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Abstract. The time-dependent Laplace-type equation of variable coefficients for
anisotropic inhomogeneous media is discussed in this paper. Numerical solutions to
problems which are governed by the equation are sought by using a combined Laplace
transform and boundary element method. The variable coefficients equation is trans-
formed to a constant coefficients equation. The constant coefficients equation after
being Laplace transformed is then written in a boundary-only integral equation in-
volving a time-free fundamental solution. The boundary integral equation is therefore
employed to find the numerical solutions using a standard boundary element method.
Finally the numerical results are inversely transformed numerically using the Stehfest
formula to obtain solutions in the time variable. Some problems of anisotropic func-
tionally graded media are considered. The results show that the combined Laplace
transform and boundary element method is accurate and easy to implement.
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1 Introduction

We will consider initial boundary value problems governed by a Laplace-type
equation with variable coefficients of the form

∂

∂xi

(
κij (x)

∂µ (x, t)

∂xj

)
= α (x, t)

∂µ (x, t)

∂t
. (1.1)
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The coefficients [κij ] (i, j = 1, 2) define a real symmetric positive definite ma-
trix. Also, in (1.1) the summation convention for repeated indices holds. There-
fore Equation (1.1) may be written explicitly as

∂

∂x1

(
κ11

∂µ

∂x1

)
+

∂

∂x1

(
κ12

∂µ

∂x2

)
+

∂

∂x2

(
κ12

∂µ

∂x1

)
+

∂

∂x2

(
κ22

∂µ

∂x2

)
=α

∂µ

∂t
.

Equation (1.1) is usually used to model antiplane strain in elastostatics and
plane thermostatic problems (see for examples [18,24,26,31]).

During the last decade functionally graded materials (FGMs) have become
an important topic, and numerous studies on them for a variety of applications
have been reported. FGMs are materials possessing characteristics which vary
(with time and position) according to a mathematical function. Therefore,
Equation (1.1) is relevant for FGMs. FGMs are mainly artificial materials
which are produced to meet a preset practical performance (see, for example,
[1, 2]). This constitutes relevancy of solving Equation (1.1).

Recently a number of authors had been working on the Laplace equation
to find its solutions. However the works mainly focus on problems of isotropic
homogeneous materials. For example, Guo et al. [11] considered transient heat
conduction problems of isotropic and homogeneous media and solved them
using a combined Laplace transform and multiple reciprocity boundary face
method. In [10] Fu et al. examined a boundary knot method used to find
numerical solutions to problems of homogeneous isotropic media governed by
a three-dimensional transient heat conduction with a source term. Yang et
al. [31] investigated steady nonlinear heat conduction problems of homogeneous
isotropic materials and solved them using a radial integration boundary element
method. In [9] solutions of a Laplace-type equation in unbounded domains are
discussed.

For such kind of materials, the boundary element method (BEM) and other
methods had been successfully used to find the numerical solutions of problems
associated to them. But this is not the case for inhomogeneous materials, due
to the unavailability of fundamental solutions for equations of variable coef-
ficients which govern problems of inhomogeneous media. Some progress of
solving problems for inhomogeneous media using various techniques has been
done. Timpitak and Pochai [30] investigated finite difference solutions of un-
steady diffusion-convection problems for heterogeneous media. Noda et al. [19]
studied the analytical solutions to a transient heat conduction equation of vari-
able coefficients with a source term for a functionally graded orthotropic strip
(FGOS). In this study, the inhomogeneity of the FGOS is simplified to be
functionally graded in the x variable only. In [7] Azis and Clements worked
on finding numerical solutions to nonlinear transient heat conduction problems
for anisotropic quadratically graded materials using a boundary domain ele-
ment method. The quadratically varying coefficient in the governing equation
considered by Azis and Clements [7] can certainly be represented as a sum of
constant and variable coefficients. Some later studies on the class of constant-
plus-variable coefficients equations had been done a number of authors. Samec
and Škerget [25] considered an unsteady diffusive-convective transport equation
with variable velocity which is represented as a sum of constant and variable
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terms. Ravnik and Škerget in [22] studied steady-state diffusion-convection
problems with inhomogeneous isotropic diffusivity, variable velocity and incom-
pressible fluid using a domain boundary integral equation method (DBIEM).
In this work both the diffusivity and the velocity take a constant-plus-variable
form. Ravnik and Škerget in [23] considered an unsteady state diffusion-
convection problems with sources, inhomogeneous isotropic conductivity, vari-
able velocity and incompressible fluid using a DBIEM. In this study both the
diffusivity and the velocity are again taken to be of constant-plus-variable form.
AL-Bayati and Wrobel [4,5] focused on convection–diffusion–reaction equation
of incompressible flow with constant diffusivity and variable velocity taking
the form of constant-plus-variable terms. Ravnik and Tibuat [21] also con-
sidered an unsteady diffusion-convection equation with variable diffusivity and
velocity. The diffusivity is of the constant-plus-variable form. By taking the
variable coefficients as a sum of constant and variable coefficients, the derived
integral equation will then involve both boundary and domain integrals. The
constant coefficient term will contribute boundary integrals as the fundamental
solutions are available, and the variable coefficient term will give domain in-
tegrals. Reduction to constant coefficients equation is another technique that
can be used to transform a variable coefficients equation to a constant co-
efficients equation. Therefore the technique will preserve the boundary-only
integral equation. Recently Azis and co-workers had been working on steady-
state problems of anisotropic inhomogeneous media for several types of gov-
erning equations, for examples [6, 12, 20] for Helmholtz equation, [8, 16, 29]
for the modified Helmholtz equation, [13] for elasticity problems, [15, 17] for
the Laplace-type equation. Some other classes of inhomogeneity functions for
FGMs that differ from the class of constant-plus-variable coefficients are re-
ported from these papers.

This paper is intended to extend the recently published works in [15,17] for
steady anisotropic Laplace-type equation with spatially variable coefficients of
the form

∂

∂xi

(
κij (x)

∂µ (x, t)

∂xj

)
= 0

to unsteady anisotropic Laplace-type equation with spatially variable coeffi-
cients of the form (1.1). Sutradhar and co-workers [27,28] had been working on
unsteady Laplace problems, but the works considered isotropic media whereas
the present work considers the case of anisotropic media and includes the case
of isotropic media as a special case. Equation (1.1) will be transformed to
a constant coefficient equation from which a boundary integral equation will
derived. It is necessary to place some constraint on the class of coefficients κij
for which the solution obtained is valid. The analysis of this paper is purely
formal; the main aim being to construct effective BEM for a class of equations
which falls within the type (1.1).

2 The state of problem

Referred to a Cartesian coordinate system Ox1x2, solutions µ (x, t) and its
derivatives to (1.1) are sought which are valid for time interval t ≥ 0 and in a
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region Ω in R2 with boundary ∂Ω which consists of a finite number of piecewise
smooth closed curves. On ∂Ω1 the dependent variable µ (x, t) (x = (x1, x2)) is
specified and on ∂Ω2

P (x, t) = κij (x)
∂µ (x, t)

∂xi
nj (2.1)

is specified, where ∂Ω = ∂Ω1 ∪ ∂Ω2 and n = (n1, n2) denote the outward
pointing normal to ∂Ω. The initial condition is taken to be

µ (x, 0) = 0. (2.2)

The method will transform the variable coefficient Equation (1.1) to a constant
coefficient equation, and then taking a Laplace transform of the constant coeffi-
cient equation to obtain a boundary integral equation in the Laplace transform
variable s. The boundary integral equation is then solved using a boundary el-
ement method (BEM) to obtain the solution µ and its derivatives with respect
to xi in the domain. The inverse Laplace transform is implemented numerically
using the Stehfest formula.

The analysis is specially relevant to an anisotropic medium but it equally
applies to isotropic media. For isotropy, the coefficients in (1.1) take the form
κ11 = κ22 and κ12 = 0 and use of these equations in the following analysis
immediately yields the corresponding results for an isotropic medium.

3 The integral equation

The coefficients κij , α are required to take the form

κij (x) = κijg(x), α (x) = α (t) g(x), (3.1)

where the κij , α are constants and g is a differentiable function of x. Use of
(3.1) in (1.1) yields

κij
∂

∂xi

(
g
∂µ

∂xj

)
= αg

∂µ

∂t
. (3.2)

Let

µ (x, t) = g−1/2 (x)ψ (x, t) , (3.3)

therefore, substitution of (3.1) and (3.3) into (2.1) gives

P (x, t) = −Pg (x)ψ (x, t) + g1/2 (x)Pψ (x, t) , (3.4)

where

Pg (x) = κij
∂g1/2

∂xj
ni Pψ (x) = κij

∂ψ

∂xj
ni.
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Also, (3.2) may be written in the form

κij
∂

∂xi

[
g
∂
(
g−1/2ψ

)
∂xj

]
=αg

∂
(
g−1/2ψ

)
∂t

,

κij
∂

∂xi

[
g

(
g−1/2 ∂ψ

∂xj
+ ψ

∂g−1/2

∂xj

)]
=αg1/2

∂ψ

∂t
,

κij
∂

∂xi

(
g1/2

∂ψ

∂xj
+ gψ

∂g−1/2

∂xj

)
=αg1/2

∂ψ

∂t
.

Use of the identity

∂g−1/2

∂xi
= −g−1 ∂g

1/2

∂xi

implies

κij
∂

∂xi

(
g1/2

∂ψ

∂xj
− ψ∂g

1/2

∂xj

)
= αg1/2

∂ψ

∂t
.

Rearranging and neglecting some zero terms gives

g1/2κij
∂2ψ

∂xi∂xj
− ψκij

∂2g1/2

∂xi∂xj
= αg1/2

∂ψ

∂t
.

It follows that if g is such that

κij
∂2g1/2

∂xi∂xj
− λg1/2 = 0, (3.5)

where λ is a constant, then the transformation (3.3) carries the variable coef-
ficients equation (3.2) to the constant coefficients equation

κij
∂2ψ

∂xi∂xj
− λψ = α

∂ψ

∂t
. (3.6)

Taking the Laplace transform of (3.3), (3.4), (3.6) and applying the initial
condition (2.2) we obtain

ψ∗ (x, s) =g1/2 (x)µ∗ (x, s) , (3.7)

Pψ∗ (x, s) = [P ∗ (x, s) + Pg (x)ψ∗ (x, s)] g−1/2 (x) , (3.8)

κij
∂2ψ∗

∂xi∂xj
− (λ+ sα∗)ψ∗ = 0, (3.9)

where s is the variable of the Laplace-transformed domain.
A boundary integral equation for the solution of (3.9) is given in the form

η (x0)ψ∗ (x0, s) =

∫
∂Ω

[Γ (x,x0)ψ∗ (x, s)− Φ (x,x0)Pψ∗ (x, s)] dS (x) ,

(3.10)
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where x0 = (a, b), η = 0 if (a, b) /∈ Ω ∪ ∂Ω, η = 1 if (a, b) ∈ Ω, η = 1
2 if

(a, b) ∈ ∂Ω and ∂Ω has a continuously turning tangent at (a, b). The so called
fundamental solution Φ in (3.10) is any solution of the equation

κij
∂2Φ

∂xi∂xj
− (λ+ sα∗)Φ = δ (x− x0) (3.11)

and the Γ is given by

Γ (x,x0) = κij
∂Φ (x,x0)

∂xj
ni,

where δ is the Dirac delta function. For two-dimensional problems, three types
of fundamental solutions Φ and Γ that can be obtained from (3.11), namely
the fundamental solutions for Laplace equation (λ+ sα = 0), for Helmholtz
equation (λ+ sα < 0) and for modified Helmholtz equation (λ+ sα > 0), are
given respectively by

Φ (x,x0) =


K
2π lnR if λ+ sα∗ = 0,
ıK
4 H

(2)
0 (ωR) if λ+ sα∗ < 0,

−K
2π K0 (ωR) if λ+ sα∗ > 0,

(3.12)

Γ (x,x0) =


K
2π

1
Rκij

∂R
∂xj

ni if λ+ sα∗ = 0,
−ıKω

4 H
(2)
1 (ωR)κij

∂R
∂xj

ni if λ+ sα∗ < 0,
Kω
2π K1 (ωR)κij

∂R
∂xj

ni if λ+ sα∗ > 0,

where

K = τ̈ /D, ω =
√
|λ+ sα∗|/D, D =

[
κ11 + 2κ12τ̇ + κ22

(
τ̇2 + τ̈2

)]
/2,

R =

√
(ẋ1 − ȧ)2 + (ẋ2 − ḃ)2, ẋ1 = x1 + τ̇x2,

ȧ = a+ τ̇ b, ẋ2 = τ̈x2, ḃ = τ̈ b,

where τ̇ and τ̈ are respectively the real and the positive imaginary parts of the
complex root τ of the quadratic

κ11 + 2κ12τ + κ22τ
2 = 0

and H
(2)
0 , H

(2)
1 denote the Hankel function of second kind and order zero and

order one respectively. K0, K1 denote the modified Bessel function of order
zero and order one respectively, ı represents the square root of minus one. The
derivatives ∂R/∂xj needed for the calculation of the Γ in (3.12) are given by

∂R

∂x1
=

1

R
(ẋ1 − ȧ) ,

∂R

∂x2
= τ̇

[
1

R
(ẋ1 − ȧ)

]
+ τ̈

[
1

R

(
ẋ2 − ḃ

)]
.

Use of (3.7) and (3.8) in (3.10) yields

ηg1/2µ∗ =

∫
∂Ω

[(
g1/2Γ − PgΦ

)
µ∗ −

(
g−1/2Φ

)
P ∗
]
dS. (3.13)
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This equation provides a boundary integral equation for determining µ∗ and
its derivatives at all points of Ω.

Knowing the solutions µ∗ (x, s) and its derivatives ∂µ∗/∂x1 and ∂µ∗/∂x2
which are obtained from (3.13), the numerical Laplace transform inversion
technique using the Stehfest formula is then employed to find the values of
µ (x, t) and its derivatives ∂µ/∂x1 and ∂µ/∂x2. The Stehfest formula is

µ (x, t) ' ln 2

t

N∑
m=1

Vmµ
∗ (x, sm) ,

∂µ (x, t)

∂x1
' ln 2

t

N∑
m=1

Vm
∂µ∗ (x, sm)

∂x1
, (3.14)

∂µ (x, t)

∂x2
' ln 2

t

N∑
m=1

Vm
∂µ∗ (x, sm)

∂x2
,

where

sm=
ln 2

t
m, Vm= (−1)

N
2 +m

min(m,N2 )∑
k=[m+1

2 ]

kN/2 (2k)!(
N
2 −k

)
!k! (k−1)! (m−k)! (2k−m)!

.

The analysis of the section requires that the coefficients κij , α are of the
form (3.1) with g satisfying (3.5). This condition on g allows for considerable
choice in the coefficients. For example, when λ = 0, g can assume a number of
multiparameter forms with the parameters being employed to fit the coefficients
to numerical data for the coefficients. Possible multiparameter forms include

g (x) = (c0 + c1x1 + c2x2)
2
, g (x) =

[
<{c0 + c1z + c2z

2 + . . .+ cnz
n}
]2
,

where the ck, k = 1, 2, . . . , n are constants, < denotes the real part of a complex
number and z = x1 + τx2. More generally, the square of the real part of any
analytical function of the complex variable z can serve as a possible form for
g. For the case when λ 6= 0 some possible multiparameter forms of g are

g (x) = [A cos (c0 + c1x1 + c2x2) +B sin (c0 + c1x1 + c2x2)]
2
, κijcicj + λ = 0,

g (x) = [A exp(c0 + c1x1 + c2x2)]
2
, κijcicj − λ = 0,

where A,B, ci are real constants.

4 Numerical examples

In order to verify the analysis used in Section 3 to derive the boundary integral
Equation (3.13), we will consider several examples as test problems of analytical
solutions and problems without simple analytical solutions.

We assume each problem belongs to a system which is valid in given spa-
tial and time domains and governed by Equation (1.1) and satisfying the ini-
tial condition (2.2) and some boundary conditions as mentioned in Section

Math. Model. Anal., 27(2):303–321, 2022.
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2. The characteristics of the system which are represented by the coefficients
κij (x) , α (x) in Equation (1.1) are assumed to be of the form (3.1) in which
g(x) is a quadratic function of the form (3.2). The coefficients κij (x) , α (x)
may represent respectively the diffusivity or conductivity and the change rate
of the unknown µ (x, t).

A BEM with constant elements is employed to obtain numerical results.
The boundary of the domain is discretized into a number of lines (elements).
On each element it is assumed that the values of µ and P are constant. The
numerical integration on every element is calculated using the 10-point Bode’s
rule of order O

(
h11
)

where 9h equals the length of the element (see [3]). The
time interval is chosen to be 0 ≤ t ≤ 5. A FORTRAN script is developed
to compute the solutions and a specific FORTRAN command is imposed to
calculate the elapsed CPU time for obtaining the solutions. A simple script is
also embedded to calculate the values of the coefficients Vm,m = 1, 2, . . . , N
for any even number N . Table 1 shows the values of Vm for several values of
N .

Table 1. Values of Vm of the Stehfest formula.

Vm N = 6 N = 8 N = 10 N = 12

V1 1 −1/3 1/12 −1/60
V2 −49 145/3 −385/12 961/60
V3 366 −906 1279 −1247
V4 −858 16394/3 −46871/3 82663/3
V5 810 −43130/3 505465/6 −1579685/6
V6 −270 18730 −236957.5 1324138.7
V7 −35840/3 1127735/3 −58375583/15
V8 8960/3 −1020215/3 21159859/3
V9 164062.5 −8005336.5
V10 −32812.5 5552830.5
V11 −2155507.2
V12 359251.2

4.1 Examples with analytical solutions

Other aspects that will be justified are the convergence (as N increases) and
time efficiency for obtaining the numerical solutions.

For all problems in this section, the constant anisotropy coefficient κij

κij =

[
1 0.1

0.1 0.85

]
.

The boundary conditions are assumed to be (see Figure 1):

P given on side AB, P given on side BC,
µ given on side CD, P given on side DA.

A number of 320 elements of equal length, namely 80 elements on each
side of the unit square, are used. For each N , numerical solutions for µ and
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Figure 1. The boundary conditions for the problems in Section 4.1.

the derivatives ∂µ/∂x1 and ∂µ/∂x2 at 19× 19 points inside the space domain,
which are

(x1, x2) = {0.05, 0.1, 0.15, . . . , 0.9, 0.95} × {0.05, 0.1, 0.15, . . . , 0.9, 0.95}

and 11 time-steps, which are t = 0.0005, 0.5, 1, 1.5, . . . , 4, 4.5, 5, are computed.
The aggregate relative error E is calculated using the norm

E =

[∑
t

∑19×19
i=1 (ςn,i − ςa,i)2∑
t

∑19×19
i=1 ς2a,i

] 1
2

,

where ςn and ςa represent respectively the numerical and analytical solutions µ
or the derivatives ∂µ/∂x1 and ∂µ/∂x2. The elapsed CPU time τ (in seconds)
is also computed and the time efficiency number ε for obtaining the numerical
solutions of error E is defined as ε = Eτ . This formula explains that the
smaller time τ with smaller error E, the more efficient the procedure (smaller
ε).

4.1.1 Case 1: trigonometrically graded material

We take
g1/2(x) = sin (1− 0.15x1 − 0.3x2) .

For g(x) to satisfy (3.5) λ = −0.108. The analytical solution is assumed to
take the form (3.3) in which ψ (x, t) is a separable variables function

ψ (x, t) = h (x) f (t) ,

where h (x) , f (t) are continuous functions. We choose

h(x) = exp (−0.5 + 0.15x1 + 0.35x2) , f(t) = 1− exp (−1.75t) .

Math. Model. Anal., 27(2):303–321, 2022.
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Thus, for ψ(x) to satisfy (3.6),

α (t) = −0.1400714286 [1− exp (1.75t)] .

The analytical solution is then

µ (x, t) =
[1− exp (−1.75t)] exp (−0.5 + 0.15x1 + 0.35x2)

sin (1− 0.15x1 − 0.3x2)
.

Figure 2. The aggregate relative error E and efficiency number ε = τE for Case 1.

Figure 2, Tables 2 and 3 show the optimal (smallest) error E occurs when
N = 6 and N = 10 for solutions µ, ∂µ/∂x1 and ∂µ/∂x2, respectively. Mean-
while, the optimal efficiency number ε occurs when N = 6 for solutions µ,
∂µ/∂x1, ∂µ/∂x2. According to Hassanzadeh and Pooladi-Darvish [14], in-
creasing N will increase the accuracy up to a point, and then the accuracy will
decline due to round-off errors.

Table 2. The total elapsed CPU time τ , the aggregate relative error E, the efficiency
number ε = τE for Case 1.

N 6 8 10 12

τ 239.281 318.375 395.359 470.328

µ
E 0.04715902 0.04857903 0.04870295 0.04860896
ε 11.284269 15.466349 19.255167 22.862160

∂µ
∂x1

E 0.01874073 0.02004999 0.02015942 0.02006600
ε 4.484305 6.383415 7.970217 9.437602

∂µ
∂x2

E 0.11193779 0.11047076 0.11034256 0.11041242
ε 26.784615 35.171129 43.624966 51.930067

In addition, Figure 3 shows the numerical and analytical solutions µ, ∂µ/∂x1
and ∂µ/∂x2 at (x1, x2) = (0.5, 0.5).

4.1.2 Case 2: quadratically graded material

We take

g1/2(x) = 1− 0.15x1 − 0.3x2.
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Table 3. The optimized value of N for obtaining the numerical solutions µ, ∂µ/∂x1, ∂µ/∂x2
of best error E and efficiency number ε for Case 1.

µ ∂µ
∂x1

∂µ
∂x2

E N = 6 N = 6 N = 10
ε N = 6 N = 6 N = 6

Figure 3. The solutions µ, ∂µ/∂x1 and ∂µ/∂x2 at (x1, x2) = (0.5, 0.5) for Case 1.

For g(x) to satisfy (3.5), λ = 0. We choose

α (t) = −0.137125t.

The analytical solution is

µ (x, t) =
0.2t sin (0.5− 0.15x1 − 0.35x2)

1− 0.15x1 − 0.3x2
.

Figure 4. The aggregate relative error E and efficiency number ε = τE for Case 2.

Figure 4, Tables 4 and 5 show that for solutions µ, ∂µ/∂x2 the smallest
error E and efficiency number ε are achieved, when N = 8, whereas for the
solutions ∂µ/∂x1 they are reached, when N = 12 and N = 8 respectively.

Math. Model. Anal., 27(2):303–321, 2022.
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Table 4. The total elapsed CPU time τ , the aggregate relative error E, the efficiency
number ε = τE for Case 2.

N 6 8 10 12

τ 401.016 532.016 658.406 781.313

µ
E 0.00328027 0.00100093 0.00111835 0.00115346
ε 1.315440 0.532511 0.736331 0.901213

∂µ
∂x1

E 0.00223307 0.00071443 0.00069532 0.00068988
ε 0.895495 0.380087 0.457801 0.539008

∂µ
∂x2

E 0.00315254 0.00089786 0.00101098 0.00104635
ε 1.264219 0.477677 0.665634 0.817526

Table 5. The optimized value of N for obtaining the numerical solutions µ, ∂µ/∂x1, ∂µ/∂x2
of best error E and efficiency number ε for Case 2.

µ ∂µ
∂x1

∂µ
∂x2

E N = 8 N = 12 N = 8
ε N = 8 N = 8 N = 8

Meanwhile, Figure 5 shows the numerical and analytical solutions µ, ∂µ/∂x1
and ∂µ/∂x2 at (x1, x2) = (0.5, 0.5).

Figure 5. The solutions µ, ∂µ/∂x1 and ∂µ/∂x2 at (x1, x2) = (0.5, 0.5) for Case 2.

4.1.3 Case 3: exponentially graded material

We take
g1/2(x) = exp (−1 + 0.15x1 + 0.3x2) .

For g(x) to satisfy (3.5)
λ = 0.108.
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We choose

α (t) =
−0.108t (t− 5)

2t− 5
.

The analytical solution is

µ (x, t) =
(0.5− 0.15x1 − 0.35x2) [0.16t (5− t)]

exp (−1 + 0.15x1 + 0.3x2)
.

Figure 6, Tables 6 and 7 show that for solutions µ, ∂µ/∂x2 the smallest error
E and efficiency number ε are achieved when N = 10 and N = 8, respectively.
Whereas for the solution ∂µ/∂x1 they are reached when N = 10.

Figure 6. The aggregate relative error E and efficiency number ε = τE for Case 3.

Table 6. The total elapsed CPU time τ , the aggregate relative error E, the efficiency
number ε = τE for Case 3.

N 6 8 10 12

τ 233.016 311.281 386.156 458.844

µ
E 0.18639574 0.04624320 0.03977785 0.03987117
ε 43.433120 14.394641 15.360464 18.294639

∂µ
∂x1

E 0.16917006 0.01238429 0.00423134 0.00425595
ε 39.419268 3.854996 1.633958 1.952814

∂µ
∂x2

E 0.18613143 0.04793662 0.04203815 0.04212128
ε 43.371533 14.921772 16.233293 19.327086

Table 7. The optimized value of N for obtaining the numerical solutions µ, ∂µ/∂x1, ∂µ/∂x2
of best error E and efficiency number ε for Case 3.

µ ∂µ
∂x1

∂µ
∂x2

E N = 10 N = 10 N = 10
ε N = 8 N = 10 N = 8

Figure 7 shows the numerical and analytical solutions µ, ∂µ/∂x1 and ∂µ/∂x2
at (x1, x2) = (0.5, 0.5).

Math. Model. Anal., 27(2):303–321, 2022.
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Figure 7. The solutions µ, ∂µ/∂x1 and ∂µ/∂x2 at (x1, x2) = (0.5, 0.5) for Case 3.

4.2 A problem without analytical solution

The aim is to show the effect of inhomogeneity and anisotropy of the considered
material on the solution µ.

4.2.1 Problem 2:

The material is supposed to be either quadratically graded or homogeneous
with gradation function

g1/2(x) = 1− 0.15x1 − 0.3x2, g(x) = 1,

respectively, and either anisotropic or isotropic with constant coefficient

κij =

[
1 0.1

0.1 0.85

]
, κij =

[
1 0
0 1

]
,

respectively. So that there are four cases regarding the material, namely
anisotropic inhomogeneous, anisotropic homogeneous, isotropic inhomogeneous
and isotropic homogeneous material.

We set α = 1 and the boundary conditions are (see Figure 8):

P = P (t) on AB, P = 0 on BC,
µ = 0 on CD, P = 0 on DA,

where P (t) takes four cases

P (t) = P1 (t) = 1, P (t) = P2 (t) = 1− exp (−1.75t) ,

P (t) = P3 (t) = t/5, P (t) = P4 (t) = 0.16t (5− t) .

Therefore, the system is geometrically symmetric about x1 = x2.
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Figure 8. The boundary conditions for Problem 2.

Figure 9. Solution µ at points (−0.25, 0.25) , (0.25,−0.25) for Problem 2 of isotropic
homogeneous material.

Again, a number of 160 elements of equal length, namely 40 elements on
each arc AB, BC, CD and DA of the circle domain, are used. We use N = 6
for all cases of this problem. The results are shown in Figures 9, 10 and 11.

Figure 9 depicts solution µ at points (−0.25, 0.25) , (0.25,−0.25) when the
material under consideration is an isotropic homogeneous material. It can be
seen that the values of µ at point (−0.25, 0.25) coincide with those at point
(0.25,−0.25). This is to be expected as the system is symmetrical about x1 =
x2 when the material is isotropic homogeneous.

Figure 10. Solution µ at points (−0.25, 0.25) , (0.25,−0.25) for Problem 2 of anisotropic
homogeneous material.

However, if the material is anisotropic homogeneous the values of µ at point
(−0.25, 0.25) do not coincide with those at point (0.25,−0.25). See Figure 10.
This means anisotropy gives effect on the values of µ. Similarly, if the material

Math. Model. Anal., 27(2):303–321, 2022.
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is isotropic inhomogeneous (see Figure 11) the values of µ at point (−0.25, 0.25)
differ from those at point (0.25,−0.25). This indicates that inhomogeneity also
gives effect on the values of µ.

Figure 11. Solution µ at points (−0.25, 0.25) , (0.25,−0.25) for Problem 2 of isotropic
inhomogeneous material.

In addition, Figures 9, 10 and 11 show that the trends of µ values (as
the time t changes) follow the time variation of P (t) except for the form of
P (t) = 1. This is to be expected as P (t), acting as the boundary condition
on side AB, is the only time-dependent quantity for the system. Moreover, as
shown in Figures 9 and 11, it is also expected that the values of µ for the cases
of P1 (t) = 1 and P2 (t) = 1− exp (−1.75t) tend to approach same steady state
solution as t increases. Both functions P1 (t) and P2 (t) will converge to 1 as t
becomes bigger.

5 Conclusions

A combined Laplace transform and BEM has been used to find numerical
solutions to initial boundary value problems for anisotropic functionally graded
materials which are governed by the Laplace-type equation (1.1). It is easy to
implement and accurate. It involves a time variable free fundamental solution
and therefore it is quite accurate. Unlikely, the methods with time variable
fundamental solution may produce less accurate solutions as the fundamental
solution usually has singular time points.

In order to use the boundary integral equation (3.13), the values µ (x, t)
or P (x, t) in time variable t of the boundary conditions of the original system
as stated in Section 2 have to be Laplace transformed. This means that from
the beginning when we set up a problem, we actually put a set of approached
boundary conditions. Therefore, it is really important to find a very accurate
technique of numerical Laplace transform inversion. Based on the results of
Problem 1, the Stehfest formula (3.14) is quite accurate.

The combined method has been implemented to a class of functionally
graded materials where the coefficients κij (x) and α (x) depend on the spatial
variable x only with the same inhomogeneity or gradation function g(x). It will
be interesting to extend the study in the future to the case when the coefficients
depend on different gradation functions varying also with the time variable t.
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