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Abstract. Given a class of non-linear SIRS epidemic model, we analyse some useful
conditions on the model parameters to determine a safety set for the containment of
an epidemic. In addition, once that set is determined, we find control actions so that
the epidemic remains within the security set with infection rates below an allowed
amount. More specifically, for every initial state in a certain safety set of the state
space there exists an adequate control policy maintaining the state of the system in
such safety set. Sufficient conditions for the existence of a solution under a feedback
are derived in terms of linear inequalities on the input vectors at the vertices of a
polytope.
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1 Introduction

In general, epidemic models are based on mathematical models that describe
the spread of microorganisms within populations. Several non-linear models
have been formulated, mathematically analysed and applied to infectious dis-
eases. For example, one of the most frequent is the SIR model (see [3, 12,20]),
which initially begins with susceptible individuals and assumes that a conta-
gious disease appears in the population. After a contact between a susceptible
individual and an infectious individual, the susceptible individual can become
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infectious (without entering any latency period) and when the period of in-
fection ends, the individual can recover from the disease with immunity or
without immunity, [10, 11] and [20]. If the recovered individual does not show
immunity then it is again a susceptible individual and the process is repre-
sented by a SIRS model (see [1, 9, 12] and the references therein). In recent
years, the application of mathematical models to analyse different scenarios
in the evolution of infectious epidemics has been a increasing trend. In par-
ticular, [2] presents an application of mathematical modelling of an infectious
bovine disease, in [14] and [21] the study focuses on the productivity of cattle,
in particular in its dairy or in herds of cattle, and in [8] analyses a mathematical
model of a human infection.

In general, these types of models incorporate some restrictions on the size of
the population due to the special circumstances of the farm. In addition, the
continued contacts between susceptible and infected animals in the different
farm enclosures contributes to the maintenance of the infection for extended
periods of time.

We are more interested in looking for conditions to determine a distribution
of population, susceptible, infected and recovered, where the number of infected
individuals can be reduced or maintained within the appropriate levels. This
distribution is hereafter named as safety distribution population or safety set.

Reachability problems play an important role in a wide range of problems
related to control of biological or engineering systems. In general, a reachabil-
ity problem evaluates whether a system will attain, in a finite time, a certain
set of states by means of trajectories originating from a given initial set. In
the literature, several approaches have been proposed to study the reachability
property of non-linear systems. For example, in [4] the approach is based on
local linearisations of the non-linear system, in [17] a continuous (piecewise)
affine state feedback is used to solve this problem and in [23] the structure
of the system is exploited to analyse reachability of discrete-time systems. In
particular, a reachability analysis is important when designing models to meet
some safety or performance specifications. This is the case of the models rep-
resenting the evolution of an epidemic where it is very important to design
control actions so that the evolution of the disease remains within certain lev-
els of security and does not extend to the entire population. Positivity and
related mathematical properties are assumptions used in the modelling of the
spread of infectious diseases. [16] and [24] are two references of different models
commonly used. Positive reachability of non-linear systems has not yet been
sufficiently studied. Some recent works related to the characterization of this
property for discrete and continuous systems are [5] and [6] and an algorithm
for computing reachable states for non-linear biological models is given in [13].
Moreover, an approach based on the fixed point theory can be found in [22].
In [17] the authors consider a reachability problem for an affine system on a
full-dimensional polytope and they study how to reach a particular facet of the
polytope.

In this paper, we focus on a particular class of non-linear SIRS epidemic
models and our goal is to verify if it is possible to maintain the state of an
epidemic system inside some safety set by choosing an adequate control pol-
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icy, i.e. to ensure that the state of the system remains in a certain region
of the state space. For that, the spread of a disease is modelled by means
of a non-autonomous SIRS model with a bounded population along the time.
The difference between a traditional SIRS model and our proposal is the in-
terpretation of the population recruitment as a control action. For example,
a situation where this control can be applied is to optimize the resources of
a livestock farm. It is important to achieve maximum production optimizing
resources. So, it is necessary to maintain a certain population on the farm,
replacing non-productive animals. In the our case, the adequate control pol-
icy is determined through geometrical methods. Specifically, a polytope that
limits the number of infected individuals is considered, as a safety set to en-
sure an acceptable evolution of the disease. In addition, a class of functions
relying on the polytope vertices is constructed. These kind of functions have
allowed us to derive the feedback control guaranteeing that the state trajectory
of the closed-loop system remains in such a region. This control strategy allow
us to increase the susceptible population and maintaining the distribution of
individuals in appropriate levels established by such a safety set.

The rest of the paper is organised as follows. The following section includes
the notation and those preliminary results used throughout this work. Section 3
gives a description of the epidemic model to be studied and the positivity
property is also examined. In the fourth section, an adequate control policy to
keep the trajectory of an epidemic system in some safety set is chosen. Finally,
some conclusions are given.

2 Preliminaries

For the sake of simplicity, a generalised notation and widely used definitions are
adopted. Thus, a matrix A = (aij) ∈ Rn×n is non-negative (positive) if aij ≥ 0
(aij > 0) for all i, j, and it is denoted by A ≥ O (A > O). The spectrum
of A and its spectral radius are denoted by σ(A) and ρ(A), respectively. It is
known, [7], that a matrix A is stable if ρ(A) < 1. An autonomous discrete-time
linear system x(t+ 1) = Ax(t) is asymptotically stable to 0 if and only if A is
a stable matrix, that is ρ(A) < 1.

Consider V = {vi}i=1,...,m with m ≥ n + 1 a set of points in the space Rn
such that there exist no hyperplanes of Rn containing all these m points. A
full-dimensional polytope P (V ) is defined as the convex hull of V (see [15]). If a
point vi, i = 1, . . . ,m cannot be written as a convex combination of V −vi, the
point vi is called a polytope’s vertex. Recall that, a full-dimensional polytope
is characterised by its set of vertices.

Consider the discrete-time non-linear system given by

x(t+ 1) = Ax(t) + f(x(t)) +Bu(t), t ≥ 0 (2.1)

with x(·) ∈ Rn, u(·) ∈ R, A ∈ Rn×n, B ∈ Rn, and f : Rn+ → Rn a bound
differentiable function satisfying f(0) = 0, f(λei) = 0, with ei the i-th unit
vector ∀i = 1, . . . , n, and λ > 0.

In general, positive systems are those systems whose trajectory from any
initial non-negative condition remains in the positive orthant for all future time,
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that is, a system is positive if from any non-negative initial state and any non-
negative input sequence the solution trajectory is non-negative. The notion of
local positiveness of a non-linear time-varying system is introduced in [18] and
necessary and sufficient conditions for positivity of a class of non-linear systems
are established in [19].

Denoting f(x) = (fi(x))ni=1 and Ax = ((Ax)i)
n
i=1, we have the following

characterization.

Proposition 1. System (2.1) is positive if and only if A ≥ O, B ≥ O and for
any x ∈ Rn, |fi(x)| ≤ (Ax)i for every i such that fi(x) ≤ 0.

Proof. If the system is positive, taking x(0) = 0 and u(0) = 1, 0 ≤ x(1) = B
since f(0) = 0. Then B ≥ 0. Moreover, taking x(0) = ei and u(0) = 0,
0 ≤ x(1) = Aei, since f(ei) = 0. Then, A ≥ O. And, if x(0) = x ≥ 0
and u(0) = 0, 0 ≤ x(1) = Ax + f(x). Then, since A ≥ O, the condition
|fi(x)| ≤ (Ax)i for every i such that fi(x) ≤ 0 holds.

Conversely, it is straightforward. ut

3 SIRS model

From now on, we consider a SIRS dynamic process for spread of a disease. The
individuals are organised in three compartments: Susceptible (x1), Infected
(x2) and Immune or Recovered (x3). The mathematical model is described by
a system as (2.1) with x(t) ∈ R3

+, non-negative input u(t) ∈ R+, where the
relationship among the individuals is given by

A =

 p− µ 0 w
0 q − γ 0
µ γ r − w

 , f(x(t)) =

 −αx1(t)x2(t)
αx1(t)x2(t)

0

 , B = e1,

(3.1)
where all the parameters involved are described on Table 1. Moreover, in
order to the parameters of the mathematical model to fit their epidemiological
meaning, it is assumed that they satisfy the following constraints: α > 0,
0 ≤ µ < p < 1, 0 < γ < q < 1 and 0 ≤ w < r < 1.

Table 1. Parameters in SIR model (2.1)–(3.1).

Parameters Definition

p, q, r Survival rates of susceptible individuals, infected individuals and
recovered individuals, respectively.

α Exposition rate of susceptible individuals by contact with an infected
individual.

γ Transition rate of infected individuals to recovered individuals.
µ Transition rate of susceptible individuals to recovered individuals

(immune individuals).
w Transition rate of recovered individuals to susceptible individuals.

Matrix A reflects the interconnections between the three compartments of
population. There are recovered (immune) susceptible individuals (with a tran-



On a Safety Set for an Epidemic Model 267

sition rate µ), recovered infected individuals (with a transition rate γ) and
susceptible recovered individuals (with a transition rate w).

Since new susceptible individuals can only be added by modifying the first
compartment, then B = e1. This works by increasing the number of susceptible
individuals as a recruitment to the population. The newly added population
is time-dependent and can be viewed as a control action to achieve the desired
objectives, for example the stability property of the model, maintaining an
adequate population size or optimising farmers’ resources to maximise profit
or farm efficiency. In our case, this control action is used to find a safety
distribution population or a safety set.

Therefore, using Proposition 1, system (2.1)–(3.1) is positive if and only if

αx1(t)x2(t) ≤ (p− µ)x1(t) + wx3(t), ∀t ≥ 0,

or equivalently,

x1(t)(p− µ− αx2(t)) + wx3(t) ≥ 0, ∀t ≥ 0.

Then, the condition x2(t) ≤ p−µ
α , for all t ≥ 0, is a sufficient condition to ensure

that system (2.1)–(3.1) is a positive system.
Let us suppose that, for an initial condition x(0) ∈ R3

+, system (2.1) rep-
resents the dynamic of an initial population P0 = x1(0) + x2(0) + x3(0) ∈ R+,
it is evident that system (2.1) must be positive. Moreover, if no controls are
considered, due to the survival of individuals, the solution must tend to zero.
Note that the state x(t) of an autonomous system can be written as

x(t) = Atx(0) +
(
I A · · · At−1

) f(x(t− 1))
...

f(x(0))

 , t ≥ 0.

Hence, if matrix A is stable and f(t) is a bounded function then we have
assured that the population tends to extinct. Focusing our attention on model
(2.1)–(3.1), we observe that, the eigenvalues of matrix A are q − γ < 1 and

λ1,2 =
1

2

(
p− µ+ r − w ±

√
µ2 + (p− r + w)2 + 2µ(−p+ r + w)

)
. (3.2)

Using the positivity of the parameters µ and w, note that the eigenvalues
λ1,2 are real because they can be written as follow:

λ1,2 =
1

2

(
p− µ+ r − w ±

√
((p− µ)− (r − w))2 + 4µw

)
.

Furthermore, using the Gershgorin circle theorem by columns, it is deduced
that the spectrum of this matrix is contained into the line segment ]0, 1[. It
is due to the fact that every eigenvalue of A lies within at least one of the
Gershgorin disc, which in this case are D(p − µ, µ), D(q − γ, γ), D(r − w,w).
Thus, |λ1,2| < 1, that is, A is stable. Then, considering an initial population
P0 = x1(0) + x2(0) + x3(0) ∈ R+ such that P0 ≤ p−µ

α and zero controls, the
autonomous system given by (2.1)–(3.1) is positive and its solution tends to
zero.

In the following section we consider a more general case corresponding to a
non-autonomous system with a bounded population along the time.

Math. Model. Anal., 27(2):263–281, 2022.
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3.1 Equilibrium points for a non-autonomous system with
a bounded population

Let us consider henceforth a non-autonomous system with a bounded popu-
lation, more specifically,

∑3
i=1 xi(t) ≤ P, t ≥ 0. That is, the population is

bounded by P at all times.
As the model represents an epidemiological process, we are interested in

analysing the dynamic process when some infected individuals are introduced.
That is, the initial state considered is x(0) = (x1(0) x2(0) 0)T . The main aim
of this study is to find a safety set and to look for the conditions so that if x(t)
(state of the system) belongs to the set, then the trajectory of a system remains
in that set forever. Once this set is determined, one could study under what
conditions the system trajectory can be led to that set, however that is not the
purpose of this study. Nevertheless, in the next development we show a case in
which we can search for the set of reachable states that have the structure we
are looking for and how we can find a control sequence that leads us to that
set if possible. To achieve the latter, given that the state x(t) of the system
(2.1) can be written as

x(t)=Atx(0)+
(
BAB · · ·At−1B

)u(t−1)
...

u(0)

+
(
I A · · ·At−1

)f(x(t−1))
...

f(x(0))

 ,

we need to introduce the following concept of positively reachable (non-negati-
ve) state at t steps: A non-negative state x̄ is positively reachable from x(0) ≥ 0
if there exists a non-negative sequence u(0), . . . , u(t−1) ≥ 0 such that x(i) ≥ 0
for i = 1, . . . , t− 1 and x(t) = x̄. For instance, if µ = 0,

(
B AB · · · At−1B

) u(t− 1)
...

u(0)

 =


u(t− 1) + · · ·+ pt−1u(0)

0
...
0

 .

Then, the set of positively reachable states from x(0) in t steps is

Rt(x(0))={x ∈ R3
+ / ∃αi ≥ 0 : x=Atx(0)+

t−1∑
i=0

(pt−1−iαie1+At−1−if(x(i)))}.

From here, we would take the control sequence that in t steps takes the path
from the initial state x(0) to a final state x ∈ Rt(x(0)) belonging to the safety
set.

To approach the construction of the safety set, we have to previously study
conditions on the asymptotic stability of the system. For that, we consider
that our equilibrium point is of the form (x?, u?). Notice that the equilibrium
points (x?, u?) are defined by the solution of the system of algebraic equations

x? = Ax?+f(x?)+Bu? with the condition

3∑
i=1

(x?)i ≤ P. These solutions are the
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disease-free (DFE) equilibrium point Ef and the endemic equilibrium points.
So, taking u? and centered on the disease-free equilibrium point Ef = (x?, u?),
that is, the point at which no disease is present in the population, then x?2 = 0.
So, Ef is given by

Ef= ((x?1, 0, x
?
3), u?) =

(
u?

(1−p+µ)(1−r+w)−µw
((1−r+w), 0, µ), u?

)
. (3.3)

Since x?2 = p−µ
α , it follows that the point Ef is a positive equilibrium point of

system (2.1)–(3.1).
On the other hand, we have a bounded population P , that is, Σ3

i=1xi(t) ≤ P.
Then, using the coordinates of Ef given in (3.3), it is satisfied that

x?1 + x?3 =
u?(1− r + w + µ)

(1− p+ µ)(1− r + w)− µw
≤ P.

Then,

u? ≤ P

(1− r + w + µ)
((1− p+ µ)(1− r + w)− µw).

We now study the behaviour of disease-free equilibrium for system (2.1)–
(3.1). For that, the model is linearised around the disease-free equilibrium point
and we obtain the eigenvalues of the coefficient matrix. Thus, the stability of
the disease-free equilibrium point is directly related to the spectral radius of
this coefficient matrix. Linearising around Ef we have xl(t) = x(t) − x?,
ul(t) = u(t)− u? and approximating f(x(t)) as follows,

f(x(t)) ≈ α

 −1

1

0

x?1x2(t) + x1(t)x?2 = α

 −1

1

0

x?1x2(t),

the new linearised systems is given by

xl(t+ 1) = (A+ Ã)xl(t) +Bul(t), t ≥ 0, (3.4)

with Ã =

 0 −αx?1 0
0 αx?1 0
0 0 0

 . Then, the approximation of the solution of non-

linear system is xap(t) = xl(t) +x?. Note that the characteristic polynomial of

A+ Ã is given by

det(λI − (A+ Ã)) = (λ− (q − γ + αx?1)) det

(
λ− p+ µ −w
−µ λ− γ + w

)
.

Hence, the spectrum of A + Ã is given by λ1,2 given in Equation (3.2), which
have modulus less than 1, and λ3 = q − γ + αx?1. Using expression of x?1 given
in (3.3), the matrix A+ Ã is stable if and only if

u? <
(1− q + γ)

α(1− r + w)
((1− p+ µ)(1− r + w)− µw) . (3.5)

Math. Model. Anal., 27(2):263–281, 2022.
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This means that the system stability is directly related to the control action
that can be used in the process. This technical result can be interpreted as the
maximum population recruitment to fulfil the stability of the model. Thus, in
our case the control u? must satisfy condition (3.5). Since ρ(A+ Ã) < 1, then
system (3.4) is asymptotically stable, lim

t→∞
xl(t) = 0, that is, the disease-free

equilibrium point is globally asymptotically stable.
We summarize all the previous comments in the following result.

Theorem 1. If u? satisfy the following relationship

(i)
u?

(1− p+ µ)(1− r + w)− µw
≤ P

(1− r + w + µ)
<

(1− q + γ)

α(1− r + w)
,

then the condition

3∑
i=1

(x?)i ≤ P is satisfied and the system is stable.

(ii)

(1− q + γ)

α(1− r + w)
≤ u?

(1− p+ µ)(1− r + w)− µw
≤ P

(1− r + w + µ)
, (3.6)

then the condition

3∑
i=1

(x?)i ≤ P is satisfied and the system is unstable.

We recall that the goal of this paper is looking for conditions to determine a
distribution of population, susceptible, infected and resistant (immune or recov-
ered), where the number of infected individuals can be reduced or maintained
within the appropriate levels. This means that there are still some infected
individuals in the population while condition (3.6) should hold and therefore,
the population satisfies αP ≥ (1− q + γ) (1 + µ/(1− r + w)).

In the next section, we obtain some conditions to find control actions so
that the epidemic remains within the security set with infection rates below an
allowed positive amount ε.

4 Safety set

In this section, let us assume that condition (3.6) holds. Then population
bound P is such that

αP ≥ (1− q + γ) (1 + µ/(1− r + w)) . (4.1)

In this case, the epidemic process is not stable around the disease-free equi-
librium point. Despite having instability, we analyse whether it is possible
to choose an adequate control policy to keep the trajectory of an epidemic
system inside some safety set, that is, to guarantee that the system state
x(t) = (x1(t) x2(t) x3(t))T remains in a certain subset of the admissible state
space such that the infected population, which a percentage of the population,
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is less than a safety bound ε = τP > 0, 0 < τ < 1. For that, taking into
account the condition that assures a non-negative solution of system (3.1), and
the previous consideration, the size of the infected population should satisfy

x2(t) ≤ ε ≤ p− µ
α

. (4.2)

Besides that, we can assume that the susceptible individuals are a suitable
percentage of the non-infected individuals (1 − τ)P . Thus, for any bound P
and any ε > 0 satisfying (4.1)–(4.2) we gather all these conditions that make
sense for an epidemic model in an admissible set X given by

X = {x = (xi)
3
i=1 ∈ R3

+ /

3∑
i=1

xi ≤ P, x1 ≤ Pk(1− τ),

x2 ≤ Pτ, 0 ≤ τ < k(1− τ) < 1, 0 < k ≤ 1}.

In particular, the population of X has been chosen so that the upper bound for
x1 is greater than the upper bound of x2. Hence, the constraint τ < k(1−τ) < 1
with 0 < k ≤ 1. Observe that this set X = P (V ) is a polytope for the set of
vertices V = {vi}7i=0,

v0 = (0 0 0)
T
, v4 = P (k(1− τ) τ 0)

T
,

v1 = P (k(1− τ) 0 0)
T
, v5 = P (0 τ 1− τ)

T
,

v2 = P (0 τ 0)
T
, v6 = P (k(1− τ) 0 1− k(1− τ))

T
,

v3 = P (0 0 1)
T
, v7 = P (k(1− τ) Pτ 1− τ − k(1− τ))

T
.

(4.3)

We propose to solve the following problem:
From an initial state x(0) in a subset of X , to construct a feedback control

u(t) = h(x(t)) keeping the state trajectory x(t) of the closed-loop system in
this set, for all t ≥ 0.

For that, we focus our attention on the function class defined as

Θ = {θ : X → R3 / θ(x) = c1x1 +c2x2 +c3x3 +c4x1x2, ci ∈ R3, ci 6= 0}. (4.4)

It is straightforward to prove that the image by a map θ in Θ of any state
in X can be written as a linear combination of the images of the vertices
characterizing X .

Proposition 2. Consider θ ∈ Θ. Then, for all x ∈ X , θ(x) can be written

θ(x) =
∑4
i=1 αiθ(vi), with V̄ = {v1, v2, v3, v4} defined in (4.3) with

α1 =
x1

Pk(1− τ)
(1− x2

τP
), α2 =

x2

τP
(1− x1

Pk(1− τ)
),

α3 =
x3

P
, α4 =

x1x2

P 2k(1− τ)τ
.

(4.5)

Proof. We consider the image of θ on the vertices of X : θ(v1) = c1Pk(1− τ),
θ(v2) = c2Pτ , θ(v3) = c3P , θ(v4) = c1Pk(1 − τ) + c2Pτ + c4P

2k(1 − τ)τ ,
θ(v5) = c2Pτ + c3P (1 − τ), θ(v6) = c1Pk(1 − τ) + c3P (1 − k(1 − τ)) and

Math. Model. Anal., 27(2):263–281, 2022.



272 C. Coll, S. Romero-Vivó and E. Sánchez

θ(v7) = c1Pk(1−τ)+c2Pτ +c3P (1−τ −k(1−τ))+c4P
2k(1−τ)τ . The result

is directly followed by solving the system θ(x) =
∑6
i=1 αiθ(vi) and taking a

value for the parameters α5 and α6, that is

Pk(1− τ)(α1 + α4 + α6 + α7) = x1, P τ(α2 + α4 + α5 + α7) = x2,

P (α3 + α5(1− τ) + α6(1− k(1− τ)) + α7(1− τ − k(1− τ))) = x3,

P 2k(1− τ)τ(α4 + α7) = x1x2,

and consider the solution corresponding to α5 = 0, α6 = 0 and α7 = 0. ut

Our goal is to find a subset X̃ of the state space in which the following
statement holds: Given some map θ ∈ Θ satisfying θ(vi) ∈ X̃ , vi ∈ V̄ , we
can ensure that the image of any state of that region is also in it. In this
way, first, we look for a admissible subset of states X̃ ⊆ X so that the above
linear combination is a convex linear combination, that is, with non-negative
coefficients and their coefficient sum less than 1.

Proposition 3. The coefficients αi given in (4.5) satisfy 0 ≤ αi ≤ 1, and∑4
i=1 αi ≤ 1 if and only if x ∈ X̃ ⊆ X with

X̃ =
{
x = (xi)

3
i=1 ∈ X / x3 ≤ P (1− x1

Pk(1− τ)
)
(
1− x2/Pτ

)}
. (4.6)

Proof. The condition that the coefficients αi, i = 1, . . . , 4 are between 0 and
1 follows directly from (4.5) since all the αi can be written as a product of
quantities that are between 0 and 1.

In addition,
∑4
i=1 αi ≤ 1, if and only if

4∑
i=1

αi =
x3

P
+

x1

Pk(1− τ)
+
x2

Pτ
− x1x2

P 2k(1− τ)τ
≤ 1,

or equivalently, x3 ≤ P (1 − x1

Pk(1−τ) )(1 − x2

Pτ ). So, from x ∈ X , the condition∑4
i=1 αi ≤ 1 holds if and only if x ∈ X̃ ⊆ X with X̃ defined in (4.6). ut

Example 1. Consider a bound of the population P = 200 and coefficients k =
0.2 and τ = 0.05. Then, the susceptible population has to be less than Pk(1−
τ) = 38, the infectious population less than Pτ = 10, and the resistant (immune
or recovered) population less than P = 200. The vertices of the admissible set
X are

v0 = (0, 0, 0), v1 = (38 0 0)
T
, v2 = (0 10 0)

T
, v3 = (0 0 200)

T
,

v4 = (38 10 0)
T
, v5 = (0 10 190)

T
, v6 = (38 0 162)

T
, v7 = (38 10 152)

T
.

In order to assure the conditions on the coefficients αi, i = 1, 2, 3, 4 given in
Proposition 3, we have to restrict the set of states to

X̃ =
{
x = (xi)

3
i=1 ∈ X /x3 ≤ P (1− x1

Pk(1− τ)
)
(
1− x2/Pτ)

}
=
{
x = (xi)

3
i=1 ∈ X /x3 ≤ 200(1− x1/38)(1− x2/10)

}
.
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In Figure 1 we can observe that X is a polytope and X̃ ⊆ X is not it. This
fact motivates the need to reduce the set of states a bit more considering a
polytope included in X̃ .

(i) Polytope X . (ii) Set X̃ .

Figure 1. Initial admissible polytope X and set X̃ under conditions given by
Proposition 3, in Example 1.

In order to restrict the region to a polytope contained in X̃ , it is sufficient
to consider the region limited by some tangent plane to the surface S: x3

P =
(1− x1

Pk(1−τ) )(1− x2

Pτ ), (x1 x2 x3)T ∈ X , at a point N = (x0
1 x

0
2 x

0
3)T ∈ S. This

tangent plane is defined as

(x1 − x0
1)
∂x3

∂x1
(N) + (x2 − x0

2)
∂x3

∂x2
(N)− (x3 − x0

3) = 0.

Since

∂x3

∂x1
(N) = − 1

k(1− τ)
(1− x0

2

Pτ
),

∂x3

∂x2
(N) = −1

τ
(1− x0

1

Pk(1− τ)
),

by substituting in the previous equation, we get that

− 1

k(1− τ)
(
Pτ − x0

2

Pτ
)(x1 − x0

1)− 1

τ
(
Pk(1− τ)− x0

1

Pk(1− τ)
)(x2 − x0

2) + (x3 − x0
3) = 0.

Multiplying the above equation by −Pk(1− τ)τ :

(Pτ − x0
2)(x1 − x0

1) + (Pk(1− τ)− x0
1)(x2 − x0

2) + Pk(1− τ)τ(x3 − x0
3) = 0.

We rewrite the above equation as follows

(Pτ − x0
2)x1 + (Pk(1− τ)− x0

1)x2 + Pk(1− τ)τx3 =M,

where M = (Pτ − x0
2)x0

1 + (Pk(1− τ)− x0
1)x0

2 + Pk(1− τ)τx0
3.

Now, we consider the polytope PN ⊆ X̃ ,

PN={x=(xi)
3
i=1 ∈ X̃/(Pτ−x0

2)x1+(Pk(1−τ)−x0
1)x2+Pk(1− τ)τx3 ≤M}

(4.7)
and we prove the following result.
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Proposition 4. Consider PN ⊆ X̃ given in (4.7) and the set
V̄ = {v1, v2, v3, v4} ⊂ V defined in (4.3). If θ ∈ Θ satisfies θ(vi) ∈ PN ,
i = 1, 2, 3, 4, then θ(x) ∈ PN for all x ∈ PN .

Proof. Consider θ(vi) = (θ(vi)1 θ(vi)2 θ(vi)3)T , i = 1, 2, 3, 4. From θ(vi) ∈
PN , i = 1, 2, 3, 4, we have that

∑4
j=1 θ(vi)j ≤ P , θ(vi)1 ≤ kP (1− τ), θ(vi)2 ≤

Pτ and (Pτ − x0
2)θ(vi)1 + (Pk(1 − τ) − x0

1)θ(vi)2 + Pk(1 − τ)τθ(vi)3) ≤ M,
i = 1, 2, 3, 4.

Given x ∈ PN using Propositions 2–3 we can write θ(x) =
∑4
i=1 αiθ(vi),

with vi ∈ V̄ , i = 1, 2, 3, 4, 0 ≤ αi ≤ 1, and
∑4
i=1 αi ≤ 1. Then,

θ(x)1 =

4∑
i=1

αiθ(vi)1 ≤
4∑
i=1

αikP (1− τ) ≤ kP (1− τ),

θ(x)2 =

4∑
i=1

αiθ(vi)2 ≤
4∑
i=1

αiPτ ≤ Pτ.

Moreover,

4∑
j=1

θ(x)j =

4∑
j=1

4∑
i=1

αiθ(vi)j =

4∑
i=1

αi

4∑
j=1

θ(vi)j ≤
4∑
i=1

αiP ≤ P,

and

(Pτ − x0
2)θ(x)1 + (Pk(1− τ)− x0

1)θ(x)2 + Pk(1− τ)τθ(x)3

=

4∑
i=1

αi
(
(Pτ−x0

2)θ(vi)1+(Pk(1−τ)− x0
1)θ(vi)2 + Pk(1− τ)τθ(vi)3

)
≤

4∑
i=1

αiM≤M.

Hence, θ(x) ∈ PN . ut

By the previous proposition, any polytope constructed in (4.7) is valid. We
choose the tangent plane to surface at the vertex v3 in order to simplify the
explicit expression of the control that maintains the solution trajectory within
the polytope.

Considering the tangent plane to surface S at the point N̄ = v3 = (0 0 P )T

the polytope defined in (4.7) corresponding to this point and denoted by PN̄
is given by

PN̄ = {x = (xi)
3
i=1 ∈ X̃ /

x1

k(1− τ)
+
x2

τ
+ x3 ≤ P}. (4.8)

Example 2. Using the parameters given in Example 1 we construct the polytope
given in (4.8)

PN̄ = {x = (xi)
3
i=1 ∈ X̃ /

x1

0.19
+

x2

0.05
+ x3 ≤ 200},
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Figure 2. Polytope PN̄ contained in set X̃ corresponding to the parameters values
given in Example 1.

whose vertices are v0 = (0 0 0)
T

, v1 = (38 0 0)
T

, v2 = (0 10 0)
T

, v3 =

(0 0 200)
T
. This polytope is shown in Figure 2.

As PN̄ is a polytope and the coefficients {αi}4i=1 meet conditions established
in Proposition 3, then the image θ(x) with x ∈ PN̄ and θ ∈ Θ, are also in PN̄
if θ(vi) ∈ PN̄ , for all vertices {vi}4i=1 = V̄ .

From here, let us assume that the initial state is in PN̄ , and that, for all θ ∈
Θ, θ(x) is a combination of the images of the vertices in V̄ = {v1, v2, v3, v4}
with coefficients {αi}4i=1 given in (4.5).

Going back to system (2.1)–(3.1), we have x(t+ 1) = g(x(t)) +Bu(t), with
g(x) = Ax + f(x) belonging to Θ since g(x) can be written as in (4.4) using
the vectors

c1 =

 p− µ
0
µ

 , c2 =

 0
q − γ
γ

 , c3 =

 w
0

r − w

 , c4 =

 −αα
0

 .

We are going to look for a feedback control u(t) = h(x(t)), with h̃ = Bh ∈ Θ,
such that the new function gc of the closed-loop system

x(t+ 1) = g(x(t)) + h̃(x(t)), x(0) ∈ X , t ≥ 0, (4.9)

given by gc(x) = Ax + f(x) + h̃(x) is also in Θ and PN̄ is gc-invariant, that
is, gc(PN̄ ) ⊆ PN̄ . To this purpose, and taking into account Proposition 4 we
analyse conditions in order to g(vi) +Bh(vi) ∈ PN̄ for vi ∈ V̄ .

Theorem 2. Consider system (2.1)–(3.1) and the safety polytope PN̄ given
in (4.8), 0 < ε = τP < P satisfying (4.1)–(4.2), and 0 < k ≤ 1 such that
Pk(1 − τ) ≤ 1−q+γ

α . If a function h : PN̄ → R satisfies Bh(x) ∈ Θ and the
following conditions

h(v1) ≤ Pk(1−τ)a, h(v2) ≤ Pk(1−τ)b, h(v3) ≤ Pk(1−τ)(1−r + w)−Pw,
h(v4)≤Pk(1−τ)(a+b−1+αP (τ−k(1−τ))), vi ∈ V̄ , i=1, 2, 3, 4, (4.10)

where Θ is given in (4.4), vi ∈ V̄ , i = 1, 2.3, 4, are given in (4.3), a = 1 −
p + µ − µk(1 − τ) and b = 1 − q + γ(1 − τ) then, under the control feedback
u(t) = h(x(t)), t ≥ 1, the trajectory of closed-loop system (4.9) remains in PN̄
for all initial state x(0) ∈ PN̄ .
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Proof. Since h̃(x) = Bh(x) ∈ Θ, according to Proposition 2,

h̃(x) = B
∑4
i=1 αih(vi) with αi defined in (4.5). Taking the control feedback

u(t) = h(x(t)), we have the function of the closed-loop system gc(x) = Ax +
f(x) + h̃(x). We are going to prove that gc(vi) ∈ PN̄ , vi ∈ V , i = 1, 2, 3, 4.

Note that from (4.8), a state x belongs to PN̄ if and only if

3∑
i=1

xi ≤ P and

x1 ≤ P (1− τ), x2 ≤ Pτ,
x1

k(1− τ)
+
x2

τ
+ x3 ≤ P. (4.11)

Note that if x1

k(1−τ) + x2

τ + x3 ≤ P holds, then
∑3
i=1 xi ≤ P also holds since

1
k(1−τ) ≥ 1 and 1

τ ≥ 1. Then, we have to prove that the entries of the vectors

gc(vi), vi ∈ V̄ , i = 1, 2, 3, 4 satisfy the conditions given in (4.11). We have
that
(a) gc(v1) = ((p− µ)Pk(1− τ) + h(v1) 0 µPk(1− τ))T ∈ PN̄ if and only if

(p− µ)Pk(1− τ) + h(v1) ≤ Pk(1− τ) ⇔ h(v1) ≤ Pk(1− τ)(1− p+ µ),
and

P (p− µ) +
h(v1)

k(1− τ)
+ µPk(1− τ) ≤ P.

Since µk(1−τ) > 0, then a < 1−p+µ and using the inequality h(v1) ≤ Pk(1−
τ)a given in (4.10), the first condition holds. Further, it is straightforward to

prove P (p− µ) + h(v1)
k(1−τ) + µPk(1− τ) ≤ P .

(b) gc(v2) = (h(v2) (q − γ)τP γτP )T ∈ PN̄ if and only if

h(v2) ≤ Pk(1− τ), (q − γ)τP ≤ τP ⇔ (q − γ) ≤ 1, and
h(v2)

k(1− τ)
+ (q−γ)P+γτP ≤ P ⇔ h(v2) ≤ Pk(1− τ)(1− q + γ(1− τ)).

Using that 0 < γ(1 − τ) < γ < q < 1, then 0 < b = 1 − q + γ(1 − τ) < 1 and
the first and the second conditions hold, and as h(v2) ≤ Pk(1− τ)b, the third
condition holds too.
(c) gc(v3) = (wP + h(v3) 0 (r − w)P )T ∈ PN̄ if and only if

wP + h(v3) ≤ Pk(1− τ), and
wP + h(v3)

k(1− τ)
+ (r − w)P ≤ P ⇔ h(v3) ≤ Pk(1− τ)(1− r + w)− wP.

Using 0 < w < r < 1, we have 0 < r−w < 1, and wP +h(v3) ≤ Pk(1− τ)(1−
(r−w)) ≤ Pk(1−τ). Further, as h(v3) ≤ Pk(1−τ)(1−r+w)−Pw the second
condition holds.
(d) gc(v4) = (x1 x2 x3)T ∈ PN̄ if and only if x1 ≤ k(1− τ)P, x2 ≤ τP and

x1

k(1− τ)
+
x2

τ
+ x3 ≤ P,

with x1 = Pk(1− τ)(p−µ)−αkτ(1− τ)P 2 +h(v4), x2 = (q−γ)τP +αkτ(1−
τ)P 2, x3 = µk(1− τ)P + γτP.
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To check if x1 ≤ k(1− τ)P, we note that

µk(1− τ) + q − γ(1− τ) + αPk(1− τ) ≥ 0

and from the condition given on h(v4) in the hypothesis of the theorem we have
that

h(v4) ≤ Pk(1−τ)(1−p+µ−µk(1−τ)−q + γ(1− τ) + αP (τ − k(1− τ)))

= Pk(1− τ)(1− p+ µ+ αPτ − (µk(1− τ) + q − γ(1− τ) + αPk(1− τ))

≤ Pk(1− τ)(1− p+ µ+ αPτ).

Using this inequality in the expression of x1, we derive that x1 ≤ k(1−τ)P.
Moreover, x2 = (q−γ)τP+αkτ(1−τ)P 2 = τP (q−γ+αkP (1−τ)) ≤ τP, since
q−γ+αkP (1− τ) ≤ 1 follows from the condition Pk(1− τ) ≤ 1−q+γ

α . Finally,

we check the third condition. From h(v4)
k(1−τ) ≤ P (a+b−1+αP (τ−k(1−τ))) we

have

P (p−µ)− ατP 2 +
h(v4)

k(1− τ)
+ (q − γ)P + αk(1− τ)P 2 + µk(1− τ)P

+ γτP=
h(v4)

k(1− τ)
+ P (−a− b + 2− αP (τ − k(1− τ)) ≤ P.

We have proved that gc(vi) ∈ PN̄ , for all i = 1, 2, 3, 4. Then, from Proposi-
tion 4 the polytope PN̄ is gc-invariant. Then, we can assure that the trajectory
of closed-loop system (4.9) remains in PN̄ for all initial state x(0) ∈ PN̄ . ut

Remark 1. What is intended with the result of the previous theorem is to deter-
mine conditions on the control actions that can be taken to ensure that if the
initial condition is within the security set then applying those control actions
the trajectory of the model will remain within that set.

If we take the function h(x) =
∑4
i=1αih(vi) with αi given in (4.5) and

h(vi), i = 1, 2, 3, 4 equal to the upper bounds of the theorem statement given
in (4.10), we have that

h(x) =

4∑
i=1

αih(vi) = x1(1− x2

τP
)a +

x2

τ
(1− x1

Pk(1− τ)
)k(1− τ)b

+ x3(k(1− τ)(1− r + w)− w) +
x1x2

Pτ
(a + b− 1− αP (k(1− τ)− τ))

= ax1 +
k(1− τ)b

τ
x2 + (k(1− τ)(1− r + w)− w)x3

− 1 + αP (k(1− τ)− τ)

τP
x1x2.

Hence, the function h̃ = Bh can be written as function of class Θ given in (4.4),
h̃(x) = c̃1x1 + c̃2x2 + c̃3x3 + c̃4x1x2, with the entries of the vectors c̃i equal to

(c̃1)1 = a, (c̃2)1 =
bk(1− τ)

τ
, (c̃3)1 = k(1− τ)(1− r + w)− w,

(c̃4)1 =
−1− αP (k(1− τ)− τ)

τP
, (c̃i)2 = (c̃i)3 = 0, i = 1, 2, 3, 4.
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Finally, for this specific control feedback u(x(t)) = h(x(t)) the closed-loop
system is x(t+ 1) = Ax(t) + f(x(t)) + h̃(x(t)) = Ãx(t) + F (x(t)) where

Ã =

 p−µ+a (c̃2)1 (c̃3)1+w
0 q − γ 0
µ γ r − w

 , F (x(t)) =

 −α+(c̃4)1

α
0

x1(t)x2(t).

(4.12)
Note that system (4.12) will be stable if the function F (x(t)) is bounded and
the spectral radius of the matrix Ã is smaller than the unit. But, the spectrum
of Ã is σ(Ã) = {1, q − γ, r − w − kµ(1 − τ)} and the spectral radius of Ã
is ρ(Ã) = 1 since this follows from the epidemiological interpretation of the
parameters which implies that 0 ≤ q − γ ≤ 1, 0 ≤ r − w − kµ(1− τ) ≤ 1.

4.1 An application example

In this section, in order to clarify the results obtained along to work, we go back
to focus our attention in the epidemiologic sense of the mathematical model
given in (2.1)–(3.1) and we consider a hypothetical infectious disease such that
the parameters involved in this epidemiological process take the following values

p = 0.7, q = 0.6, r = 0.65, α = 0.008, γ = 0.5, µ = 0.1, w = 0.

Further, we suppose the size of the population less than P = 200 and the
coefficients k = 0.2, τ = 0.05 as in Examples 1 and 2. Note that conditions
given in (4.1) and (4.2) hold,

αP = 1.6 > 1.15714 = (1− q + γ)

(
1 +

µ

(1− r + w)

)
,

ε = Pτ = 10 ≤ 75 =
p− µ
α

.

Thus, the system is a positive system and the disease-free equilibrium point
is not stable. As Pk(1 − τ) = 38 ≤ 112.5 = (1− q + γ)/α we can apply
Theorem 2.

That is, we have x(t+ 1) = Ax(t) + f(x(t)) +Bu(t), with g(x) = Ax+ f(x)
and we construct a feedback control u(t) = h(x(t)), with h̃ = Bh ∈ Θ, such
that the new function gc of the closed-loop system gc(x) = Ax + f(x) + h̃(x)
is also in Θ and PN̄ is gc-invariant, that is, gc(PN̄ ) ⊆ PN̄ , where the polytope
PN̄ is given in Example 2 and Figure 2.

Using the upper bounds of h(vi), i = 1, 2, 3, 4 given in (4.10) and the pa-
rameters a and b given in the theorem statement, we have the feedback control
u(x(t)) = h(x(t)) with

h(x) = 0.381x1(1− x2

10
) + 0.875

x2

0.05
(1− x1

38
)0.19 + 0.0665x3 + 0.032

x1x2

10
.

From the process indicated, once we have verified that if the state of the
system is in the safety set PN̄ it remains there.

Last, we can note that if the initial state x(0) = (x1(0), x2(0), 0) does not
belong to that set but 0 ≤ Ax(0) + f(x(0)) ∈ PN̄ hold, then we can take a
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Figure 3. Trajectory solution that reaches the polytope PN̄ and remains within it from
the parameters values given in the example of Section 4.1.

control u(0) ≥ 0 satisfying x = Ax(0) +u(0)e1 + f(x(0)) ∈ PN̄ . For instance, if
we consider the initial state x(0) = (S0, I0, R0) = (30, 16, 0). This satisfies the

positivity condition x2(0) ≤ p− µ
α

but it is not in the polytope since x2(0) = 16

is greater than Pτ = 10. However, we can prove that Ax(0) + f(x(0)) =
(14.16, 5.44, 11) ∈ PN̄ . So, using the previous results, there exists a nonzero
control u(0) ≥ 0 such that Ax(0) + f(x(0)) + u(0)e1 is also in the safety set
PN̄ . Figure 3 shows as the trajectory solution from x(0) = (30, 16, 0) reaches
the polytope and considering the feedback control construct using the function
h(x) this trajectory remains within this safety set PN̄ .

5 Conclusions

One considers a dynamic SIRS process for the spread of a disease. We obtain
conditions to determine a population distribution in susceptible, infected and
resistant (immune or recovered), where the number of infected can be kept
below a safe level. This has allowed us to define the safety set and look for its
structure as a polytope determined by its vertices. Furthermore, conditions are
obtained so that if a system state is in the safety set then the system trajectory
remains in that set forever. Finally, we clarify the results with an example.

Acknowledgements

The authors would like to thank the reviewers for their valuable comments,
which have allowed us to improve this manuscript.

References

[1] I. Abouelkheir, F. El Kihal, M. Rachik, O. Zakary and I. Elmouki. A multi-
regions SIRS discrete epidemic model with a travel-blocking vicinity optimal
control approach on cells. Journal of Advances in Mathematics and Computer
Science, 20(4):1–16, 2017. https://doi.org/10.9734/BJMCS/2017/31355.

[2] A.A. Aligaz and J.M.W. Munganga. Modelling the transmission dynamics of
contagious bovine pleuropneumonia in the presence of antibiotic treatment with

Math. Model. Anal., 27(2):263–281, 2022.

https://doi.org/10.9734/BJMCS/2017/31355


280 C. Coll, S. Romero-Vivó and E. Sánchez
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