onset of the equilibrium state is much
shorter than the characteristic diffusion time of concentration τ << τdiff ∼ 40
days, estimated for a benzene-based ferrofluid, see, e.g., in [11]. For the long-
term equilibrium, τ ∼ τdiff . Then the diffusion of nanoparticles in ferrofluid
becomes essential and the mathematical model (2.1)–(2.9) should be coupled
with the mass transfer equation for nanosized ferroparticles in a ferrofluid.

When no particle interactions are assumed, the mass transfer equation for
the magnetic nanoparticles in weakly concentrated ferrofluids has an explicit
analytical solution in a steady-state limit for the particle concentration C =
C(h) as a function of the magnetic field in the ferrofluid, see, e.g., [14]. Note
that the magnetic field is the position-dependent function h = h(r, ϕ) and, as
a consequence, the concentration function C = C(h) = C(r, ϕ) also changes in
space. For the problem under consideration,

C(h) = C0
|Ω2|∫

Ω2

ψ(h)rdrdϕ
ψ(h) in Ω2. (2.10)

Here C0 = const > 0 corresponds to the concentration for the uniform particle
distribution in the ferrofluid when no external field is applied, i.e. C(0) = C0,

ψ(h) = sinh(h)
h , and the volume of the layer |Ω2| = π(δ2 − 1)/4, see Figure 1.

The Langevin magnetization law with a linear dependence on the particle con-
centration is valid for weakly concentrated ferrofluids. See, e.g., the references
in [16]. Then the relative magnetic permeability of the ferrofluid µ(1)(h) in
(2.2) is changed to as follows

µ(1)(h,C) = 1+3χL
C

C0

L(h)

h
or µ(1)(h) = 1+

3χL |Ω2|∫
Ω2

ψ(h)rdrdϕ

ψ(h)L(h)

h
. (2.11)

Mathematical model of magnetic shielding for weakly concentrated ferrofluids
with non-uniform particle distribution takes form of the Equations (2.1), (2.5),
(2.6) with the relative magnetic permeability µ(1)(h) from (2.11) and conditions
(2.7)–(2.9). Mathematical model (2.1), (2.5)–(2.9), (2.11) for weakly concen-
trated ferrofluids with non-uniform particle distribution is named model 1 here-
inafter. By construction, model 1 takes into account magnetophoresis in the
ferrofluid but neglects particle interactions. The only difference between the
mathematical models for weakly concentrated ferrofluids with uniform versus
non-uniform particle distribution is in the formulation of the magnetic perme-
ability µ(1)(h), that is (2.2) versus (2.11).
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The dynamic mass transfer equation for the magnetic nanoparticles in con-
centrated ferrofluids is derived in [17]. It takes into account magnetic dipole-
dipole, steric and hydrodynamic interactions between particles in magnetic
fields. Under the assumptions that the layer boundaries are solid and immov-
able, the temperature is constant and the normal component of the particle
flux over the ferrofluid boundary equals zero, the mass transfer equation in
a static limit could be reformulated as an algebraic equation for the particle
concentration by equating the full particle flux in the ferrofluid domain to zero,
see [17],

lnC +
3− C

(1− C)3
− ∂(C2G(λ,C))

∂C
= lnψ

(
h̃(3)

)
+ c in Ω2, (2.12)

where the effective field h̃(3) depends on the concentration, in contrast to (2.4):

h̃(3) = h+ χL
C

C0
L(h) +

1

16
χ2
L

C

C0
L(h)

dL(h)

dh
. (2.13)

Here G(λ,C) is a given function, see [17, equation (19)], λ = const > 0 is the
dipolar coupling constant, c denotes an unknown integration constant. Note
that the effective field (2.13) for the Equation (2.12) can be defined for moder-
ately concentrated ferrofluids with only the first two terms, which correspond
to the magnetization law, proposed in [19],

lnC +
3− C

(1− C)3
− ∂(C2G(λ,C))

∂C
= lnψ

(
h̃(2)

)
+ c, in Ω2, (2.14)

h̃(2) = h+ χL
C

C0
L(h).

The algebraic relation (2.14) was used in [10, 11] for computations of the Ro-
sensweig instability in ferrofluids. The form of the magnetization law with con-
centration changes the relative magnetic permeability of the ferrofluid µ(2)(h)
in (2.3) and µ(3)(h) in (2.4) as follows:

µ(2)(h,C) =1 + 3χL
C

C0

L
(
h̃(2)

)
h

, (2.15)

µ(3)(h,C) =1 + 3χL
C

C0

L
(
h̃(3)

)
h

. (2.16)

In addition, the condition of the particle conservation is added to the model:∫
Ω2

Crdrdϕ = C0|Ω2|, (2.17)

where the volume fraction of magnetic particles in the carrier-liquid is fixed
by the value C0 for any applied field intensity. Based on condition (2.17), an
algebraic equation will be constructed for the unknown integration constant
c in (2.12) and (2.14). Mathematical model of magnetic shielding for mod-
erately concentrated ferrofluids with non-uniform particle distribution takes



Numerical Study of the Shielding Properties... 167

the form of the Equations (2.1), (2.5), (2.6) and (2.14) with the relative mag-
netic permeability µ(2)(h,C) from (2.15) and the conditions (2.7)–(2.9), (2.17).
Mathematical model (2.1), (2.5)–(2.9), (2.14), (2.15), (2.17) for moderately con-
centrated ferrofluids with non-uniform particle distribution is named model 2
hereinafter. The mathematical model of magnetic shielding for highly con-
centrated ferrofluids with non-uniform particle distribution takes the form of
the Equations (2.1), (2.5), (2.6) and (2.12) with relative magnetic permeability
µ(3)(h,C) from (2.16) and conditions (2.7)–(2.9), (2.17). Mathematical model
(2.1), (2.5)–(2.9), (2.12), (2.16), (2.17) for highly concentrated ferrofluids with
non-uniform particle distribution is named model 3 hereinafter. By construc-
tion, model 2 and model 3 take into account magnetophoresis and the particle
interaction in the ferrofluid. The unknown functions of model 2 and model 3,
in contrast to model 1, are not only the potential function u2(r, ϕ) and the
normal derivatives of the potential on the layer boundaries q1(ϕ) and q3(ϕ)
but also the concentration function C(r, ϕ) : Ω2 → R inside the ferrofluid.

The constructed mathematical models are based on different levels of the-
ory for describing magnetization laws for ferrofluids at low, medium and high
particle concentrations. Refer to [8, 16, 19]. They are based on the theoreti-
cal model in [17] for describing magnetophoresis in ferrofluids with interacting
particles. The accuracy of theoretical models in [8, 16, 17, 19] is estimated by
comparing with experimental data and numerical results of molecular dynamics
modelling.

Three mathematical models will be compared to each other, based on re-
sults of computations, under the assumption that the model 3, by construction,
is more accurate for computations with ferrofluids of any kind of concentration:
weakly, moderately or highly concentrated ones. Model 3 is the most compli-
cated one in the mathematical formulation in comparison with model 1 and
model 2.

3 Computational algorithm

The computations were carried out in the polar coordinate system Orϕ on a
uniform rectangular mesh in the domain [1, δ]× [0, π/2] with the mesh nodes{

(ri, ϕj) : ri = i∆r, ϕj = j∆ϕ, i = 0, Nr, j = 0, Nϕ
}

and the corresponding rectangular mesh elements{
Tij = [ri, ri+1]× [ϕj , ϕj+1] : i = 0, Nr − 1, j = 0, Nϕ − 1

}
,

where ∆r = (δ − 1)/Nr, ∆ϕ = π/2/Nϕ, see Figure 2. We choose Nr = 10
and Nϕ = 100 for δ ∈ [1.01, 2], analogous to the previous computations in
[9,15]. The test calculations on a finer mesh with twice the number of partitions
(Nr = 20, Nϕ = 200) did not reveal any significant changes in the solution.
Namely, the potential function and the concentration function differ on both
meshes in the fourth significant digit.

The computational process is organized in the form of an iterative algo-
rithm, where the magnetostatics subproblem for the known concentration and
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Figure 2. Schematic representation of the mesh for computations in the layer Ω2.

the concentration subproblem for the known potential are solved independently
at every iteration. Two subproblems are successively solved up to a conver-
gence relative to the unknown potential and concentration functions. Note that
the iterative algorithm for model 1 reduces to one iteration at which only the
magnetostatics subproblem should be solved, due to the known exact solution
(2.10) for the concentration subproblem.

Numerical solution of the magnetostatics subproblem (2.1), (2.5)–(2.9) for
the concentration dependent relative magnetic permeabilities (2.11), (2.15),
(2.16) in the context of models 1–3, respectively, under the assumption that
the concentration function is known, is realized by means of the coupled method
of finite differences and boundary elements. Refer to [9, 15] for details. The
unknown values for the potential function u2(r, ϕ) are defined at the mesh
nodes, whereas the unknown values for the normal derivatives of the potential
q1(ϕ) and q3(ϕ) are defined at the corresponding nodes on interfaces {(1, ϕj)}
and {(δ, ϕj)}, j = 0, Nϕ.

The concentration subproblem is defined in the form of the explicit relation
(2.10) for model 1, in the form of the Equations (2.12) and (2.17) for model 2
and in the form of the Equations (2.14) and (2.17) for model 3. The algebraic
Equations (2.12) and (2.14) are valid at any point of the ferrofluid domain Ω2:

lnC +R(C)− lnψ
(
h̃(i)

)
= c, (3.1)

where R(C) := 3−C
(1−C)3 −

∂(C2G(λ,C))
∂C , i = 2 or 3 for corresponding models. We

reformulate (3.1) by taking the exponent of both sides of the equation:

Φ(h,C) := CeR(C)h̃(i) (h,C)/sinh
(
h̃(i) (h,C)

)
= c, (3.2)

where the constant c in (3.1) and (3.2) has different values. Let us assume
that a spacial configuration of the magnetic field h(r, ϕ) is given at the middle
points of the mesh lines from a solution of the magnetostatics subproblem

hi+1/2,j =h(ri+1/2, ϕj), i = 0, Nr − 1, j = 0, Nϕ,

hi,j+1/2 =h(ri, ϕj+1/2), i = 0, Nr, j = 0, Nϕ − 1,
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where ri+1/2 = (ri + ri+1)/2, ϕi+1/2 = (ϕi + ϕi+1)/2. We construct algebraic
equations for the unknown concentration values Ci+1/2,j and Ci,j+1/2 at the
middle points of the mesh lines, see Figure 2, by satisfying Equation (3.2) at
the following corresponding points:

Φ(hi+1/2,j , Ci+1/2,j)− c =0, i = 0, Nr − 1, j = 0, Nϕ, (3.3)

Φ(hi,j+1/2, Ci,j+1/2)− c =0, i = 0, Nr, j = 0, Nϕ − 1. (3.4)

Moreover, an additional algebraic equation is derived from the conservation
condition for the concentration (2.17) by applying the quadrature formula at
the centers of the element sides. Namely,∑

Tij

ωij
4

(
Ci,j+1/2 + Ci+1/2,j + Ci+1,j+1/2 + Ci+1/2,j+1

)
≈ C0

∑
Tij

ωij ,

where the summation is taken over all mesh elements. The volume of the mesh
element Tij equals ωij =

∫
Tij

rdrdϕ = ri+1/2∆r∆ϕ. We reformulate the last

relation as an equation in the following form:

Nr−1∑
i=0

Nϕ∑
j=0

ωij + ωi,j−1

4
(Ci+1/2,j − C0)

+

Nr∑
i=0

Nϕ−1∑
j=0

ωij + ωi−1,j

4

(
Ci,j+1/2 − C0

)
= 0, (3.5)

where we set ωij = 0 for i ∈ {−1, Nr} or j ∈ {−1, Nϕ}. As a result, the
concentration subproblem for model 2 and model 3 is formulated as a system of
nonlinear algebraic equations (3.3)–(3.5) for the unknown concentration values
{Ci+1/2,j , i = 0, Nr − 1, j = 0, Nϕ}, {Ci,j+1/2, i = 0, Nr, j = 0, Nϕ − 1} and the
unknown constant c. The system of algebraic equations (3.3)–(3.5) is solved by
Newton’s method, which, in a general case of a system F(x) = 0, is an iterative
process of the form

F′(xk)
(
xk+1 − xk

)
= −F(xk), k = 0, 1, 2, . . . . (3.6)

Here F(x) = (f1(x), . . . , fn(x)), xk ∈ Rn, F′(x) =
(
∂fi(x)
∂xj

)
i,j=1,n

, and the

initial value x0 ∈ Rn is given. Let us introduce notations

Φkij = Φ
(
hij , C

k
ij

)
,

∂Φkij
∂C

=
∂Φ

∂C

(
hij , C

k
ij

)
.

Then the equations of the Newton system (3.6), corresponding to the algebraic
Equations (3.3), take the form

∂Φki+1/2,j

∂C

(
Ck+1
i+1/2,j − C

k
i+1/2,j

)
−
(
ck+1 − ck

)
= −

(
Φki+1/2,j − c

k
)

or, alternatively, they can be rewritten as

Ck+1
i+1/2,j = Cki+1/2,j −

Φki+1/2,j − c
k+1

∂Φki+1/2,j/∂C
, i = 0, Nr − 1, j = 0, Nϕ. (3.7)
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The equations of the Newton system (3.6), corresponding to the algebraic Equa-
tions (3.4), take the form

∂Φki,j+1/2

∂C

(
Ck+1
i,j+1/2 − C

k
i,j+1/2

)
−
(
ck+1 − ck

)
= −

(
Φki,j+1/2 − c

k
)

or alternatively they can be rewritten as

Ck+1
i,j+1/2 = Cki,j+1/2 −

Φki,j+1/2 − c
k+1

∂Φki,j+1/2/∂C
, i = 0, Nr, j = 0, Nϕ − 1. (3.8)

Let us substitute the expressions for Ck+1
i+1/2,j and Ck+1

i,j+1/2 from (3.7) and (3.8),

respectively, into the equation of the Newton system, corresponding to the
Equation (3.5),

Nr−1∑
i=0

Nϕ∑
j=0

ωij + ωi,j−1

4

ck+1 − Φki+1/2,j

∂Φk
i+1/2,j

∂C

+

Nr∑
i=0

Nϕ−1∑
j=0

ωij + ωi−1,j

4

ck+1 − Φki,j+1/2

∂Φk
i,j+1/2

∂C

= −
Nr−1∑
i=0

Nϕ∑
j=0

ωij+ωi,j−1

4

(
Cki+1/2,j−C0

)
−
Nr∑
i=0

Nϕ−1∑
j=0

ωij+ωi−1,j

4

(
Cki,j+1/2−C0

)
.

According to the last relation, the value of the unknown constant ck+1 could
be expressed explicitly through the values at the k-th iteration of the Newton
method

ck+1 =

(Nr−1∑
i=0

Nϕ∑
j=0

ωij + ωi,j−1

4

(
Φki+1/2,j

∂Φki+1/2,j/∂C
− Cki+1/2,j + C0

)

+

Nr∑
i=0

Nϕ−1∑
j=0

ωij + ωi−1,j

4

(
Φki,j+1/2

∂Φki,j+1/2/∂C
− Cki,j+1/2 + C0

))
/(Nr−1∑

i=0

Nϕ∑
j=0

ωij + ωi,j−1

4

(
∂Φki+1/2,j

∂C

)−1

+

Nr∑
i=0

Nϕ−1∑
j=0

ωij + ωi−1,j

4

(
∂Φki,j+1/2

∂C

)−1)
. (3.9)

Due to the structure of the Newton system (3.7)–(3.9), computations at each
iteration are reduced to successive calculations of the unknown quantities.
Namely, we first compute ck+1 by (3.9), then Ck+1

i+1/2,j and Ck+1
i,j+1/2 by (3.7)

and (3.8), respectively, for the known value of ck+1.
The Newton method requires up to 10 iterations to converge until the norms

of the relative errors ‖Ck+1 −Ck‖∞/C0 and |ck+1 − ck|/|ck| become less than
10−7. Initial values for the Newton iterations are defined as C0

ij = C0 and

c0 = C0e
R(C0) from (3.2). These correspond to the applied field intensity

equaled to zero and, consequently, h = 0 inside the ferrofluid domain.
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Note that the expression for the unknown constant ck+1 is incorrectly writ-
ten in [10] and should be modified as

ck+1 =

M∑
i=1

ωi

(
Φ
(
Cki , Hi

)
∂Φ
∂C

(
Cki , Hi

) − Cki + C0

)
/

M∑
i=1

ωi
∂Φ
∂C

(
Cki , Hi

) ,
following the notations in [10].

4 Numerical results

The dimensionless parameters of the problem under consideration are the ap-
plied field intensity h0, the outer radius of the layer δ, the Langevin suscepti-
bility of ferrofluid χL and the mean particle concentration of ferrofluid C0.

For the test computations, three different ferrofluids are considered, named
as MF1, MF2 and MF3, with the following characteristics: the saturation mag-
netization Ms, the magnetic phase concentration φm, the Langevin suscepti-
bility χL and the mean particle concentration C0, taken from [21, Table II] for
monodisperse ferrofluids at T = 295 K. Namely,

for MF1: Ms = 25 kA/m, φm = 0.052083, χL = 1.748484, C0 = 0.111042,

for MF2: Ms = 50 kA/m, φm = 0.104167, χL = 3.496968, C0 = 0.222084,

for MF3: Ms = 75 kA/m, φm = 0.156250, χL = 5.245452, C0 = 0.333126.

The ferrofluids MF1, MF2, MF3 correspond to classes of weakly, moderately
and highly concentrated ferrofluids, respectively. The dipolar coupling constant
is defined by the relation λ = χL/ (8C0), see e.g. [18], and it is equal to the
same value λ ≈ 1.96827 for the ferrofluids under consideration. As a result,
the left-hand sides of the algebraic equations for the concentration (2.12) and
(2.14) are the same for ferrofluids MF1, MF2 and MF3, making computations
easier.

The cylindrical geometry of the ferrofluid layer results in a significant stea-
dy-state redistribution of ferroparticles inside the layer due to the diffusion
process of nanoparticles. Refer to Figure 3.

The particle concentration takes the maximum value near the Ox-axis.
Moving counterclockwise for the polar angle from 0 to π/2, the concentra-
tion monotonically decreases to the minimum value near the Oy-axis. Refer to
the isolines structure in Figure 3a and the concentration profile over the center
line of the ferrofluid domain at r = (1 + δ)/2 in Figure 3b. In particular, for
the ferrofluid MF3 at h0 = 10 the maximum value is at about 1.3C0 and the
minimum value is about 0.5C0. Refer to Figure 3a. Ferrofluids MF1, MF2,
MF3 have different values of the mean particle concentration C0 resulting in a
different quantitative particle redistribution inside the ferrofluid layer for the
same applied field h0. Refer to Figure 3b. Note that the magnetic field intensity
h inside the ferrofluid has the same qualitative behavior as the concentration
shown in Figure 3. This is due to the algebraic relationship between C and
h, which has an explicit form (2.10) for model 1 and implicit ones (2.14) and
(2.12) for model 2 and model 3, respectively.
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Figure 3. a) Isolines of the dimensionless concentration C/C0 for the ferrofluid MF3.
b) Dependence of the dimensional concentration C versus the polar angle on the center

line of the ferrofluid domain at r = (1 + δ)/2. Computations are made for model 3 at the
dimensionless applied magnetic field intensity h0 = 10 and at the dimensionless outer

radius of the layer δ = 1.1.

A physical explanation of the fact that the concentration near the Ox-axis
is larger than near the Oy-axis, see Figure 3a, is due to the external magnetic
field orientation along the y-direction and the transmission conditions (2.7)
and (2.8) on the layer boundaries γ1 and γ2. The tangential component of the
external magnetic field equals zero at the top point (x = 0, y = δ). Therefore
h2 = h3µ, but at the right point (x = δ, y = 0) the normal component of the
external field equals zero. Hence h2 = h3. The values of h3 at both points
are comparable to the field intensity at the infinity. Therefore, h2 at the right
point is larger than at the top point for µ > 1. As a consequence of a monotone
dependence between C and h2, the concentration at the right point is larger
than at the top point.

The results of computations, presented in Figure 3, are made for model 3.
Analogous computations for model 1 show the maximum relative deviation of
about 50% from the results of model 3 for the concentration values at some
regions even for the weakly concentrated ferrofluid MF1. We conclude that
model 1 can not be used for the problem under consideration to get quantita-
tively valuable numerical results for MF1, MF2 and MF3 in the whole range
of field intensities. Computations for Figure 3 made in the context of model 2
demonstrate the maximum relative deviation of about 0.2% from the results of
model 3 for concentration values obtained for ferrofluids MF1, MF2 and MF3.

A quantitative measure of the effectiveness of a shield is defined by the
shielding effectiveness factor Kef , which estimates the decay factor of the ap-
plied magnetic field intensity after its transmission into the shielded region Ω1.
The shielding effectiveness factor is computed as the ratio of the magnitude of
the applied field h0 to the magnitude of the transmitted magnetic field h1 at
the observation point r = 0, according to the following formula:

Kef =
h0

h1(0, ϕ)
= h0/

∣∣∣∣ limr→0

∂u1(r, π/2)

∂r

∣∣∣∣ .
See [9] for the details.
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Figure 4a shows the effect of the particle redistribution inside the ferrofluid
layer on the shielding effectiveness factor for different intensities of the applied
magnetic field h0. Namely, the shielding effectiveness factor Kef is computed
under the assumption of uniform particle distribution C = C0. It is com-
pared with the shielding effectiveness factor Kdiff

ef computed in the context
of the model 3 taking the particles diffusion into account. The relative er-
ror

(
Kdiff

ef −Kef

)
/Kef demonstrates that the diffusion has negligible influence

(less than 1%) on the shielding factor in weak magnetic fields (h0 < 1) and
strong fields (h0 > 20). Refer to Figure 4a. Due to the diffusion process, the
highest increase of the shielding is achieved for the moderate field intensities
of about h0 = 3, where the relative error takes the maximum value at around
3% for the outer radius of the layer δ = 1.1. Refer to Figure 4a. Similar quali-
tative behavior is presented for three ferrofluids under consideration, whereas
the moderately concentrated ferrofluid MF2 shows the strongest increase of the
shielding effectiveness factor Kdiff

ef , compared with Kef .
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Figure 4. a) Dependence of the relative error
(
Kdiff

ef −Kef

)
/Kef for the shielding

effectiveness factor, computed as Kdiff
ef for a non-uniform particle distribution and as Kef

for a uniform one, versus the dimensionless applied magnetic-field intensity h0.
b) Dependence of the dimensionless concentration C/C0 versus the dimensionless applied

magnetic-field intensity h0 at the two control points x = (1 + δ)/2, y = 0 and
x = 0, y = (1 + δ)/2 on the center line of the ferrofluid domain at r = (1 + δ)/2.

Computations are made for model 3 at the dimensionless outer radius of the layer δ = 1.1.

Despite the fact that the effect of the diffusion on the shielding effective-
ness factor is not very pronounced at the outer radius of the layer δ = 1.1,
see Figure 4a, the steady-state particle redistribution inside the ferrofluid layer
is quite substantial. We define two control points on the center line of the
ferrofluid domain at r = (1 + δ)/2 to monitor the behavior of the concentra-
tion. Figure 4b shows a monotone change of the concentration with increasing
magnetic field intensity h0, applied externally. Namely, we observe a monotone
increase of the concentration at the control point on the Ox-axis, whereas we
see a monotone decrease of the concentration at the second control point on
the Oy-axis. The strongest particle redistribution is shown for the weakly con-
centrated ferrofluid MF1 with the maximum concentration of about 2.4C0 and
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the minimum value 0.3C0 for strong magnetic field of the intensity h0 = 100.
Moreover, Figure 4b shows that particles remain nearly uniformly distributed
in weak fields for h0 < 1 resulting in negligible influence of diffusion on the
shielding factor values. Refer to Figure 4a.

Computations for Figure 4 are made in the context of model 3. Analogous
computations performed for model 2 demonstrate the maximum relative devi-
ation of about 3% from the results of model 3 for the shielding effectiveness
factors Kef and Kdiff

ef in the whole range of field intensities h0 ∈ [0.01, 100],
obtained for three ferrofluids under consideration. The maximum deviation for
the compared values corresponds to the highly concentrated ferrofluid MF3,
whereas the deviation is about 0.1% for the weakly concentrated ferrofluid MF1
and about 1% for the moderately concentrated ferrofluid MF2. We conclude
that model 2, as a simpler version of model 3 in the mathematical formulation,
can be used for the problem under consideration to obtain quantitatively valu-
able numerical results for ferrofluids MF1, MF2 and MF3 in the whole range
of field intensities.
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Figure 5. a) Dependence of the relative error
(
Kdiff

ef −Kef

)
/Kef for the shielding

effectiveness factor, computed as Kdiff
ef for a non-uniform particle distribution and as Kef

for a uniform one, versus the dimensionless layer thickness δ − 1. b) Dependence of the
dimensionless concentration C/C0 versus the dimensionless layer thickness δ − 1 at the two

control points x = (1 + δ)/2, y = 0 and x = 0, y = (1 + δ)/2 on the center line of the
ferrofluid domain at r = (1 + δ)/2. Computations are made for model 3 at the

dimensionless applied magnetic-field intensity h0 = 10.

Figure 5a shows the effect of the diffusion on the shielding effectiveness fac-
tor for various values of the layer thickness δ − 1. The shielding effectiveness
factor Kef , computed for the uniform particle distribution C = const, is com-
pared to the shielding effectiveness factor Kdiff

ef , computed for the non-uniform
particle distribution C = C(h) in the context of the model 3. The relative
error

(
Kdiff

ef −Kef

)
/Kef demonstrates that the diffusion leads to a monotone

increase of the shielding effectiveness factor up to the value close to 10%, with
increasing outer radius of the layer δ ∈ [1.01, 2] at the moderate field intensity
h0 = 10. Refer to Figure 5a. All three ferrofluids under consideration show
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a similar monotone behavior in Figure 5a. The moderately concentrated fer-
rofluid MF2 demonstrates the strongest increase of the shielding effectiveness
factor, due to the diffusion, compared to the weakly concentrated ferrofluid
MF1 and the highly concentrated ferrofluid MF3. This fact is supported by
the numerical results in Figure 4a and Figure 5a. The values of the shielding
effectiveness factor are higher for more concentrated ferrofluids. Refer to [9].
However, the relative quantity

(
Kdiff

ef −Kef

)
/Kef , presented in Figure 4a and

Figure 5a, may lose this qualitative effect. For example, at h0 = 3 the factor
values (Kef = 1.12, Kdiff

ef = 1.16) for the moderately concentrated ferrofluid
MF2 are smaller than Kef = 1.23, Kdiff

ef = 1.26 for the highly concentrated
ferrofluid MF3. However, the relative quantity

(
Kdiff

ef −Kef

)
/Kef = 0.03 for

MF2 is higher than
(
Kdiff

ef −Kef

)
/Kef = 0.02 for MF3.

Figure 5b shows that the steady-state particle redistribution is stronger
inside thin layers than inside thick ones with a tendency to reach uniform
distribution with increasing layer thickness δ − 1. In particular, the strongest
particle redistribution is shown for the weakly concentrated ferrofluid MF1 with
the maximum concentration of about 2.4C0 and the minimum value 0.3C0 for
thin layer with δ = 1.01 at h0 = 10. A monotone change of the concentration
with increasing layer thickness δ − 1 is shown in Figure 5b with a monotone
increase of the concentration at the control point on the Ox-axis for r = (1 +
δ)/2 and a monotone decrease at the second control point on the Oy-axis for
r = (1 + δ)/2.

The computation results, presented in Figure 5, are made in the context
of model 3. Analogous computations, performed for model 2, demonstrate the
maximum relative deviation of about 0.05% from the results of model 3 for the
shielding effectiveness factors Kef and Kdiff

ef in the whole range of δ ∈ [1.01, 2],
obtained for three ferrofluids under consideration.

Based on computation results of the three models, presented in Figure 3–
Figure 5, one may notice the maximum relative deviation between model 1
and model 3 is about 50% in Figure 3, and the maximum relative deviation
between model 2 and model 3 is about 3% in Figure 4. Note that the relative
accuracies of the numerical results correlate with the relative deviations in
the values of the initial susceptibilities corresponding to three models under
consideration. The known expressions for the initial susceptibilities are χ(1) =
χL, χ(2) = χL(1 + χL/3) and χ(3) = χL(1 + χL/3 + χ2

L/144), see e.g. [21].
Relative deviations between χ(1) and χ(3) range from 38% to 66%, whereas
relative deviation between χ(2) and χ(3) range from 1.3% to 6.5% for MF1,
MF2 and MF3. These numbers are of the same order of magnitude as those
found in numerical computations. We conclude that model 1 cannot be used
for the problem under consideration to get quantitatively valuable numerical
results for MF1, MF2 and MF3. We also conclude that model 2, as a simpler
version of model 3 in the mathematical formulation, suits well for the modelling
in the whole range of the applied field intensities h0 and of the layer thicknesses
for MF1, MF2 and MF3.
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5 Conclusions

Three mathematical models are constructed and compared under the assump-
tion that model 3, by construction, is more accurate for computations with
weakly, moderately and highly concentrated ferrofluids. Model 1 can not be
used for the problem under consideration to get quantitatively valuable numer-
ical results for any type of ferrofluids. Model 2, as a simpler version of model 3
in the mathematical formulation, suits well for the numerical modelling of the
problem under consideration in the wide range of the applied field intensities
h0 and of the ferrofluid layer thicknesses δ − 1.

The shielding effectiveness factor is mostly influenced by the particle redis-
tribution inside the ferrofluid layer at moderate intensities of the applied field
h0 leading to an increase of the shielding effectiveness factor Kdiff

ef of up to
10%, by comparing with the results of computations without diffusion. Refer
to Figure 4a and Figure 5a. The shielding properties of the ferrofluid layer is
not improved by diffusion at weak and strong intensities of the applied field h0.
Refer to Figure 4a. Most likely, the diffusion of magnetic particles will lead to
a stronger increase of the shielding effectiveness factor in non-uniform external
magnetic fields.

The weakly concentrated ferrofluid (magnetic phase equals 0.05) shows the
strongest particle redistribution inside the ferofluid layer compared to con-
centration profiles for the moderately and the highly concentrated ferrofluids.
Refer to Figure 4b and Figure 5b. However, due to diffusion, the increase
of the shielding effectiveness factor Kdiff

ef is higher for the moderately concen-
trated ferrofluid (magnetic phase equals 0.1) than for the weakly and the highly
concentrated ferrofluid. Refer to Figure 4a and Figure 5a.
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