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1 Introduction

Let H be a real Hilbert space and Ω be a nonempty closed convex subset of H.
Let A : H → H be an operator. The variational inequality problem (VIP) for
A on Ω is stated as follows:

Find u∗ ∈ Ω such that 〈Au∗, u− u∗〉 ≥ 0, ∀u ∈ Ω. (VIP)

Throughout this paper, we write V I(A, Ω) to stand for the solution set of prob-
lem VIP for an operator A on a feasible set Ω. The VIP is a central problem in
nonlinear analysis and it plays a key role in optimization theory. The problem
unifies many important concepts in applied mathematics such as systems of
nonlinear operator equations, necessary optimality conditions, complementar-
ity problems, obstacle problems, or network equilibrium problems [14,22,24,32].
This explains why the VIP becomes an attractive field for many authors who
have devoted to studying not only the existence and the stability of solutions
but also the effective approximation methods for solving this problem.

The metric projection is an important tool used to construct numerical
methods for solving constraint optimization problems as well as VIPs. The
metric projection mapping PΩ : H → Ω is defined by

PΩ(u) = arg min {‖u− v‖ : v ∈ Ω} , u ∈ H.

Since Ω is nonempty, closed and convex in H, the point PΩ(u) exists uniquely
for each u ∈ H. The oldest method for solving the VIP is the gradient projec-
tion method which is given by

un+1 = PΩ(un − λAun), u0 ∈ Ω, n ≥ 0,

where λ is a suitable parameter. This method comes from minimizing a dif-
ferentiable convex function on a nonempty closed convex set. Although the
gradient projection method has a simple and elegant structure, its convergence
requires such a strict assumption, for example, that the operator A is either
strongly monotone or inverse strongly monotone. Without such an additional
condition, the gradient projection method can diverge, for example, when A
is the rotation mapping in the plane. In order to overcome this drawback, the
method used more popularly is the extragradient method which was introduced
early by Korpelevich [26] for solving saddle point problems in finite dimensional
spaces. The extragradient method, which is applied to the class of monotone
and L - Lipschitz continuous operators, is of the form{

vn = PΩ(un − λnAun),
un+1 = PΩ(un − λnAvn),

(1.1)

where {λn} ⊂ [a, b] ⊂ (0, 1
L ). The extragradient method has been used to solve

some large optimization problems in the field of information science such as in
machine learning, optical network, and speech recognition [13, 25]. Because of
its importance, in recent years, this method has been modified and improved
in various ways by some authors. One of those methods is the subgradient
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extragradient method introduced by Censor et al. in [5, 6, 7]. This method is
described as follows: vn = PΩ(un − λnAun),

Tn = {u ∈ H : 〈un − λnAun − vn, u− vn〉 ≤ 0} ,
un+1 = PTn(un − λnAvn),

(1.2)

where {λn} ⊂ [a, b] ⊂ (0, 1
L ). An advantage of the subgradient extragradient

method is that the second projection is found on a half-space which is inher-
ently explicit. Then, it is more particularly interesting over the extragradient
method in the case where the feasible set Ω has a complicated structure and
finding a projection on it is expensive. Some other projection methods for
solving problem VIP, which not are mentioned in details here, can be found,
for examples, in [1, 19,21,30,31,33,38,40,41].

A class of notable projection methods for solving monotone VIPs is the pro-
jection and contraction method [16, 17, 18, 36, 37]. Recently, this method has
been developed in various different forms because of its numerically computa-
tional performance (see, e.g., [4,8,9,10,11,12]). The projection and contraction
method [16,37] for solving problem VIP can be formulated in the form,{

vn = PΩ(un − λnAun),
un+1 = PΩ(un − γρnλnAvn),

(1.3)

where γ ∈ (0, 2), {λn} ⊂ [a, b] ⊂ (0, 1
L ), and

ρn =
‖un − vn‖2 − λn 〈un − vn,Aun −Avn〉
‖(un − vn)− λn(Aun −Avn)‖2

.

As the extragradient method [26] and the subgradient extragradient method
[5, 6, 7], at each iteration, the projection and contraction method includes two
computational steps. The first step is called the prediction step for finding vn,
and the second one is for the next iterate un+1. However, at each iteration,
the projection and contraction method has used two different stepsizes, namely
λn and γρnλn. This makes a difference with two aforementioned extragradient
methods. It is known that the effectiveness of iterative methods in general
depends strictly on the used stepsizes, and thus the strategy of stepsize choice
is important in real problems. Some numerical experiments implemented in [4]
demonstrate that the computational load of the projection and contraction
method is about half of that of the extragradient methods. Besides, schemes
(1.1), (1.2) and (1.3) in general provide the weak convergence. As be seen in [3],
the strong convergence is more useful than the weak convergence, especially in
infinite Hilbert spaces.

In this paper, we introduce a new iterative method of multi-parameter form
for solving a monotone and Lipschitz VIP, and prove the strong convergence
of the proposed method in a Hilbert space. Our method is included two steps
of projections with different stepsizes. We first use a line-search procedure to
find a suitable stepsize in the first step which aims to avoid its dependence on
the Lipschitz constant of cost operator. This projection step is performed on
the feasible set of the problem. Next, we modify the stepsize in the second
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step in the spirit of the projection and contraction method [16,37] and use the
explicit projection on a specifically constructed half-space to find the next iter-
ate. Together with these constructions, we also incorporate the regularization
technique which aims to get the strong convergence of the obtained method.
The convergence is proved under suitable conditions imposed on control pa-
rameters. The technique to obtain the strong convergence here is different to
known ones in the literature, for examples, the Halpern method [27], the vis-
cosity method [29], the (shrinking) hybrid projection method [5]. It turns out
that the obtained solution from our method is the solution of a bilevel varia-
tional inequality problem whose constraint is the solution set of the considered
VIP. Bilevel-like problems have received a lot of attention by some authors
in recent years (see, e.g. [28, 34, 44]). In order to illustrate the computational
effectiveness of the new method, we implement some numerical experiments in
comparision with known methods.

The paper is organized as follows: we recall in Section 2 some definitions and
fundamental results used in the paper. Next, we describe the new method in
Section 3 and analyze its convergence. Finally, several numerical experiments
are performed in Section 4 to show the numerical behavior of the method, and
compare it with existing ones.

2 Preliminaries

Let H be a real Hilbert space with the inner product 〈·, ·〉 and the induced
norm ‖ · ‖. Let us begin with some concepts of monotonicity of an operator.

Definition 1. An operator A : H → H is called:
(i) monotone, if

〈Au−Av, u− v〉 ≥ 0, ∀u, v ∈ H;

(ii) γ - strongly monotone, if there exists a number γ > 0 such that

〈Au−Av, u− v〉 ≥ γ‖u− v‖2, ∀u, v ∈ H;

(iii) L - Lipschitz continuous, if there exists a number L > 0 such that

‖Au−Av‖ ≤ L‖u− v‖, ∀u, v ∈ H.

In any Hilbert space H, we have that, for all u, v ∈ H,

‖u+ v‖2 = ‖u‖2 + 2 〈u, v〉+ ‖v‖2.

Let Ω be a nonempty closed convex subset in H. The normal cone to Ω at
a point u ∈ Ω, given by

NΩ(u) = {w ∈ H : 〈w, v − u〉 ≤ 0, ∀v ∈ Ω} .

The metric projection has the following characteristic properties (see, for
example, [15, Proposition 3.5]).
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Lemma 1. (i) 〈PΩ(u)− PΩ(v), u− v〉 ≥ ‖PΩ(u)− PΩ(v)‖2 , ∀u, v ∈ H;

(ii) ‖u− PΩ(v)‖2 + ‖PΩ(v)− v‖2 ≤ ‖u− v‖2 ,∀u ∈ Ω, v ∈ H;
(iii) w = PΩ(u)⇔ 〈u− w, v − w〉 ≤ 0, ∀u ∈ H, v ∈ Ω.

Given x ∈ H and 0 6= v ∈ H, let T = {z ∈ H : 〈v, z − x〉 ≤ 0}. Then, for all
u ∈ H, the projection PT (u) on the half-space T , is explicitly computed by

PT (u) = u−max

{
0,
〈v, u− x〉
‖v‖2

}
v. (2.1)

We have the following result regarding the regularization solutions of prob-
lem VIP (see, for example, [2, Lemma 6.6.1, page 353] or [20, Lemmas 3.1 and
3.2] for more general case).

Lemma 2. Let Ω be a nonempty closed convex subset of H and A : H → H be a
monotone and Lipschitz continuous operator such that V I(A, Ω) is nonempty.
Suppose that F : H → H is a strongly monotone and Lipschitz continuous
mapping. For each α > 0, set AFα = A+ αF , and let uα ∈ V I(AFα , Ω). Then,
the followings hold:
(i) the sequence {uα} is bounded;

(ii) there exists a number M > 0 such that ‖uα1 − uα2‖ ≤
|α2−α1|
α1

M for all
α1 > 0, α2 > 0;
(iii) lim

α→0+
uα = u†, where u† ∈ V I(F , V I(A, Ω)).

We need the following technical lemma to establish the convergence of our
method.

Lemma 3. [43, Lemma 2.5] Let {Ψn} be a sequence of nonnegative real num-
bers. Suppose that

Ψn+1 ≤ (1− pn)Ψn + qn

for all n ≥ 0, where the sequences {pn} in (0, 1) and {qn} in < satisfy the
conditions: limn→∞ pn = 0,

∑∞
n=1 pn = ∞ and lim supn→∞

qn
pn
≤ 0. Then

limn→∞ Ψn = 0.

3 Multi-parameter projection methods

Let F : H → H be a γ-strongly monotone and k-Lipschitz continuous operator.
Consider our VIP where A is monotone and Lipschitz continuous. In addition,
we take a sequence {αn} ⊂ (0,+∞) such that

(C1) : lim
n→∞

αn = 0; (C2) :

∞∑
n=1

αn = +∞; (C3) : lim
n→∞

(αn − αn−1)α−2n = 0.

The sequence αn = 1
np with 0 < p < 1 satisfies conditions (C1)–(C3). For the

sake of simplicity for the description of the method, we adopt the following
conventions: 0

0 = +∞ and 1
0 = +∞. For each n ∈ N, set AFαn

= A+ αnF . In
order to solve problem VIP, we introduce the following iterative method.
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Algorithm 1. [Multi-Parameter Projection Method - MPPM]

Initialization: Take u0 ∈ H, β > 0, r ∈ (0, 2), σ > 0, l ∈ (0, 1), µ ∈ (0, 1).
Iterative Steps:

1. Compute
vn = PΩ(un − λnAFαn

un),

where λn is the largest number λ ∈
{
σ, σl, σl2, . . .

}
such that

λn‖Aun −Avn‖ ≤ µ‖un − vn‖. (3.1)

2. Set Tn =
{
w ∈ H :

〈
un − λnAFαn

un − vn, w − vn
〉
≤ 0
}

. Compute

un+1 = PTn(un − rβnλnAFαn
vn − rβnλnαn(Fun −Fvn)),

where d(un, vn) = un − vn − λn [Aun −Avn] and

βn = min

{
β,
〈un − vn, d(un, vn)〉
‖d(un, vn)‖2

}
.

3. Increase n by 1 and go back to Step 1.

Remark that the feasible set Ω ⊂ Tn for all n ∈ N. This follows immediately
from the definitions of vn, Tn and Lemma 1(iii). The projection un+1 is per-
formed on a half-space Tn and is inherently explicit (see formula (2.1) in Sec-
tion 2). We take a number β > 0 to aim that the sequence {βn} is bounded from
up. In fact, this sequence is bounded from below by a positive number. When
the Lipschitz constant of A is known, we can take {λn} ⊂ [a, b] ⊂

(
0, 1

L

)
, be-

cause in this case, stepsize rule (3.1) is satisfied immediately at the first checked
step (with 0 < σ ≤ µ

L ). Otherwise, when L is unknown, stepsize rule (3.1) is
well-defined. Precisely, we have the following lemma.

Lemma 4. (i) Stepsize rule (3.1) is well-defined and there exists a number σ
such that

0 < σ ≤ λn ≤ σ, ∀n ∈ N. (3.2)

(ii) There exists a number β such that

0 < β ≤ βn ≤ β, ∀n ∈ N.

Proof. (i) For each n ∈ N, set

vmn = PΩ(un − σlmAFαn
un), m ∈ N.

Let L be the Lipschitz constant of A. We have ‖Avmn −Aun‖ ≤ L‖vmn − un‖,
or

µ

L
‖Avmn −Aun‖ ≤ µ‖vmn − un‖.

Therefore, if choose m ∈ N such that σlm ≤ µ
L , then inequality (3.1) holds.

Thus, this rule is well-defined. Now, we prove inequality (3.2). Indeed, from
the definition, it is obvious that λn ≤ σ for all n ∈ N.

Math. Model. Anal., 27(2):242–262, 2022.
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If λn = σ, inequality (3.2) holds for σ = σ. Otherwise, if λn < σ, then λn/l
violates inequality (3.2), i.e.,

λn
l
‖Aun −Avm−1n ‖ > µ‖un − vm−1n ‖.

Hence, since A is L-Lipschitz continuous, we obtain immediately that λn

l L > µ

or λn >
µl
L . Now, if take σ = min

{
σ, µlL

}
> 0 then inequality (3.2) holds for

all n ∈ N.
(ii) By the definition, we see that βn ≤ β for all n ∈ N. Also, from the definition
of d(un, vn) and rule (3.1), we have

〈un − vn, d(un, vn)〉 = 〈un − vn, un − vn − λn [Aun −Avn]〉
= ‖un − vn‖ − λn 〈un − vn,Aun −Avn〉
≥ ‖un − vn‖ − λn‖un − vn‖ ‖Aun −Avn‖
≥ ‖un − vn‖ − µ‖un − vn‖2 = (1− µ)‖un − vn‖2. (3.3)

On the other hand, from the triangle inequality and rule (3.1), one gets

‖d(un, vn)‖ = ‖un − vn − λn [Aun −Avn] ‖
≤ ‖un − vn‖+ λn‖Aun −Avn‖
≤ ‖un − vn‖+ µ‖un − vn‖ = (1 + µ)‖un − vn‖. (3.4)

Observe that if vn = un, then βn = β. Otherwise, if vn 6= un, from relations
(3.3) and (3.4), we derive

βn = min

{
β,
〈un − vn, d(un, vn)〉
‖d(un, vn)‖2

}
≥ min

{
β,

1− µ
(1 + µ)2

}
.

Set β = min
{
β, 1−µ

(1+µ)2

}
. Then βn ≥ β > 0 for all n ∈ N. This finishes the

proof. ut

Lemma 5. For all n ∈ N and ρn ∈ (0, 1), we have

‖uαn+1
− u‖2 ≤ 1

1− ρn
‖uαn

− u‖2 +
M2

ρn

|αn+1 − αn|2

α2
n

, ∀u ∈ H,

where uαn ∈ V I(AFαn
, Ω) and uαn+1 ∈ V I(AFαn+1

, Ω).

Proof. By Lemma 2 (ii), we obtain

‖uαn+1
− uαn

‖ ≤ |αn+1 − αn|
αn

M. (3.5)

We have

‖u− uαn
‖2 = ‖u− uαn+1

‖2 + ‖uαn+1
− uαn

‖2 + 2
〈
u− uαn+1

, uαn+1
− uαn

〉
≥ ‖u− uαn+1

‖2 + ‖uαn+1
− uαn

‖2 − 2‖u− uαn+1
‖ ‖uαn+1

− uαn
‖

≥ ‖u− uαn+1
‖2 + ‖uαn+1

− uαn
‖2 − ρn‖u− uαn+1

‖2 − 1

ρn
‖uαn+1

− uαn
‖2

= (1− ρn)‖u− uαn+1‖2 −
1− ρn
ρn

‖uαn+1 − uαn‖2,
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which, by relation (3.5), implies that

‖u− uαn
‖2 ≥ (1− ρn)‖u− uαn+1

‖2 − M2(1− ρn)

ρn

|αn+1 − αn|2

α2
n

.

Thus, since ρn ∈ (0, 1), we get

‖u−uαn+1
‖2 ≤ 1

1−ρn
‖u−uαn

‖2 +
M2

ρn

|αn+1 − αn|2

α2
n

, ∀ρn ∈ (0, 1), ∀u ∈ H.

The proof is completed. ut

Lemma 6. For all n ∈ N and some ρ ∈
(
0, γk

)
, we have

‖un+1 − uαn
‖2 ≤ (1−Ξαn)‖un − uαn

‖2 − Γn‖d(un, vn)‖2,

where Ξ = (γ − kρ)rβσ and Γn = β2r(2− r)− krβσ
ρ(1−µ)2αn.

Proof. Set tn = rβnλnAFαn
vn − rβnλnαn(Fun − Fvn). Then, un+1 can be

rewritten as un+1 = PTn
(un − tn). Therefore, it follows from Lemma 1 (iii)

and the fact uαn ∈ V I(AFαn
, Ω) ⊂ Ω ⊂ Tn that

‖un+1 − uαn‖2 ≤ ‖un − tn − uαn‖2 − ‖un − tn − un+1‖2

= ‖un − uαn
‖2 − ‖un − un+1‖2 − 2 〈tn, un+1 − uαn

〉 . (3.6)

We have from the definition of tn that

〈tn, un+1 − uαn
〉 = rβnλn

〈
AFαn

vn, un+1 − uαn

〉
+ rβnλnαn 〈Fun −Fvn, un+1 − uαn

〉 = rβnλn

× 〈Avn + αnFvn, un+1 − uαn
〉+ rβnλnαn 〈Fun −Fvn, un+1 − uαn

〉
= rβnλn 〈Avn, un+1 − uαn

〉+ rβnλnαn 〈Fun, un+1 − uαn
〉 . (3.7)

Substituting relation (3.7) into relation (3.6), we derive

‖un+1 − uαn
‖2 ≤ ‖un − uαn

‖2 − ‖un − un+1‖2 − 2rβnλn 〈Avn, un+1 − uαn
〉

− 2rβnλnαn 〈Fun, un+1 − uαn
〉 . (3.8)

By the monotonicity of A and uαn
∈ V I(AFαn

, Ω), we have

〈Avn −Auαn
, vn − uαn

〉 ≥ 0, (3.9)

〈Auαn
+ αnFuαn

, vn − uαn
〉 ≥ 0. (3.10)

Summing up two inequalities, we get 〈Avn + αnFuαn
, vn − uαn

〉 ≥ 0, or

〈Avn, vn − uαn
〉 ≥ αn 〈Fuαn

, uαn
− vn〉 .

Thus

〈Avn, un+1 − uαn
〉 = 〈Avn, un+1 − vn〉+ 〈Avn, vn − uαn

〉
≥ 〈Avn, un+1 − vn〉+ αn 〈Fuαn

, uαn
− vn〉 . (3.11)

Math. Model. Anal., 27(2):242–262, 2022.
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On the other hand, since un+1 ∈ Tn, we derive that〈
un − λnAFαn

un − vn, un+1 − vn
〉
≤ 0,

or, equivalently,

〈un − λnAun − αnλnFun − vn, un+1 − vn〉 ≤ 0.

Hence,

〈un − vn − λn (Aun −Avn) , un+1 − vn〉 ≤λn 〈Avn, un+1 − vn〉
+ αnλn 〈Fun, un+1 − vn〉 .

Thus, by dividing both sides of the last inequality by λn > 0 and using the fact
d(un, vn) = un − vn − λn (Aun −Avn), one gets

〈Avn, un+1 − vn〉 ≥
1

λn
〈d(un, vn), un+1 − vn〉+ αn 〈Fun, vn − un+1〉 . (3.12)

Summing up inequalities (3.11) and (3.12), we come to the following one,

〈Avn, un+1 − uαn〉 ≥
1

λn
〈d(un, vn), un+1 − vn〉αn 〈Fun, vn − un+1〉

+ αn 〈Fuαn , uαn − vn〉 . (3.13)

By relations (3.8) and (3.13), we get

‖un+1 − uαn
‖2 ≤ ‖un − uαn

‖2 − ‖un − un+1‖2

− 2rβn 〈d(un, vn), un+1 − vn〉〉 − 2rβnλnαn 〈Fun, vn − un+1〉
− 2rβnλnαn 〈Fuαn

, uαn
− vn〉 − 2rβnλnαn 〈Fun, un+1 − uαn

〉
= ‖un − uαn

‖2 −
[
‖un − un+1‖2 + 2rβn 〈d(un, vn), un+1 − vn〉〉

]
− 2rβnλnαn 〈Fun −Fuαn

, vn − uαn
〉 . (3.14)

Moreover, we have

− 2rβn 〈d(un, vn), un+1 − vn〉〉 = −2rβn 〈d(un, vn), un+1 − un〉
− 2rβn 〈d(un, vn), un − vn〉 = ‖un+1 − un‖2 + r2β2

n‖d(un, vn)‖2

− ‖rβnd(un, vn) + un+1 − un‖2 − 2rβn 〈d(un, vn), un − vn〉 . (3.15)

By the definition of βn, we obtain 〈d(un, vn), un − vn〉 ≥ βn‖d(un, vn)‖2. Hence,
from (3.15), we come to the inequality,

− 2rβn 〈d(un, vn), un+1 − vn〉〉 ≤ ‖un+1 − un‖2 + r2β2
n‖d(un, vn)‖2

− ‖rβnd(un, vn) + un+1 − un‖2 − 2rβ2
n‖d(un, vn)‖2

= ‖un+1 − un‖2 − β2
nr(2− r)‖d(un, vn)‖2 − ‖rβnd(un, vn) + un+1 − un‖2

≤ ‖un+1 − un‖2 − β2
nr(2− r)‖d(un, vn)‖2.
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Thus,

‖un+1 − un‖2 + 2rβn 〈d(un, vn), un+1 − vn〉〉 ≥ β2
nr(2− r)‖d(un, vn)‖2.

This together with (3.14) implies that

‖un+1 − uαn
‖2 ≤‖un − uαn

‖2 − β2
nr(2− r)‖d(un, vn)‖2

− 2rβnλnαn 〈Fun −Fuαn
, vn − uαn

〉 . (3.16)

Now, we estimate the last term in the right-hand side of (3.16). Using the
γ-strongly monotonicity and the L-Lipschitz continuity of F , we obtain

2 〈Fun−Fuαn , vn − uαn〉=2 〈Fun−Fuαn , vn−un〉+2 〈Fun−Fuαn , un−uαn〉
≥ −2k‖un − uαn

‖ ‖vn − un‖+ γ‖un − uαn
‖2

≥ −kρ‖un − uαn
‖2 − k

ρ
‖vn − un‖2 + γ‖un − uαn

‖2

≥ (γ − kρ)‖un − uαn
‖2 − k

ρ
‖vn − un‖2. (3.17)

By relations (3.16) and (3.17), we get

‖un+1 − uαn‖2 ≤ (1− (γ − kρ)rβnλnαn)‖un − uαn‖2

− β2
nr(2− r)‖d(un, vn)‖2 +

krβnλnαn
ρ

‖vn − un‖2. (3.18)

From relation (3.3), we have (1− µ)‖un − vn‖2 ≤ 〈un − vn, d(un, vn)〉 . Thus,

(1− µ)‖un − vn‖2 ≤ 〈un − vn, d(un, vn)〉 ≤ ‖un − vn‖ ‖d(un, vn)‖.

This implies that ‖un − vn‖ ≤ 1
1−µ‖d(un, vn)‖. Hence, by relation (3.18), we

obtain

‖un+1−uαn
‖2≤(1−(γ−kρ)rβnλnαn)‖un−uαn

‖2−β2
nr(2− r)‖d(un, vn)‖2

+
krβnλnαn
ρ(1− µ)2

‖d(un, vn)‖2 = (1− (γ − kρ)rβnλnαn)‖un − uαn
‖2

−
[
β2
nr(2− r)−

krβnλnαn
ρ(1− µ)2

]
‖d(un, vn)‖2. (3.19)

Recall from Lemma 4 that 0 < σ ≤ λn ≤ σ and 0 < β ≤ βn ≤ β for all n ∈ N.
Thus, by relation (3.19), we get

‖un+1 − uαn
‖2 ≤ (1− (γ − kρ)rβσαn)‖un − uαn

‖2 −
[
β2r(2− r)

− krβσαn
ρ(1− µ)2

]
‖d(un, vn)‖2 = (1−Ξαn)‖un − uαn‖2 − Γn‖d(un, vn)‖2.

This completes the proof. ut

Finally, we prove the main theorem.
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Theorem 1. Suppose that A : H → H is a monotone and Lipschitz continuous
operator such that the solution set V I(A, Ω) of problem (VIP) is nonempty. Let
F : H → H is a strongly monotone and Lipschitz continuous operator. Then,
the sequence {un} generated by Algorithm 1 converges strongly to a solution u†

of problem (VIP), where u† ∈ V I(F , V I(A, Ω)).

Proof. Take ρn = 0.5Ξαn. Since αn → 0, there exists a number n0 ∈ N such
that ρn ∈ (0, 1) for all n ≥ n0. Using Lemma 5 for ρn = 0.5Ξαn and u = un+1

with n ≥ n0, we get

‖un+1−uαn+1‖2 ≤
|un+1−uαn

‖2

1− 0.5Ξαn
+

M2

0.5Ξ

|αn+1 − αn|2

α3
n

, ∀n ≥ n0. (3.20)

Combining relation (3.20) and Lemma 6, we derive for all n ≥ n0 that

‖un+1 − uαn+1
‖2 ≤ 1−Ξαn

1− 0.5Ξαn
‖un − uαn

‖2 +
M2

0.5Ξ

|αn+1 − αn|2

α3
n

− Γn
1− 0.5Ξαn

‖d(un, vn)‖2.

Set Ψn = ‖un − uαn
‖2, pn = 0.5Ξαn

1−0.5Ξαn
and

qn =
M2

0.5Ξ

|αn+1 − αn|2

α3
n

− Γn
1− 0.5Ξαn

‖d(un, vn)‖2.

Thus,
Ψn+1 ≤ (1− pn)Ψn + qn, ∀n ≥ n0. (3.21)

Note that from conditions (C1)–(C2), we have pn → 0 and
∞∑

n=n0

pn = +∞.

Moreover, we have

lim
n→∞

qn
pn

= lim
n→∞

(M2(1−0.5Ξαn)

(0.5Ξ)2
|αn+1−αn|2

α4
n

− Γn
0.5Ξαn

‖d(un, vn)‖2
)
. (3.22)

Since Γn = β2r(2 − r) − krβσ
ρ(1−µ)2αn and αn → 0, we obtain that lim

n→∞
Γn =

β2r(2− r) > 0. Thus, by relation (3.22) and condition (C3), we get

lim
n→∞

qn
pn
≤ lim
n→∞

M2(1− 0.5Ξαn)

(0.5Ξ)2
|αn+1 − αn|2

α4
n

= 0.

Consequently, Lemma 3 and relation (3.21) ensure that Ψn = ‖un−uαn
‖2 → 0

as n→∞. Since αn → 0 and Lemma 2 (iii), we find that uαn → u† as n→∞.
Thus, un → u† as n→∞. This completes the proof. ut

In the case when F = I − ug, where ug is a suggested point in H. Then,
from Lemma 1 (iii), we have

V I(F , V I(A, Ω)) =
{
u† ∈ V I(A, Ω) :

〈
Fu†, u∗ − u†

〉
≥ 0, ∀u∗ ∈ V I(A, Ω)

}
=
{
u† ∈ V I(A, Ω) :

〈
u† − ug, u∗ − u†

〉
≥ 0, ∀u∗ ∈ V I(A, Ω)

}
=
{
u† ∈ V I(A, Ω) :

〈
ug − u†, u∗ − u†

〉
≤ 0, ∀u∗ ∈ V I(A, Ω)

}
=
{
PV I(A,Ω)(u

g)
}
.



Multi-Parameter Projection Methods for Variational Inequality Problems 253

Thus, the following corollary follows directly from Theorem 1.

Corollary 1. The sequence {un} generated by Algorithm 1 with F = I − ug
converges strongly to a solution u† of problem (VIP), where u† = PV I(A,Ω)(u

g).

Remark 1. As the suggestion of a reviewer, we can replace the Armijo linesearch
procedure at Step 1 of Algorithm 1 by a self-adaptive stepsize rule. More
precisely, take λ0 > 0, µ ∈ (0, 1) and a sequence {pn} ⊂ [0,+∞) is summable,

i.e.,
∞∑
n=1

pn < +∞. At the nth-step, compute vn = PΩ(un − λnAFαn
un), after

that, update λn for the next step by

λn+1 = min

{
λn + pn,

µ‖vn − un‖
‖Aun −Avn‖

}
. (3.23)

It is not difficult to show that the sequence {λn} generated by rule (3.23) is
bounded. Actually, we have λn > 0 for all n ≥ 0, lim

n→∞
λn = λ > 0 and

0 < min
{
λ0,

µ

L

}
= σ ≤ λn ≤ σ = λ0 +

∞∑
n=1

pn < +∞. (3.24)

A proof for these claims can be found, for example, in [17]. By relation (3.23),
we obtain

‖Aun −Avn‖ ≤
µ‖vn − un‖

λn+1
, ∀n ≥ 0. (3.25)

Using relation (3.25) and repeating the proof of Lemma 4 (ii), we obtain

min

{
β,
(
1− µ λn

λn+1

)/(
1 + µ

λn
λn+1

)2}
≤ βn ≤ β. (3.26)

Since λn → λ > 0 as n→∞, we derive

lim
n→∞

min

{
β,
(
1−µ λn

λn+1

)/(
1+µ

λn
λn+1

)2}
= min

{
β,

1− µ
(1+µ)

2

}
> 0. (3.27)

Take a number β such that 0 < β < min
{
β, 1−µ

(1+µ)2

}
. From relations (3.26)

and (3.27), there exists n0 ≥ 1 such that

0 < β ≤ βn ≤ β, ∀n ≥ n0. (3.28)

Employing relations (3.24) and (3.28), we also obtain the inequalities in Lemma 5
and Lemma 6. Thus, the conclusion of Theorem 1 still remains valuable in
this case.

4 Numerical illustrations

This section is devoted to testing the computational effectiveness of Algorithm 1
(shortly, MPPM, with two stepsize rules: (3.1) and (3.23)) over some existing
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methods including the Halpern Subgradient Extragradient Method (HSEGM)
[27], the Viscosity Subgradient Extragradient Method (VSEGM) [39, Algo-
rithm 3.1], the Viscosity Tseng’s Extragradient Method (VTEGM) [39, Algo-
rithm 3.2], the Hybrid Extragradient Viscosity Method (HEGVM) [29].

All the programs are written in Matlab 7.0 and performed on a PC Desktop
Intel(R) Core(TM) i5-3210M CPU @ 2.50GHz, RAM 2.00 GB.

Example 1 [Transportation Equilibrium Problems]. Consider a traffic network
consisting of N nodes connected by oriented edges [25, Chapter 6]. Suppose
that D is the set of edges of the network and W is the set of oriented pairs of
the nodes. Each element w ∈W is of the form w = (a, b) where a is the original
node and b is the destination one. Let Pw be the set of all paths from node
a to node b, and P be the set of all paths in the network, i.e., P = ∪w∈WPw.
Let us denote by up, for each p ∈ P, the path flow for the path p. Each pair
w ∈ W is associated with a positive number dw which gives the flow demand
from a to b. The feasible set of flows Ω can be defined as follows:

Ω =
{
u ∈ R|P| :

∑
p∈Pw

up = dw, ∀w ∈W ; up ≥ 0, ∀p ∈ Pw
}
.

We can write Ω = Πw∈WΩw, where

Ωw =
{
u ∈ R|Pw| :

∑
p∈Pw

up = dw; up ≥ 0, ∀p ∈ Pw
}
.

If, the flow vector u is known, we can define the value of edge flow fd for each
edge d ∈ D by

fd =
∑
p∈P

ξpdup =
∑
p∈Pw

∑
w∈W

ξpdup.

Here

ξpd =

{
1 if d belongs to path p,
0 otherwise.

When all the values of edge flows are known, we can define the value of costs
(expenses) for each edge d ∈ D as follows td = Cd(fd), which in general depends
on flows for other edges and uses some mapping Cd that is defined in the space
of flows. Then we can find the value of costs for each path p as follows:

Ap(u) =
∑
d∈D

ξpdtd.

A feasible flow vector u∗ ∈ Ω is called the equilibrium vector if, it satisfies the
following conditions:

∀q ∈ Pw, u∗q > 0⇒ Aq(u∗) = min
p∈Pw

Ap(u∗), ∀w ∈W. (4.1)

This means, when the traffic network is at equilibrium, among all paths of Pw,
the path with traffic has the lowest cost. The problem of finding u∗ satisfying
(4.1) is equivalent to our VIP (see, [25, Theorem 6.1]):

Find u∗ ∈ Ω such that 〈Au∗, u− u∗〉 ≥ 0, ∀u ∈ Ω.

Here Au is a vector in R|P| with components Ap(u).
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For experiment, we consider a traffic network with five nodes and eight edges
di (i = 1, 2, . . . , 8) as in Figure 1, and the cost function Cd is given by

Cd(f) =

{
αdf + βd if 0 ≤ f ≤ κn,
γdf + αdκd + βd − γdκd if f > κd.

(4.2)

1 4

2 5

3

d1

d2

d3

d4

d5

d8

d6

d7

Figure 1. Traffic network with 5 nodes.

Here αd, βd, γd, κd are given in Table 1.

Table 1. Parameters of the cost functions in the transport equilibrium problem.

d αd βd γd κd

d1 1 100 10 100
d2 1.1 120 11 120
d3 0.9 80 9 80
d4 0.1 150 8 150
d5 0.1 70 11 70
d6 0.7 140 12 210
d7 1.2 150 13 150
d8 0.6 160 14 250

We can explain formula (4.2) as follows:
a) When the traffic f increases, but is still within the allowable limit of edge

(see, f ≤ κd), the costs increases with a small rate αd. We can see that βd is
the minimal cost on edge d.

b) Otherwise, when the traffic f exceeds the allowable limit κd, the costs
increases with the huge rate γd (traffic jam).

Suppose that W = {(1, 5)} and d(1,5) = 1000. The set P(1,5) includes five
elements: p1 = d1 → d6, p2 = d3 → d8, p3 = d2 → d7, p4 = d2 → d5 → d8,
and p5 = d2→ d4→ d6.

Since the cost function Cd increases, A is monotone. We use the afore-
mentioned methods to compute numerically. The parameters for MPPM with
stepsize rule (3.1) are β = 1, r = 1, σ = 1, l = µ = 0.5, denoted by MPPM1,
and with rule (3.23) are λ0 = 1, µ = 0.5, pn = (n+1)−1.1, denoted by MPPM2.
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We choose τ0 = 1, µ = 0.5 for VSEGM and VTEGM. Since the information
on the Lipschitz constant of A is unknown, we also use a linesearch rule to
find stepsizes for HSEGM and HEGVM. The sequence {αn} is αn = 1

(n+1)p ,

with p = 0.9 or p = 0.5, for all the methods. The operator F is of the form
Fu = Qu+q, where q is a random vector andQ is a random positive definite and
symmetric matrix. The starting point u0 is chosen in Ω. The results are shown
in Figures 2 and 3. In view of these figures, we see that the method MPPM
(with both the two stepsize rules) works the best when the time elapses. The
number of iterations of MPPM which needs to compute is smaller than that of
other methods because at each iteration it requires some tested-computations.
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Figure 2. Methods for Example 1 with
αn = (n+ 1)−0.9. Number of iterations

is 81, 94, 159, 254, 341, 390, respectively.
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Figure 3. Methods for Example 1 with
αn = (n+ 1)−0.5. Number of iterations

is 82, 95, 181, 263, 348, 387, respectively.

Example 2 [Bilevel Optimization Problem]. In this example, we consider a bilevel
optimization problem (where we use the terminology of inner and outer lev-
els) [34, 44]. The outer level is given by the following constraint minimization
problem

minω(u) s.t. u ∈ Argmin
Rm

ϕ ⊂ Rm, (4.3)

where ω is a strongly convex and differentiable function while Argmin
Rm

ϕ is the,

assumed nonempty, set of minimizers of the inner level problem for a convex
function ϕ on Rm of the form ϕ(u) = h(u) + g(u). For experiment, we take
w(u) = 1

2u
TQu and ϕ(u) = 1

2‖Tu − y‖
2 + δΩ , where Q ∈ Rm×m is a certain

positive definite matrix, T ∈ Rm×l, y ∈ Rl, δΩ is the indicator function over
the nonnegative orthant Ω = {u ∈ Rm : u ≥ 0} with m = 100, l = 10. Problem
(4.3) is equivalent to our problem with A = T ∗(T − b) and F = ∇w. The data
is generated randomly. The results for this example are shown in Figures 4–5.

Example 3 [Optimal Control Problems (see, [42])]. Let H = L2[0, T ] be the
space of square-integrable functions on the interval [0, T ] with the inner product

〈x, y〉 =
∫ T
0
x(t)y(t)dt and the induced norm ‖x‖ =

√
〈x, x〉. Let k ∈ N∗ be a

natural number. Consider the product Hilbert spaceH = Hk = H×H×. . .×H.
Let Ω be a k-dimensional box of piecewise continuous functions, given by

Ω = {u ∈ H : ui(t) ∈ [u, ū], ∀t ∈ [0, T ], ∀i = 1, 2, . . . , k} .
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Figure 4. Methods for Example 2 with
αn = (n+ 1)−0.9. Number of iterations

is 55, 67, 104, 143, 199, 223, respectively.
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Figure 5. Methods for Example 2 with
αn = (n+ 1)−0.5. Number of iterations

is 61, 70, 118, 164, 212, 239, respectively.

For each u(t) ∈ Ω, let us denote by x(t) ∈ Hm the state trajectory vector
with continuous components and piecewise continuous derivatives satisfying
the following system of genaral differential equations,

ẋ(t) = A(t)x(t) + B(t)u(t), x(0) = x0, t ∈ [0, T ],

where A(t) ∈ Rm×m and B(t) ∈ Rm×k are the matrices of continuous functions
in [0, T ]. In this example, we consider the following optimal control problem

min {f(u) : u ∈ Ω} ,

where the terminal objective function f is of the form f(u) = ϕ(x(T )) and ϕ
is a differentiable convex function defined on the attainability set.

By the Pontryagin maximum principle, each pair (x∗, u∗), together with a
corresponding absolutely continuous function p∗ : [0, T ] → Rm, satisfies the
following system of equations:

ẋ∗(t) = A(t)x∗(t) + B(t)u∗(t), x∗(0) = x0, (4.4)

ṗ∗(t) = −Aᵀ(t)p∗(t), p∗(T ) = ∇ϕ(x(T )), (4.5)

0 ∈ Bᵀ(t)p∗(t) +NΩ(u∗(t)), (4.6)

where NΩ(u∗(t)) is the normal cone to Ω at u∗(t). Let Au(t) = Bᵀ(t)p(t), then
Au(t) is the gradient of f (see, [23]). From the definition of the normal cone,
relation (4.6) can be rewritten as our VIP:

Find u∗ ∈ Ω such that 〈Au∗, u− u∗〉 ≥ 0, ∀u ∈ Ω.

In order to compute, we divide the interval [0, T ] by the points ti = ih (i =
0, 1, . . . ,K), and discretize continuous functions by these points, where K is
a chosen natural number and h = T/K is the mesh size. We indentity a
discretized-control Ku = (u0, u1, . . . , uK) by its piecewise continuous extension,

Ku(t) = ui, ∀t ∈ [ti, ti+1), i = 0, 1, . . . ,K − 1.
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Moreover, we also identity a discretized-state Kx = (x0, x1, . . . , xK) with its
piece-wise linear interpolation:

Kx(t) = xi +
t− ti
h

(xi+1 − xi), ∀t ∈ [ti, ti+1), i = 0, 1, . . . ,K − 1.

Similarly, with the co-state variable Kp = (p0, p1, . . . , pK) and

KAu = (Bᵀ(t0)p0,Bᵀ(t1)p1, . . . ,Bᵀ(tK)pK).

We use the Euler method to discretize the system of ODEs (4.4)–(4.5). This
means that at each iteration we need to solve the system of linear equations,

xi+1 = xi + h [A(ti)xi + B(ti)ui] , x(0) = x0,

pi = pi+1 + hAᵀ(ti)pi+1, pK = ∇ϕ(xK).

Now, we consider the following optimal control problem (see, Example 1.2 [35])

minimize x1(1)

subject to ẋj(t)=sjxj+1(t)+u(t), sj = −2(m−j + 1), j = 1, 2, · · · ,m,
ẋm+1(t) = u(t), t ∈ [0, 1],

x(0) = 0, u(t) ∈ [−1, 1],

where m is a natural number. Observe that the matrix-valued functions A(t)
and B(t) are given by

A(t) =



0 s1 0 . . . 0 0
0 0 s2 . . . 0 0
0 0 0 . . . 0 0

. . . . . . . . .
. . . · · · . . .

0 0 0 . . . 0 sm
0 0 0 . . . 0 0


m+1,m+1

, B(t) =



1
1
1
...
1
1


m+1,1

.

We take the mesh size h = T/K with K = 256. The starting point u0 is
generated randomly in Ω and Fu = 0.5u − u0. The methods are performed
for the sequence of control parameters αn = (n+ 1)−0.9. Other parameters are
chosen as in Example 1. The numerical results are illustrated in Figures 6–9
for m ∈ {1, 2, 3, 4}. These results also demonstrate that the method MPPM
has competitive advantages over others.

5 Conclusions

In this paper, we have proposed a new method of multi-parameter form for
solving a monotone and Lipschitz variational inequality problem in a Hilbert
space. The method is constructed around the projection method incorporated
with regularization terms. The strong convergence of the method has been
established under appropriate conditions imposed on control parameters. The
obtained solution from the method is a solution of a bilevel variational inequal-
ity problem. The computational efficiency of the method over some existing
ones is illustrated by numerical experiments on transportation equilibrium,
bilevel optimization, and optimal control problems.
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Figure 6. Methods for Example 3
with m = 1. Number of iterations is 48,

59, 48, 58, 107, 57, respectively.
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Figure 7. Methods for Example 3
with m = 2. Number of iterations is 49,

57, 56, 52, 94, 54, respectively.
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Figure 8. Methods for Example 3
with m = 3. Number of iterations is 55,

58, 56, 56, 108, 55, respectively.
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Figure 9. Methods for Example 3
with m = 4. Number of iterations is 43,

52, 56, 50, 89, 56, respectively.
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