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In this note, we correct the proof of Theorem 2 (p. 120–121) in [1] following
our recent paper [2]. Below we exploit the notation from [1].

We consider the equilibrium solutions (ρ,u, C) = (ρS ,uS , CS) ∈ HX(ωh)
with ρS > 0, uS = 0 and 0 < CS(x) < 1. For them, the following equations
hold

δ∗i JiS = 0, (0.1)

s∗l
{

(slρ)
[
δl(Gh − Φ)− (slµ)δlC

]}
= 0, l = 1, 2, 3, (0.2)

δ∗i
[
JiSsiC −M(siC)δiµ

]
= 0 (0.3)

on ωh (the summation from 1 to 3 is assumed over the repeated indices i), with

JlS = −
(
sl(τ0ρ)

)[
δl(Gh − Φ)− (slµ)δlC

]
, l = 1, 2, 3, (0.4)
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Recall that τ0 = τ(ρ,u, C)|u=0 > 0, Φ ∈ HX(ωh) is a given function and

Gh = Ψ ′1ρ(ρ, C) + 1
2λ1s

∗
i

[
(δiC)2

]
, µ =

1

ρ

[
Ψ ′1C(ρ, C)− δ∗i

(
λ1(siρ)δiC

)]
(0.5)

with the partial derivatives of a given function Ψ1(ρ, C).

Theorem 2. The equilibrium solutions satisfy the following equations

Ψ ′1ρ(ρ, C) + 1
2λ1s

∗
i

[
(δiC)2

]
− µSC − Φ ≡ Gh − µSC − Φ ≡ const, (0.6)

Ψ ′1C(ρ, C)− δ∗i
(
λ1(siρ)δiC

)
= µSρ, µS ≡ const (0.7)

on ωh, with the same functions Ψ1 and Φ as in the differential case, see (2.12)–
(2.13) in [1].

Proof. We first apply the known formula (for example, see formula (14) in [3])

δ∗l (JlSslC) = (δ∗l JlS)C + s∗l (JlSδlC)

and equation (0.1) and rewrite equation (0.3) as

s∗i (JiSδiC)− δ∗i
[
M(siC)δiµ

]
= 0 on ωh. (0.8)

We take the inner product in HX(ωh) of equations (0.1) and (0.8) respec-
tively by Gh−Φ and µ and add the results. We apply both formulas (3.1) in [1]
and get

−
(
JiS , δi(Gh − Φ)

)
i∗ +

(
JiSδiC, siµ

)
i∗ +

(
M(siC), (δiµ)2

)
i∗ = 0. (0.9)

The substitution of expression (0.4) into (0.9) leads to the equality(
si(τ0ρ),

[
δi(Gh − Φ)− (siµ)δiC

]2)
i∗ +

(
M(siC), (δiµ)2

)
i∗ = 0.

Since τ0ρ > 0 and M(siC) > 0, it leads to the equalities

δi(Gh − Φ)− (siµ)δiC = 0, δiµ = 0 on ωi∗,h, i = 1, 2, 3.

This first implies that µ ≡ µS = const and then Gh −Φ− µSC ≡ const on ωh.
Consequently JlS = 0, l = 1, 2, 3, and all the equations (0.1)–(0.4) are

reduced to the two found constancy properties, i.e., according to definitions
(0.5), to system (0.6)–(0.7) for ρS and CS on ωh.

Notice that above we have not required for the regularization parameter τ0
to be constant as in [1].
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