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Abstract. In this paper, we show the existence result of the following fractional
p-Laplacian system

(−∆)spu = f(x, u) in Ω, u = 0 in Rn\Ω,

for a given datum f . The existence of weak solutions is obtained by using the theory
of Young measures.
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1 Introduction and main result

Recently, a great deal of attention has been paid to the study of problems
involving fractional and nonlocal operators. This type of problems arises in
continuum mechanics, population dynamics, game theory and in many other
different applications. The literature on nonlocal operators and their applica-
tions is very interesting and large. We refer to [1,10,11,12,13,18,19,20,25] and
other references therein.

In this paper, we are interested in the existence of solutions for the fractional
p-Laplacian system of the form:

(−∆)spu = f(x, u) in Ω, u = 0 in Rn\Ω, (1.1)
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where Ω ⊂ Rn is an open bounded set with Lipschitz boundary ∂Ω, u : Ω →
Rm, m ∈ N, is the unknown vector-valued function and f is a given datum
assumed to satisfy some conditions (see below). The term (∆)spu in (1.1) is the
fractional p-Laplacian operator which will be detailed in Section 2.

Note that problems of type (1.1) have been treated in several papers. For
example, Qui and Xiang [22] proved the existence of nonnegative solutions
by using Leray-Schauder’s nonlinear altenrative. When p = 2, problem (1.1)
reduces to the fractional Laplacian problem

(−∆)su = f(x, u) in Ω, u = 0 in Rn\Ω. (1.2)

In [24], the authors get the existence of nontrivial weak solutions of problem
(1.2) by using the mountain pass theorem. See also [2, 18, 20] for more details
and results.

In the present paper, we study the existence of weak solutions for problem
(1.1) involving nonlocal fractional operator by using the tool of Young mea-
sures. To the best of our knowledge, problem (1.1) has never been studied by
the theory Young measures. We refer the reader to see [3,4,5,6,7,8] where we
have applied such a theory for some quasilinear elliptic systems.

In this paper, we suppose that f : Ω×Rm → R is a Carathéodory function
satisfying:
(F1) there exist c > 0 and 0 ≤ β < p− 1 such that

|f(x, ξ)| ≤ d(x) + c|ξ|β for all ξ ∈ Rm and a.e. x ∈ Ω,

where d ∈ Lp′(Ω), with d ≥ 0 a.e. in Ω.
We first give the definition of weak solutions for problem (1.1).

Definition 1. We say that u ∈W0 is a weak solution of the problem (1.1) for
the datum f if∫ ∫

Q

|u(x)− u(y)|p−2(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|n+ps
dxdy =

∫
Ω

f(x, u)ϕ(x)dx

for any ϕ ∈W0, where W0 and Q will be introduced in Section 2.

Now we are in a position to state the main result as follows:

Theorem 1. Suppose that the assumption (F1) is satisfied. Then there exists
a weak solution for problem (1.1).

2 Preliminaries

In this section, we first give some basic results of fractional Sobolev space that
will be used in the sequel (see [11, 14, 16, 20]). To this end, a brief review on
Young measure will be presented (see [9, 15,17]).

Let 0 < s < 1 < p <∞ and p∗s the fractional critical exponent

p∗s =

{
np/(n− ps) if ps < n,

∞ if ps ≥ n.
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The fractional p-Laplacian operator (−∆)spu is defined as follows

(−∆)spu(x) = P.V.

∫
Rn

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|n+ps
dy, x ∈ Rn,

where x ∈ Rn, P.V. is a commonly used abbreviation for ”in the principal value
sense”.

In the following, we denote Q = R2n\O, where O = {(Ω) × {(Ω) ⊂ R2n,
and {(Ω) = Rn\Ω. W is a linear space of Lebesgue measurable functions from
Rn to Rm such that the restriction to Ω of any function u in W belongs to
Lp(Ω;Rm) and ∫ ∫

Q

|u(x)− u(y)|p

|x− y|n+ps
dxdy <∞.

The space W is equipped with the norm

‖u‖W = ‖u‖Lp(Ω;Rm) +
(∫ ∫

Q

|u(x)− u(y)|p

|x− y|n+ps
dxdy

) 1
p

.

We will work in the closed linear space

W0 =
{
u ∈W : u(x) = 0 a.e. in Rn\Ω

}
,

equipped with the norm

‖u‖W0
:= [u]sp =

(∫ ∫
Q

|u(x)− u(y)|p

|x− y|n+ps
dxdy

) 1
p

.

Then (W0, ‖.‖W0
) is a uniformly convex Banach space (see [26]). Moreover,

C∞0 (Ω;Rm) is dense in W0 (see [16]). It is readily seen that the embedding
W0 ↪→ Lθ(Ω;Rm) is continuous for all 1 ≤ θ ≤ p∗s, and compact for all 1 ≤ θ <
p∗s (see [14]). The dual space of (W0, ‖.‖W0

) is denoted by (W ∗0 , ‖.‖W∗0 ).
In the last step of the existence proof we use the Young measure properties.

In the following C0(Rm) denote the space of continuous real-valued functions
on Rm with compact support with respect to the ‖.‖∞-norm. Its dualM(Rm)
is the space of signed Radon measures with finit mass. The related duality
pairing is given by

〈ν, ϕ〉 =

∫
Rm

ϕ(λ)dν(λ).

Definition 2. [15] Let {zj}j≥1 be a bounded sequence in L∞(Ω;Rm). Then
there exists a subsequence {zk} ⊂ {zj} and a Borel probability measure νx on
Rm for a.e. x ∈ Ω, such that for almost each ϕ ∈ C(Rm) we have

ϕ(zk) ⇀∗ ϕ weakly in L∞(Ω),

where ϕ(x) = 〈νx, ϕ〉 =
∫
Rm ϕ(λ)dνx(λ) for a.e. x ∈ Ω.

The fundamental theorem on Young measure can be stated in the following
lemma:
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Lemma 1. [17] Let Ω ⊂ Rn be Lebesgue measurable, let K ⊂ Rm be closed,
and let zj : Ω → Rm, j ∈ N, be a sequence of Lebesgue measurable functions
satisfying zj → K in measure as j →∞, i.e., given any open neighbourhood U
of K in Rm

lim
j→∞

|{x ∈ Ω : zj(x) /∈ U}| = 0.

Then there exists a subsequence zk and a family {νx}x∈Ω of non-negative Radon
measures on Rm, such that
(i) ‖νx‖M(Rm) :=

∫
Rm dνx(λ) ≤ 1 for almost x ∈ Ω.

(ii) ϕ(zk) ⇀∗ ϕ weakly in L∞(Ω) for all C0(Rm), where ϕ = 〈νx, ϕ〉.
(iii) If for all R > 0

lim
L→∞

sup
k∈N

∣∣{x ∈ Ω ∩BR(0) : |zk(x)| ≥ L}
∣∣ = 0, (2.1)

then ‖νx‖ = 1 for almost every x ∈ Ω, and for any measurable Ω′ ⊂ Ω we have
ϕ(zk) ⇀ ϕ = 〈νx, ϕ〉 weakly in L1(Ω′) for continuous function ϕ provided the
sequence ϕ(zk) is weakly precompact in L1(Ω′).

3 Proof of the main result

In this section, we prove the existence of solutions to problem (1.1). Our
method is based on the Galerkin approximation and again the tool of Young
measures.

Let V1 ⊂ V1 ⊂ ... ⊂ V2 ⊂ W0 be a sequence of finite dimensional subspaces
with the property that ∪

k≥1
Vk is dense in W0. Note that (Vk) exists since

W0 is a uniformly convex Banach space, thus separable. To construct the
approximating solutions, we define the operator T (u) : W0 →W ∗0 by

〈T (u), ϕ〉 =

∫ ∫
Q

|u(x)− u(y)|p−2(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|n+ps
dxdy

−
∫
Ω

f(x, u)ϕ(x)dx.

Lemma 2. 1) T (u) : W0 →W ∗0 is well defined and bounded.
2) The restriction of T to a finite subspace of W0 is continuous.
3) T is coercive.

Proof. 1) By the Hölder inequality and (F1), it follows (without loss of gen-
erality, we may assume that β = p− 1) that∣∣〈T (u), ϕ〉

∣∣ =
∣∣∣ ∫ ∫

Q

|u(x)− u(y)|p−2(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|n+ps
dxdy

−
∫
Ω

f(x, u)ϕ(x)dx
∣∣∣ ≤ ‖u‖p−1W0

‖ϕ‖W0
+
(
‖d‖p′ + c‖u‖p−1p

)
‖ϕ‖p ≤ C‖ϕ‖W0

for all u, ϕ ∈W0, where we have used the embedding W0 ↪→ Lp(Ω;Rm).
2) Let {uk} ⊂ W0 such that uk → u in Vk = span {e1, . . . , ek} where Vk is a
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finite subspace of W0 and {ei}ki=1 is a basis of Vk. Since uk → u in Vk, then on
the one hand uk → u almost everywhere for a subsequence, on the other hand
{uk} is bounded in W0. It follows for all ϕ ∈ W0, ‖ϕ‖W0 ≤ 1, that (without
loss of generality, we can assume that β = p− 1)

∣∣〈T (uk), ϕ〉 − 〈T (u), ϕ〉
∣∣ =

∣∣∣ ∫ ∫
Q

[
|uk(x)− uk(y)|p−2(uk(x)− uk(y))

− |u(x)− u(y)|p−2(u(x)− u(y))
]
/|x− y|n+ps × (ϕ(x)− ϕ(y))dxdy

−
∫
Ω

(
f(x, uk)−f(x, u)

)
ϕ(x)dx

∣∣∣ ≤ (∫ ∫
Q

∣∣|uk(x)−uk(y)|p−2(uk(x)−uk(y))

− |u(x)− u(y)|p−2(u(x)− u(y))
∣∣ p
p−1 /|x− y|(n+ps)

p
p−1 dxdy

) p−1
p

+
(∫

Ω

∣∣f(x, uk)− f(x, u)
∣∣ p
p−1 dx

) p−1
p

.

Since ∣∣|a|p−2a− |b|p−2b∣∣ ≤ 2p−2(p− 1)|a− b|
(
|a|+ |b|

)p−2
,

thus∣∣〈T (uk), ϕ〉 − 〈T (u), ϕ〉
∣∣ ≤ C(∫ ∫

Q

∣∣(uk(x)− uk(y))− (u(x)− u(y))
∣∣ p
p−1

×
(
|uk(x)− uk(y)|+ |u(x)− u(y)|

) p(p−2)
p−1 /|x− y|(n+ps)

p
p−1 dxdy

) p−1
p

+
(∫

Ω

|f(x, uk)− f(x, u)|
p

p−1 dx
) p−1

p

≤ C‖uk−u‖W0

(
‖uk‖p−2W0

+‖u‖p−2W0

)
+
(∫

Ω

|f(x, uk)−f(x, u)|
p

p−1 dx
) p−1

p

.

(3.1)
We have

|a− b|p ≤ 2p−1
(
|a|p + |b|p

)
, 1 < p,

and since 1 < p
p−1 , it follows that∫

Ω

|f(x, uk)|
p

p−1 dx ≤ 2
1

p−1

∫
Ω

(
|d(x)|p

′
+ |uk|p

)
dx ≤ C (3.2)

by the boundedness of uk in Lp(Ω;Rm). It follows by (3.2) that the sequence{
|f(x, uk)−f(x, u)|p′

}
is uniformly bounded and equiintegrable in L1(Ω). The

Vitali Convergence Theorem (see [23]) implies

lim
k→∞

∫
Ω

∣∣f(x, uk)− f(x, u)
∣∣p′dx = 0.

By virtue of (3.1) and the definition of uk, we deduce that∣∣〈T (uk), ϕ〉 − 〈T (u), ϕ〉
∣∣→ 0 as k →∞.
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3) We have

〈T (u), u〉 =

∫ ∫
Q

|u(x)− u(y)|p

|x− y|n+ps
dxdy −

∫
Ω

f(x, u).udx

≥ ‖u‖pW0
− ‖d‖p′‖u‖p − ‖u‖β+1

p ≥ ‖u‖pW0
− c1‖d‖p′‖u‖W0

− cβ+1
1 ‖u‖β+1

W0
,

where c1 is the constant of the embedding W0 ↪→ Lp(Ω;Rm). Hence

lim
‖u‖W0

→∞

〈T (u), u〉
‖u‖W0

=∞ since p > max{1, β + 1}.

ut

Now we can construct the approximating solutions.

Lemma 3. For all k ∈ N there exists uk ∈ Vk such that

〈T (uk), ϕ〉 = 0 for all ϕ ∈ Vk (3.3)

and there exists a constant R > 0 such that

‖uk‖W0 ≤ R for all k ∈ N. (3.4)

Proof. Let fix k and assume that dim Vk = r. For simplicity, we write∑k
i=1 a

iei = aiei, where (ei)
r
i=1 is a basis of Vk. Define the map

S : Rr −→ Rr, (a1, ..., ar)→
(
〈T (aiei), ej〉

)r
j=1

.

By Lemma 2, S is continuous. Let u = aiei, we have then ‖a‖Rr → ∞ is
equivalent to ‖u‖W0 →∞ and S(a).a = 〈T (u), u〉. Hence

S(a).a→∞ as ‖a‖Rr →∞.

Consequently, there is R > 0 such that for all a ∈ ∂BR(0) ⊂ Rr we have
S(a).a > 0. According to [21, Lemma 4.3, p. 53], there exists x ∈ BR(0)
solution of S(x) = 0. Therefore, for all k ∈ N there exists uk ∈ Vk such that

〈T (uk), ϕ〉 = 0 for all ϕ ∈ Vk.

Remark that if ‖uk‖W0
→ ∞, then 〈T (uk), uk〉 → ∞ by Lemma 2. This is a

contradiction with (3.3). Hence {uk} is uniformly bounded, i.e. there exists
R > 0 such that ‖uk‖W0 ≤ R for all k ∈ N. ut

As mentioned in the introduction, the tool we use to prove the existence of a
weak solution is the Young measure. This tool permits to identify weak limit
as described in the following important lemma:

Lemma 4. Assume that (3.4) holds. Then there exists a Young measure ν(x,y)
generated by uk ∈ Lp(Q;Rm) such that
1) ν(x,y) is a probability measure, i.e. ‖ν(x,y)‖M(Rm) = 1 for almost every
(x, y) ∈ Q.
2) The weak L1-limit of uk is given by 〈ν(x,y), id〉 =

∫
Rm λdν(x,y)(λ).

3) ν(x,y) satisfies 〈ν(x,y), id〉 = u(x, y) for almost every (x, y) ∈ Q.
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Proof. 1) Let us consider

uk(x, y) =
vk(x)− vk(y)

|x− y|
n
p +s

∈ Lp(Q;Rm) for every vk ∈W0.

We know for any R > 0, that (Ω ∩ BR)2 ⊆ Ω × Ω  Q, where BR = B(0, R)
is the ball centered in 0 with radius R. Let L ∈ R such that QL ≡ {(x, y) ∈
(Ω ∩BR)2 : |uk(x, y)| ≥ L}. We have

‖uk‖Lp(Q;Rm) =
(∫ ∫

Q

|vk(x)− vk(y)|p

|x− y|n+ps
dxdy

) 1
p

= ‖vk‖W0
≤ R

by (3.4), which implies that {uk} is bounded in Lp(Q;Rm). Hence, there exists
c ≥ 0 such that

c ≥
∫ ∫

Q

|uk(x, y)|pdxdy ≥
∫ ∫

QL

|uk(x, y)|pdxdy ≥ Lp|QL|,

where |QL| is the Lebesgue measure of QL. Therefore, (uk) satisfies equation
(2.1) in Lemma 1, thus there is a Young measure noted by ν(x,y) associated to
uk such that ‖ν(x,y)‖M(Rm) = 1 for almost every (x, y) ∈ Q.
2) Since Lp(Q;Rm) is reflexive (p > 1), it follows by (3.4), the existence of a
subsequence (still denoted by uk) weakly convergent in Lp(Q;Rm). Moreover,
weakly convergent in L1(Q;Rm), since 1 < p. By Lemma 1(iii), taking ϕ as
the idenity mapping I, we have

uk ⇀ 〈ν(x,y), id〉 =

∫
Rm

λdν(x,y)(λ) weakly in L1(Q;Rm).

3) By (3.4), we have vk ⇀ v in W0 and vk ⇀ v in Lp(Ω;Rm) (for a subse-

quence). Thus uk ⇀ u in Lp(Q;Rm) where u(x, y) = v(x)−v(y)
|x−y|

n
p

+s . Owing to (2),

the uniqueness of limits implies that

〈ν(x,y), id〉 = u(x, y) =
v(x)− v(y)

|x− y|
n
p +s

for almost every (x, y) ∈ Q.

ut

Now, we are in a position to prove Theorem 1.

Proof. Let {uk} be the sequence defined in the proof of Lemma 4, i.e.

uk(x, y) =
vk(x)− vk(y)

|x− y|
n
p +s

for every vk ∈W0.

We have∫ ∫
Q

|uk(x, y)|pdxdy =

∫ ∫
Q

|vk(x)− vk(y)|p

|x− y|n+ps
dxdy =

∫
Ω

f(x, vk)vkdx.
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By (3.4), up to a subsequence,

vk → v strongly in Lp(Ω;Rm) and a.e. in Ω.

It follows from the continuity condition in (F1) that f(x, vk)(vk − v) → 0 a.e.
in Ω as k →∞.
By the growth condition in (F1),

{
f(x, vk)(vk − v)

}
is uniformly bounded and

equiintegrable in L1(Ω). Hence, the Vitali Convergence Theorem implies

lim
k→∞

∫
Ω

f(x, vk)(vk − v)dx = 0.

Owing to a weak convergence defined in Lemma 4, we get∫ ∫
Q

∣∣uk(x, y)|p−2uk(x, y)dxdy ⇀

∫ ∫
Q

∫
Rm

|λ|p−2λdν(x,y)(λ)dxdy

=

∫ ∫
Q

∣∣u(x, y)|p−2u(x, y)dxdy =

∫ ∫
Q

|v(x)− v(y)|p−2(v(x)− v(y))

|x− y|n+ps
dxdy

weakly in L1(Q;Rm). Changing the role of uk and vk, we obtain

lim
k→∞

∫ ∫
Q

|uk(x)− uk(y)|p−2(uk(x)− uk(y))(v(x)− v(y))

|x− y|n+ps
dxdy

=

∫ ∫
Q

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))

|x− y|n+ps
dxdy

for every v ∈ W0 by density of ∪
k≥1

Vk in W0. Then, the proof of Theorem 1 is

complete. ut
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