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Abstract. In this paper, we investigate the influence of two types of isolation on
malware propagation within a computer network. Model 1 proposes the network
quarantine strategy, where infected computers are fully disconnected from the net-
work. As for model 2, the control strategy is the anti-virus software quarantine, where
infected files in a computer are contained in an isolation folder. Both models con-
sider the aspect of heterogeneous immunity, that is, weak and strong immunization of
computers in a network. Analytical examinations produced a virus-free equilibrium
and an endemic equilibrium for each model. It has been observed that the quarantine
reproduction number Rq plays an essential role in the existence and stability of the
equilibrium points. Furthermore, numerical simulations are accomplished to substan-
tiate the qualitative results. Finally, a sensitivity analysis is executed to specify the
dominant parameters on Rq. It is found that the performance of network quarantine
is better than anti-virus software quarantine in controlling malware propagation.

Keywords: computer malware, propagation model, quarantine, heterogeneous immunity,

stability.
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1 Introduction

Nowadays, as more people manage and store all their personal and business
lives on the Internet, they have become a thriving target for cybercriminals.
Cybercriminals usually use spam e-mails, spoofed apps, non-secure Wi-Fis, or
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unsafe URLs to deliver dangerous malware to targeted computers and endanger
their security. Although anti-virus software is the best way to detect and
remove malware, it lags behind the emergence of new versions of malware.
Therefore, the development of predicting malware to prevent and control is
essential. So experiments to better understand the dynamics of malware spread
are a crucial issue in improving safety and reliability in computer networks.

Due to the similarities between the transmission of computers malware and
infectious diseases, many researchers were motivated to use mathematical epi-
demiological models to explore the dynamics of computer malware propagation.
Kephart and White [5] were amongst the first researchers to investigate how
computer viruses spread on the Internet using the SIS model. They concluded
that if the infection rate is below a certain threshold, then an imperfect de-
fense against the virus can still be highly effective in preventing the spread.
In [3], Gan et al. included a nonlinear vaccination probability in the classi-
cal SIRS model to assess the effect of vaccination on the spread of computer
viruses. Similar models with virus vaccination can be found in [2, 24]. In [6],
they modified the SIRS models by including a group representing an antido-
tal population generating the SAIR model. They assumed that some infected
computers moved back to the susceptible group since there are anti-virus pro-
grams which are not effective enough to remove all of the viruses. Contrary
to what is previously mentioned, the model in [11] include two susceptible
compartments. This is based on the heterogeneity in users security awareness.
They studied the effectiveness of weak and strong immunization against mal-
ware on network reliability. Other malware propagation models are established
in [1, 4, 18,20,21,25,26].

Inspired by the approach of epidemic disease control models, researchers im-
plemented a quarantine strategy on malware propagation models. Quarantine
is an alternative way to limit the infection period by isolating the infected from
delivering malware into the network. There are two methods of quarantine
in the cyber world: network quarantine and anti-virus software quarantine.
Network quarantine is to isolate infected computers from the network while
running the latest anti-virus software to remove malware. Whereas, anti-virus
software quarantine is to isolate the infected file via anti-virus software to an
inaccessible quarantined folder and then apply the latest version of anti-virus
software to remove malware.

In [7], Koonprasert and Channgam introduced an SEIQR worm propagation
model for mobile devices. They studied the effect of using WiFi base stations
to isolate worms by disabling the connection between the infected device with
other devices. They assumed that worms infect susceptible devices, which then
undergo a period until they become infectious. Only then will quarantine mea-
sures be applied. Also, recovered mobile devices are assumed to gain immunity
from being infected again.

In [22], Wang et al. proposed an SEIQV model. They combined two strate-
gies to control the spread of worms: vaccination and quarantine. They assumed
that any host with suspicious behavior is isolated, whether it is a vulnerable,
exposed or infected host, but at different rates. Moreover, the susceptibles,
infected and quarantined hosts after vaccination acquire permanent immunity.
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Another model that involved vaccination treatment is in [27], but with a re-
moved compartment added to build the SIQRV model. All the compartments
in their model transfer to the vaccination state at different rates. However,
quarantine strategy is applied only for the suspected hosts.

In the previous models, the assumption was that quarantine grants treated
computers permanent immunization; however, this is not the case in the real
cyber world. Regarding this situation, Mishra and Jha, in [14], considered
temporary immunity for recoverable computers. Their model was a modifica-
tion of the model in [13] by adding the quarantine compartment to obtain the
SEIQRS model. They assumed the anti-virus software isolation as the quaran-
tine strategy and analyzed its effectiveness. However, they did not consider the
fact that the quarantined computers, which are still connected to the network,
could be reinfected with another malware once it is in contact with an infected
computer. In [28], three models on worm transmission with quarantine dynam-
ics have been studied. The assumptions in the models followed the principle
of ”assume guilty before proven innocent”, thus, every host that may raise an
alarm to the system is quarantined whether it is a true or false alarm. How-
ever, all isolated hosts are released after a specific quarantine time, whether
they have been inspected or not.

In [8], two compartments, the latent and the breakout computers, were in-
troduced into the quarantine dynamics of computer viruses (SLBQRS). More-
over, they assumed that latent computers posses infectivity, unlike other models
with latent class; as a result, computers are infected due to contact with in-
fected computers from the latent or the breakout compartments. In [10], benign
worms are incorporated into the dynamics of worm propagation with quaran-
tine strategy (SUIDQR). The assumption was that a benign worm could attack
a regular worm, consequently limiting the transmission of worms. Hence, the
susceptible host, in the model, is attacked by both worms. However, isolation
is executed only on hosts infected with a regular worm. This is accomplished
after some delayed time. The dynamics of the model, unlike the rest models,
admits a unique endemic equilibrium with no free-malware equilibrium. On
the other hand, recently, Lanz et al., in [9], classified malware viruses as either
hostile or malicious in their malware propagation model for mobile devices.
Both malware attacks a susceptible device; thus, two infected compartments
are embedded in the model. However, isolation is implemented only on devices
infected with malicious malware. Moreover, they assumed that quarantined
devices might get infected again before recovering.

Another model with a quarantine strategy that involved two infected com-
partments is in [19]. They divided the infected class based on a low and high
infection. Here, isolation is performed on both types. Finally, in [17], they de-
veloped the SIRA model by including the quarantine compartment (SIQRA).
They discussed two cases depending if the anti-virus detection rate is higher
than the infection rate (no saturation) or the opposite (saturation). In the
’no saturation’ case, that is, if the infected computers do not overload the
quarantine compartment, the model admits only virus-free equilibrium with no
endemic.

In most previous quarantine models, qualitative investigations showed re-
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liance on the basic reproduction number. If this number is less than unity,
a virus-free equilibrium is established; otherwise, malware will prevail. More-
over, it was observed that this number does not depend on the average residence
time by quarantined infected computers. However, it depends on the quaran-
tine transfer time. The less time it takes to transfer to quarantine, the lower
the value of the basic reproduction number.

In this paper, we study the impact of quarantine measures on a network
with heterogeneous immunity. Since, in reality, network security depends on
users awareness. On this basis, we extend the model in [11] by adding a new
compartment and applying two types of isolation strategies. In model 1, we
implement the network quarantine on the system. Here, infected computers
are transferred to the quarantined compartment while completely disconnected
from the network, and only when they are recovered, they reconnected again.
Whereas, in model 2, the anti-virus software quarantine is executed on the
system. This control strategy transfers the infected files to quarantined folders,
that are difficult to find while leaving the computer connected, where it may get
infected again. We aim to compare the effect of both strategies on a network
that relies on users security awareness.

The paper is organized as follows. Section 2 deals with the formulation
and qualitative analysis of model 1 with the network quarantine strategy. In
Section 3, we formulate model 2 with the anti-virus software quarantine strat-
egy and investigate it analytically. Moreover, Section 4 illustrates numerical
experiments of both models, as well as examining the sensitivity of the models’
parameters. Finally, a brief conclusion is given in Section 5.

2 Model 1: network quarantine

2.1 Model description

We consider a new propagation model of computer malware in a network
containing a quarantined compartment and subject to heterogeneous immu-
nization. The term quarantine, in this model, means completely isolating the
infected computer from the network. During isolation, the latest version of
anti-virus software is executed on infected computers to remove malware. Af-
ter infected computers are fully restored, they return to the network. More-
over, in reality, network integrity relies heavily on user security awareness.
High-security awareness leads to computers with robust immunization against
malware threats and vice versa. Therefore, the model divides the suscepti-
ble compartment into two sub-compartments, the strongly- and the weakly-
protected, denoted by, S and W, respectively. For convenience, computers
are called nodes. S-nodes are computers with strong immunity due to regu-
lar updates of anti-virus software. On the contrary, W-nodes are computers
with outdated anti-virus software that are not updated or without any security
products installed. The rest of the model compartments are the infected com-
puters (I-node) and the quarantine computers (Q-node). Infected nodes are
computers that are currently infected with malware and can transfer them to
susceptible nodes. While quarantined nodes are computers in isolation, they
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cannot transmit malware. More specifically, we assume that the total popula-
tion at time t is given by N(t) = S(t) + W(t) + I(t) + Q(t). For abbreviation
we use S,W, I, and Q to denote S(t),W(t), I(t), and Q(t), respectively.

Table 1. Model notations.

Notation Meaning Unit

S(t) Strongly-protected susceptible computers In number
W(t) Weakly-protected susceptible computers In number
I(t) Infected computers In number
Q(t) Quarantined computers In number
N(t) The total number of computers In number
βw The infection rate of W-node caused by an infected computer Hour−1

βs The infection rate of S-node caused by an infected computer Hour−1

ε The rate that W-node enters S-node Hour−1

α The rate that S-node enters W-node Hour−1

γ The recovery rate of I-node Hour−1

η The recovery rate of Q-node Hour−1

δ The quarantine rate Hour−1

µ Natural crashing and incoming rate of nodes Hour−1

The state variable S,W, I, and Q are non-negative and the parameters:
α, βw, βs, ε, δ, γ, η, µ are positive and lie in the interval (0, 1]. A summary of
the model’s notations is given in Table 1.

Our model is based on the following reasonable assumptions:

H1. The network in this model is static which means that the total number of
nodes over the network is invariant.

H2. Every W,S-nodes get infected with probability βw, βs, respectively due
to possible connection with I-nodes.

H3. W-nodes have a higher infection rate than S-nodes i.e. βw > βs.

H4. Due to computer isolation in the network, I-nodes convert to Q-nodes
with rate δ.

H5. When the anti-virus program expires or is not updated, the computers in
S-nodes transfer to W-nodes with rate α.

H6. W-nodes transfer back to S-nodes with rate ε, when installed by an
updated anti-virus software.

H7. Each infected computer is successfully cured by the effect of anti-virus
software with rate γ.

H8. After performing the latest version of anti-virus software on Q-nodes, they
leave to S-nodes with rate η.

H9. Every node is out of use with probability µ.

H10. All new nodes are attached to the network at a rate µ, and they are
strongly-protected.

According to the above assumptions, the dynamics of the model (see Fig-
ure 1) are described by the following system of nonlinear ordinary differential
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equations:

Ṡ = µN + εW + γI + ηQ− (α+ µ)S− βsS
I

N
, (2.1)

Ẇ = αS− (ε+ µ)W − βwW
I

N
,

İ = βsS
I

N
+ βwW

I

N
− (γ + δ + µ)I,

Q̇ = δI− (η + µ)Q.

Figure 1. The transfer diagram of model 1.

From the assumption (H1), the network is static, thus, the total number
of computers connected to the network is constant (N0), i.e., N(t) = W(t) +
S(t) + I(t) + Q(t) = N0 for all t ≥ 0. System (2.1) can be normalized by
setting the state variables as follows: W = W/N, S = S/N, I = I/N, and
Q = Q/N. Also, we reduce the model to a subsystem by using the identity
W + S + I +Q = 1. The reduced model has the form:

Ẇ = α(1−W − I −Q)− (ε+ µ)W − βwWI,

İ = βs(1−W − I −Q)I + βwWI − (γ + δ + µ)I,

Q̇ = δI − (η + µ)Q.

(2.2)

2.2 Mathematical analysis

Qualitative analysis of system (2.2) is carried out in this subsection. We begin
by investigating the positivity and boundedness of the model, then we find the
equilibrium points and examine their stabilities.
Positivity and boundedness

Theorem 1. For system (2.2) there exists a positively invariant set

Ω =

{
(W (t), I(t), Q(t)) : 0 ≤W (t) + I(t) +Q(t) ≤ α+ βs

(k + α+ βs + µ)

}
,

where k = min(ε, γ, η).
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Proof. From (2.2), we have that

Ẇ |(W=0) = α(1− I −Q) ≥ 0, İ|(I=0) = 0, Q̇|(Q=0) = δI ≥ 0.

This implies that for t ≥ 0, all solutions that are non-negative remain non-
negative.

Now, if we combine the equations of system (2.2) we get

Ẇ + İ + Q̇ = α(1−W − I −Q) + βsI(1−W − I −Q)− µ(W + I +Q)

− εW − γI − ηQ ≤ α(1−W − I −Q) + βs(1−W − I −Q)

− µ(W + I +Q) − εW − γI − ηQ,

since I ≤ 1. Let k = min(ε, γ, η), then

Ẇ + İ + Q̇ ≤ α+ βs − (α+ βs + µ+ k)(W + I +Q).

The above inequality can be rewritten as

Ḟ ≤ α+ βs − (α+ βs + µ+ k)F,

where F = W + I +Q. Using the integrating factor method, we multiply both
sides of the above inequality by the integrating factor e(k+α+βs+µ)t,

d

dt
(e(k+α+βs+µ)tF (t)) ≤ (α+ βs)e

(k+α+βs+µ)t.

Integration over the time interval [0, t] yields

F ≤ α+ βs
(k + α+ βs + µ)

+ [F (0)− α+ βs
(k + α+ βs + µ)

]e−(k+α+βs+µ)t.

This implies that

lim
t→∞

sup[W + I +Q] ≤ α+ βs
(k + α+ βs + µ)

.

This proves that all solutions of system (2.2) are bounded and do not exit the
region Ω, Hence, Ω is positively invariant. ut

Equilibrium points and quarantine reproductive number
In general the equilibrium points are obtained by equating the rates in system
(2.2) to zero. We obtain two equilibrium points. The first is the virus-free
equilibrium point (I = 0), E0

1 = ( α
ε+α+µ , 0, 0), which exists always. We employ

this equilibrium point to compute the quarantine reproductive number Rq by
applying the next generation method [23] on system (2.2). Let x = (I,W,Q)T ,
then system (2.2) can be written as

x′ = F (x)− V (x),
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where

F (x) =

(βw − βs)WI + βs(1− I −Q)I
0
0

 ,

V (x) =

 (γ + δ + µ)I
−α(1−W − I −Q) + (ε+ µ)W + βwWI

−δI + (η + µ)Q

 .

The Jacobian matrices of F (x) and V (x) evaluated at E0
1 are, respectively,

f =

(
(βw − βs)( α

ε+α+µ ) + βs 0

0 0

)
, v =

(
γ + δ + µ 0

α+ βw( α
ε+α+µ ) α+ ε+ µ

)
.

It follows that the spectral radius of G = f.v−1 is the quarantine reproductive
number, thus,

Rq =
βwα+ βs(ε+ µ)

(α+ ε+ µ)(γ + δ + µ)
.

We use the name ”quarantine reproduction number” for the threshold quantity
above since we consider the quarantine process as an intervention strategy used
to reduce or control the malware propagation.

The second equilibrium point when I 6= 0 is the unique endemic equilibrium
point, that is, E∗1 = (W ∗1 , I

∗
1 , Q

∗
1), where

W ∗1 =
α(η + µ− I∗1 (η + µ+ δ))

(η + µ)(α+ ε+ µ+ βwI∗1 )
, I∗1 =

√
b2 − 4ac− b

2a
, Q∗1 =

δI∗1
η + µ

.

Here,

a =βsβw(η + µ+ δ),

b =(αβw + βs(ε+ µ))(η + µ+ δ) + βw(η + µ)(γ + δ + µ− βs),
c =(η + µ)[−αβw − βs(ε+ µ) + (γ + δ + µ)(α+ ε+ µ)].

If Rq > 1, then c < 0, this means that
√
b2 − 4ac > b, which result in I∗1 > 0,

as well as Q∗1. Also, since 1− I −Q ≥ 0, it follows that 1− I∗1 −Q∗1 ≥ 0, thus,
η+µ− I∗1 (η+ δ+µ) > 0. As a result, W ∗1 is positive. Consequently, E∗1 exists
when Rq > 1.

Stability analysis of the equilibrium points.

Here, we investigate the stability of the equilibrium points to predict the
long term behavior of the solutions to model (2.2).

Local stability.

We examine the local stability of E0
1 and E∗1 by using the linearization

method [16] and Routh-Hurwitz criterion [12].

Theorem 2. If Rq < 1, the free equilibrium point E0
1 is locally asymptotically

stable in Ω. Whereas, if Rq > 1, it is unstable.
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Proof. By linearizing system (2.2), we obtain the following Jacobian matrix
evaluated at the equilibrium E0

1 = ( α
ε+α+µ , 0, 0):

J(E0
1) =

−(ε+α+µ) −α− β( α
ε+α+µ ) −α

0 (βw − βs)( α
ε+α+µ ) + βs − (γ + δ + µ) 0

0 δ −(η+µ)

 .

The characteristic equation of J(E0
1) is given by

(ε+α+µ+λ)(βwα+βs(ε+µ)−(ε+α+µ)(γ+δ+µ)−λ(ε+α+µ))(η+µ+λ) = 0,

and hence, the roots of the characteristic equation are: λ1 = −(ε+α+µ), λ2 =
−(η + µ), and λ3 = 1

ε+α+µ

[
βwα+ βs(ε+ µ)− (ε+ α+ µ)(γ + δ + µ)

]
. Clearly,

λ1 and λ3 are negative. As for λ2, it is also negative provided that Rq =
βwα+βs(ε+µ)

(α+ε+µ)(γ+δ+µ) < 1. Therefore, under the condition Rq < 1, all the eigenvalues

have negative real parts. Hence, E0
1 is locally asymptotically stable when Rq <

1. On the other hand, when Rq > 1, then λ2 is positive, thus E0
1 is unstable.

ut

Theorem 3. E∗1 is locally asymptotically stable with respect to Ω if αδβw <
(α+ ε+ µ)βs(η + µ) + αδβs.

Proof. The characteristic equation of the Jacobian matrix of the linearized
system of (2.2) at E∗1 is given by

det

λ+ a11 a12 a13
−a21 λ+ a22 a23

0 −a32 λ+ a33

 = 0,

where

a11 = α+ ε+ µ+ βwI
∗
1 , a12 = βwW

∗
1 + α, a13 = α, a21 = (βw − βs)I∗1 ,

a22 = βsI
∗
1 , a23 = βsI

∗
1 , a31 = 0, a32 = δ, a33 = η + µ.

By expanding the determinant we get the following cubic equation in λ:

λ3 + C1λ
2 + C2λ+ C3 = 0, (2.3)

where

C1 = a11 + a22 + a33, C2 = a11a22 + a11a33 + a22a33 + a23a32 + a12a21,

C3 = a11a23a32 + a13a21a32 + a11a22a33 + a12a21a33.

According to Hurwitz criteria,

H1 = C1 = (a11 + a22 + a33) > 0,

H2 = C1C2 − C3 = (a11 + a22)(a11a22 + a12a21) + (a22 + a33)a23a32

+ (a11 + a22 + a33)a11a33 + (a22 + a33)a22a33 + (a11a22a33 − a13a21a32),
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Taking the term (a11a22a33 − a13a21a32), we have that

a11a22a33 − a13a21a32 = (α+ ε+ µ+ βwI
∗
1 )(βsI

∗
1 )(η + µ)− αδ(βw − βs)I∗1

> I∗1 [βs(α+ ε+ µ)(η + µ) + αδβs − αδβw].

Thus, a11a22a33−a13a21a32 > 0 if αδβw < βs(α+ ε+µ)(η+µ) +αδβs. Hence,
H2 > 0 if αδβw < βs(α+ ε+ µ)(η + µ) + αδβs. Calculating H3, we get

H3 = C3H2 = (a11a23a32 + a13a21a32 + a11a22a33 + a12a21a33)H2.

Since C3 > 0, then H3 is positive. Based on Hurwitz criteria if H1 > 0, H2 > 0,
and H3 > 0, then all the eigenvalues of equation (2.3) have negative real parts.
Thus, if αδβw < βs(α + ε + µ)(η + µ) + αδβs, then the endemic equilibrium
point E∗1 is locally asymptotically stable. ut

Global stability. We explore the global stability of E0
1 using theories from [15]

which are stated in Appendix A. As for E∗1 , we prove global stability using
Lyapunov function [16].

Theorem 4. E0
1 of system (2.2) is globally asymptotically stable with respect

to Ω if Rq < 1 and the assumptions in Lemma 3.8 [15] are satisfied.

Proof. Let X = W and Y =

[
I
Q

]
in system (2.2). If I = Q = 0, the uninfected

subsystem becomes
dW

dt
= α− (ε+ α+ µ)W,

which has the solution

W (t) =
α

ε+ α+ µ
+ e−(ε+α+µ)t

(
W (0)− α

ε+ α+ µ

)
.

As t → ∞, W (t) → α/(ε+ α+ µ) = W 0
1 . Thus, W (t) converges to W 0

1

regardless of the initial condition value W (0). Hence, condition (C1) in Lemma
3.8 [15] is satisfied.

Next, the right hand side of the infectious subsystem G(X,Y ) can be rewrit-
ten as follows:

G(X,Y ) =

[
βs(1−W − I −Q)I + βwWI − (γ + δ + µ)I

δI − (η + µ)Q

]
=

[
βs + (βw − βs)W 0

1 − (γ + δ + µ) 0
δ −(η + µ)

] [
I
Q

]
−
[
βs(I +Q)I

0

]
= AY − Ĝ(X,Y ),

where

A =

[
βs + (βw − βs)W 0

1 − (γ + δ + µ) 0
δ −(η + µ)

]
, Ĝ =

[
βs(I +Q)I

0

]
.

Since all the off-diagonal elements of A are non-negative, Ĝ(X,Y ) ≥ 0 for
(X,Y ) ∈ Ω, then condition (C2) in Lemma 3.8 [15] holds for system (2.2).
Hence, E0

1 is globally asymptotically stable if Rq < 1. ut
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Theorem 5. E∗1 of system (2.2) is globally asymptotically stable with respect
to Ω if αδβw < βs(α+ ε+ µ)(η + µ) + αδβs.

Proof. Define h(x) =
∫ x
I∗1

τ−I∗1
τ dτ , x ∈ [0, 1], where h(0) = limx→0+

∫ x
I∗1

τ−I∗1
τ dτ

= +∞. Consider the function V (W, I,Q) as follows:

V (W, I,Q) =
1

2
(W (t)−W ∗1 )2 +A

∫ I(t)

I∗1

τ − I∗1
τ

dτ +
B

2
(Q(t)−Q∗1)2,

where A and B are positive constants to be determined. Clearly, V is positive
definite since V (E∗1 ) = 0 and V > 0, ∀(W, I,Q) 6= (W ∗1 , I

∗
1 , Q

∗
1). Calculating

the derivative of V along the solutions of the model (2.2), we obtain

dV

dt
= (W −W ∗1 )Ẇ +A(1− I∗1

I
)İ +B(Q−Q∗1)Q̇ = (W −W ∗1 )

× [−(α+ ε+ µ+ βwI
∗
1 )(W −W ∗1 )− (α+ βwW

∗
1 )(I − I∗1 )− α(Q−Q∗1)

− βw(W −W ∗1 )(I − I∗1 )] +A(I − I∗1 )[−βs(I − I∗1 )− βs(Q−Q∗1)

+ (βw − βs)(W −W ∗1 )] +B(Q−Q∗1)[δ(I − I∗1 )− (η + µ)(Q−Q∗1)]

= −(α+ ε+ µ)(W −W ∗1 )2 − α(W −W ∗1 )(Q−Q∗1)−B(η + µ)(Q−Q∗1)2

−Aβs(I − I∗1 )2 − βw(W −W ∗1 )2I + [A(βw − βs)− (α+ βwW
∗
1 )]

× (I − I∗1 )(W −W ∗1 ) + (Bδ −Aβs)(I − I∗1 )(Q−Q∗1).

Letting

A =
α+ βwW

∗
1

βw − βs
, B =

(α+ βwW
∗
1 )βs

(βw − βs)δ
,

both are positive, we have

dV

dt
= −(α+ ε+ µ)(W −W ∗1 )2 − α(W −W ∗1 )(Q−Q∗1)

−
(
βs(α+ βwW

∗
1 )(η + µ)

(βw − βs)δ

)
(Q−Q∗1)2 − (

α+ βwW
∗
1

βw − βs
βs)(I − I∗1 )2

− βw(W−W ∗1 )2I=− (α+ε+µ)[(W−W ∗1 )2+
α

α+ ε+ µ
(W −W ∗1 )(Q−Q∗1)

+
α2

4(α+ ε+ µ)2
(Q−Q∗1)2 − α2

4(α+ ε+ µ)2
(Q−Q∗1)2]

− (
αβs(η + µ)

(βw − βs)δ
)(Q−Q∗1)2 − (

βwβsW
∗
1 (η + µ)

(βw − βs)δ
)(Q−Q∗1)2

− (
α+ βwW

∗
1

βw − βs
βs)(I − I∗1 )2 − βw(W −W ∗1 )2I

= −(α+ ε+ µ)

[
(W −W ∗1 ) +

α

2(α+ ε+ µ)
(Q−Q∗1)

]2
+

[
α2

4(α+ ε+ µ)
− αβs(η + µ)

(βw − βs)δ

]
(Q−Q∗1)2

−
(
βwβsW

∗
1 (η+µ)

(βw − βs)δ

)
(Q−Q∗1)2−

(α+βwW
∗
1

βw − βs
βs

)
(I−I∗1 )2−βw(W−W ∗1 )2I.
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Therefore, dV
dt ≤ 0 if αδβw < βs(α + ε + µ)(η + µ) + αδβs. Note that

dV
dt = 0 if and only if (W, I,Q) = E∗1 . This implies that the invariant set{
(W, I,Q) ∈ Ω : dVdt = 0

}
is equal to the singleton E∗1 . Hence, by the LaSalles

Invariance Principle [12], E∗1 is globally asymptotically stable in the set Ω if
αδβw < βs(α+ ε+ µ)(η + µ) + αδβs. ut

3 Model 2: Anti-virus software quarantine

3.1 Model description

In this model, the concept of quarantine differs from model 1. It refers to
isolating virus-infected files inside a computer by implementing an anti-virus
program that blocks viruses in a folder. These isolated folders cannot be easily
accessed through regular tools of file management. Therefore, the quarantine
rate δ, here, is the rate at which the anti-virus software isolates an infected
file. In accordance, Q-node contains all computers with quarantined folders.
However, these computers are not isolated from the network. Because of this,
it could be reinfected with other malware due to contact with an infected
computer. Let βq ∈ (0, 1] be the infection rate of Q-node. Since the anti-virus
in Q-node has already isolated the malware file, the probability for it to be
reinfected by other malware is less than the probability of other nodes. Thus,
we assume that βq < βs < βw. When all quarantined folders are restored, then
computers leave Q-node at a rate η (see Figure 2). Similarly, as in model 1, we
assume that the total population at time t is given by N = S + W + I + Q.

Figure 2. The transfer diagram of model 2.

Incorporating these new assumptions in model 1, we obtain an extended
model governed by the following system of nonlinear ordinary differential equa-
tions:

Ṡ = µN + εW + γI + ηQ− (α+ µ)S− βsS
I

N
,

Ẇ = αS− (ε+ µ)W − βwW
I

N
,

İ = βsS
I

N
+ βwW

I

N
+ βqQ

I

N
− (γ + δ + µ)I,

Q̇ = δI− βqQ
I

N
− (η + µ)Q.

(3.1)
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Following the same steps in model 1, we reduce system (3.1) to the reduced
system:

Ẇ = α(1−W − I −Q)− (ε+ µ)W − βwWI,

İ = βs(1−W − I −Q)I + βwWI + βqQI − (γ + δ + µ)I,

Q̇ = δI − βqQI − (η + µ)Q.

(3.2)

3.2 Mathematical analysis

Here, system (3.2) is investigated qualitatively. We obtain a feasible region for
the system, find the equilibrium points and discuss its stability.

Positivity and boundedness

Theorem 6. For system (3.2) there exist a positively invariant set

Ω =
{

(W (t), I(t), Q(t)) : 0 ≤W (t) + I(t) +Q(t) ≤ α+ βs
(k + α+ βs + µ)

}
,

where k = min(ε, γ, η).

Proof. The proof is similar to the one in Theorem 1. ut

Equilibrium points and quarantine reproductive number
Model 2 produces two equilibrium points. A virus-free equilibrium point,

E0
2 = ( α

ε+α+µ , 0, 0), which exists always; and a unique endemic equilibrium

point E∗2 = (W ∗2 , I
∗
2 , Q

∗
2), where

W ∗2 =
α[(η + µ+ βqI

∗
2 )(1− I∗2 )− δI∗2 ]

(η + µ+ βqI∗2 )(α+ ε+ µ+ βwI∗2 )
, Q∗2 =

δI∗2
η + µ+ βqI∗2

,

and I∗2 satisfies the equation:

aI3 + bI2 + cI + d = 0. (3.3)

Here,

a=βsβwβq, b=α(βw−βs)βq + (βs − βq)βwδ + βsβw(η + µ) + βsβq(α+ ε+ µ)

+ βqβw(−βs+γ+µ+δ), c=(η+µ)[βs(α+ε+ µ) + βw(−βs + γ + δ + µ)]

+ α(βw−βs)(η+µ+δ−βq)+(α+ε+µ)[(βs−βq)δ+βq(−βs + γ + δ + µ)],

d = (η + µ)[−(αβw + (ε+ µ)βs) + (α+ ε+ µ)(γ + µ+ δ)].

Since 1 − I − Q ≥ 0, then 1 − I∗2 − Q∗2 ≥ 0, which yields (η + µ + βqI
∗
2 )(1 −

I∗2 ) − δI∗2 > 0. As a result, W ∗2 is positive. Moerove, if βs < γ + δ + µ and
βq < η+ µ+ δ, then b, c > 0. Also, if Rq > 1, then d < 0. Hence, following the
Descartes’ rule of sign, equation (3.3) has one positive real root, that is, I∗2 > 0.
It follows that Q∗2 > 0. Consequently, E∗2 exists when Rq > 1, βs < γ + δ + µ,
and βq < η+µ+ δ. Using the next generation method on system (3.2), we get
the same quarantine reproductive number as in model 1, that is,Rq.



Impact of Quarantine Strategies on Malware Dynamics 295

Stability analysis of the equilibrium points
Local stability. The local stability of the equilibrium points of system (3.2)
is explored below.

Theorem 7. If Rq < 1, the free equilibrium point E0
2 is locally asymptotically

stable in Ω. Whereas, if Rq > 1, it is unstable.

Proof. The proof is similar to the one in Theorem 2. ut

Theorem 8. E∗2 is locally asymptotically stable with respect to Ω if αδβw <
(α+ ε+ µ)βs(η + µ) + αδβs.

Proof. The proof is similar to the one in Theorem 3. ut

Global stability. We examine the global stability of the equilibrium points
of system (3.2) using the same methods previously discussed.

Theorem 9. E0
2 of system (3.2) is globally asymptotically stable with respect

to Ω if Rq < 1 and the assumptions in Lemma 1 [15] are satisfied.

Proof. The proof is similar to the one in Theorem 4. ut

Theorem 10. E∗2 of system (3.2) is globally asymptotically stable with respect
to Ω if αδβw < (βs − βq)(α+ ε+ µ)(η + µ) + αδβs.

Proof. The proof is similar to the one in Theorem 5. ut

4 Numerical analysis

4.1 Numerical experiments

In this section, we solve models (2.2) and (3.2) numerically to show the
agreement of the numerical simulations with the qualitative results. Some nu-
merical examples are conducted with the aid of MATLAB. In particular, we
consider two different specifications for the parameters to substantiate the an-
alytical results for each model. All the simulations are based on a network size
of N = 104 computers. Consequently, the results are expressed in terms of
percentage of the total network size.

Network quarantine

Example 1. (Virus-free equilibrium point) Let the parameters in model (2.2) be
as follows: ε = 0.02, α = 0.02, γ = 0.03, βw = 0.04, βs = 0.008, δ = 0.027, η =
0.02, µ = 0.004. Here, the threshold is Rq = 0.3696, which is less than unity. All
initial conditions lie in Ω. Therefore, the solutions of system (2.2) will approach
the virus-free equilibrium point E0

1 = (0.4545, 0, 0) according to Theorem 4 (see
Figure 3a).

Math. Model. Anal., 27(2):282–302, 2022.
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a) b)

Figure 3. Time variation of system (2.2) with parameters given in (a) Example 1 and (b)
Example 2 for various initial conditions.

Example 2. (Endemic equilibrium point) In this example, we set the parame-
ters to different values as follows: ε = 0.02, α = 0.02, γ = 0.03, βw = 0.1, βs =
0.04, δ = 0.027, η = 0.02, µ = 0.004. Calculating the threshold, we obtain
Rq = 1.1028 > 1. Also, the parameters satisfy the condition αδβw < βs(α +
ε + µ)(η + µ) + αδβs. Thus, the existing and stability conditions of E∗1 in
Theorem 5 are satisfied. For different initial conditions lying in Ω, the so-
lution curves of system (2.2) will converge to the endemic equilibrium E∗1 =
(0.3940, 0.0323, 0.0367) (see Figure 3b).

Anti-virus software quarantine

Example 3. (Virus-free equilibrium point) Let the parameters in model (3.2)
be as follows: ε = 0.02, α = 0.02, γ = 0.03, βw = 0.04, βs = 0.008, βq =
0.005, δ = 0.027, η = 0.02, µ = 0.004. Here, the threshold is Rq = 0.3696,
which is less than unity. Therefore, the solutions of system (3.2), for different
initial conditions lying in Ω, will approach the virus-free equilibrium point
E0

2 = (0.4545, 0, 0) according to Theorem 9 (see Figure 4a).

a) b)

Figure 4. Time variation of system (3.2) with parameters given in (a) Example 3 and (b)
Example 4 for various initial conditions.

Example 4. (Endemic equilibrium point) In this example, we set the parameters
to different values as follows: ε = 0.02, α = 0.02, γ = 0.03, βw = 0.1, βs =
0.04, βq = 0.02, δ = 0.027, η = 0.02, µ = 0.004. Calculating the threshold, we
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obtain Rq = 1.1028 > 1. Also, the condition αδβw < (βs−βq)(α+ε+µ)(η+µ)+
αδβs is satisfied. Thus, all criteria for E∗2 are fulfilled. As a result, the solution
curves of system (3.2) will approximate to E∗2 = (0.3846, 0.0378, 0.0420) (see
Figure 4b).

4.2 Sensitivity analysis

Designing effective control strategies to limit the spread of malware depends
on the quarantine reproduction number Rq. Therefore, it is crucial to examine
the sensitivity of Rq against model parameters to explore the parameters that
reduce the numeric value of Rq. We vary Rq with respect to one parameter, at
a time, and consider the remaining parameters to be constant. As a result, we
have the following variations of Rq:

∂Rq
∂βw

=
α

(ε+ α+ µ)(γ + δ + µ)
> 0,

∂Rq
∂βs

=
ε+ µ

(ε+ α+ µ)(γ + δ + µ)
> 0,

∂Rq
∂α

=
(βw − βs)(ε+ µ)

(ε+ α+ µ)2(γ + δ + µ)
> 0,

∂Rq
∂ε

=
−α(βw − βs)

(ε+ α+ µ)2(γ + δ + µ)
< 0,

∂Rq
∂δ

=
−(βwα+ βs(ε+ µ))

(ε+ α+ µ)(γ + δ + µ)2
< 0,

∂Rq
∂γ

=
−(βwα+ βs(ε+ µ))

(ε+ α+ µ)(γ + δ + µ)2
< 0,

∂Rq
∂µ

=
−α(βw − βs)(γ + δ + µ)− (βwα+ βs(ε+ µ))(α+ ε+ µ)

(ε+ α+ µ)2(γ + δ + µ)2
< 0. (4.1)

We can see from (4.1) that Rq decreases with increasing γ, ε, δ, and µ. On
the contrary, Rq has a proportional increase relationship with the parameters,
βw, βs, and α. As for the parameters βq and η, there is no change in Rq because
it does not depend on them. This result is also illustrated in Figure 5.

0 0.1 0.2 0.3 0.4 0.5

parameter

0

0.5

1

1.5

2

2.5

3

R
q

w

s

Figure 5. Variations of Rq with respect to parameters of models (2.2),(3.2).

Each curve in the figure simulates the variation of Rq corresponding to one
parameter, the rest of the parameters are fixed at values given in Table 2.

Furthermore, we compute the normalized sensitivity index (elasticity) of Rq
with respect to model parameters with the values given in Table 2 using the
formula [12]:

SI[p] =
p

Rq

∂Rq
∂p

,
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Table 2. The sensitivity indices of Rq to any parameter p.

Parameter (p) Value Sensitivity Index (SI)

ε 0.02 −0.1843
α 0.02 0.2211
γ 0.03 −0.4918
βw 0.1 0.6757
βs 0.04 0.3243
βq 0.02 0
δ 0.027 −0.4426
η 0.02 0
µ 0.004 −0.1024

where p denotes any parameter. Table 2 demonstrates the elasticity of Rq with
respect to the parameters, that is, the percentage value of decrease (or increase)
in Rq after a 1% increase in the parameter. For example, a 1% increase in ε
corresponds to a reduction in Rq by 0.184%. However, a 1% increase in α
leads to 0.221% increase in Rq. Also, Table 2 shows that the most significant
decline in the percentage of Rq comes from an increase in γ and δ. This
indicates that the quarantine rate, as well as recovery rate, play an essential
role in reducing the spread of malware. On the other hand, Table 2 displays a
considerable rise in Rq that is followed by an increase in βw. This implies that
weak immunization attributes highly in malware propagation.

Figure 6. Evolution of I(t) for different values of βq where
ε = 0.02, α = 0.02, γ = 0.03, βw = 0.1, βs = 0.04, δ = 0.027, η = 0.02, µ = 0.004.

Next, we compare the two quarantine strategies, the network quarantine
(model 1) and the anti-virus software quarantine (model 2). Figure 6 simulates
the time variation of the infected compartment for different values of βq. We
can see that the size of I-node with network quarantine (βq = 0) declines in
time faster than with anti-virus software quarantine (βq > 0).

A similar result is shown in Figure 7 when performing the two strategies
on I-node as the quarantine rate δ increases. This suggests that the network
quarantine is better than the anti-virus software quarantine to control malware
propagation.

Finally, Figure 8 demonstrates the comparison between the model in (2.2)
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a) b)

Figure 7. Evolution of I(t) for different values of δ in the case of (a) the network
quarantine (model 1); (b) the anti-virus software quarantine (model 2), where
ε = 0.02, α = 0.02, γ = 0.03, βw = 0.1, βs = 0.04, βq = 0.02, η = 0.02, µ = 0.004.
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Figure 8. Time variation of I(t) in model [11] and model (2.2) where
ε = 0.02, α = 0.02, γ = 0.03, βw = 0.1, βs = 0.04, δ = 0.027, η = 0.02, µ = 0.

and the model in [11], which represents the spread of malware with hetero-
geneous immunity but without quarantine strategy. We find that the size of
I(t) in [11] rises within time to an equilibrium level; however, under network
quarantine, it remarkably declines to a much lower equilibrium level. This is
expected since the quarantine reproduction number for model (2.2) is less than
the basic reproduction number for the model in [11]. To see this, we let µ = 0
in Rq, we get

Rq = (βwα+ βsε)/(δ + γ)(α+ ε),

where the basic reproduction number in [11] is

R0 = (βwα+ βsε)/
(
γ(α+ ε)

)
.

Thus, Rq is less than R0. This refers to the importance of quarantine as a
strategy for controlling malware transmission.

The findings of the sensitivity analysis propose the following suggestions:
(i) installing effective anti-virus software and updating it on time reduces the
infection rate βw and α while at the same time, it increases the rate ε and the
recovery rate γ, (ii) isolating the infected computers from the network has a
better effect than isolating the infected files by anti-virus software.

Math. Model. Anal., 27(2):282–302, 2022.
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5 Conclusions

Quarantine is one of the most immediate ways to control epidemic spreading,
as it disconnects the communication between the infected and the susceptible
ones. To investigate the impact of quarantine on the malware spreading pro-
cess, we introduced two models. One proposed a network quarantine strategy
(model 1), and the other proposed an anti-virus software quarantine strategy
(model 2). Both models account for heterogeneous immunity. A dynamical
behavior study was conducted focusing on the critical quarantine reproduc-
tion number Rq. Qualitative and quantitative examinations were carried out
to predict the long term behavior of models. Also, a sensitivity analysis was
executed to investigate parameters influence on Rq. We conclusively present
some of the main findings of the models as follows. Both models produced two
equilibria, the virus-free (E0

1 , E
0
2) and the endemic (E∗1 , E

∗
2 ). The virus-free

equilibrium points of both models always exist and are locally and globally
asymptotically stable if Rq is less than unity. The endemic equilibrium point
E∗1 of model 1 exits if Rq > 1, and is locally and globally asymptotically stable
if αδβw < βs(α + ε+ µ)(η + µ) + αδβs. The endemic equilibrium point E∗2 of
model 2 exits if Rq > 1, βs < γ + δ + µ, and βq < η + δ + µ. E∗2 is locally
asymptotically stable if αδβw < βs(α + ε + µ)(η + µ) + αδβs, and globally
asymptotically stable if αδβw < (βs−βq)(α+ε+µ)(η+µ)+αδβs. The numer-
ical simulations of both models coincide with the analytical results. Moreover,
the simulations showed that an increase in the quarantine rate δ has signifi-
cantly reduced Rq. Whereas, weak immunization participated substantially in
spreading malware. Furthermore, the performance of network quarantine was
found to be better than anti-virus software quarantine in controlling malware
propagation. From the comparison between model 1 (network quarantine) and
the model in [11] (no quarantine), quarantine had been proven to be a good
policy. Also, it is found that Rq does not depend on the average residence time
by quarantined infected computers (1/η), which is in agreement with most
malware propagation models in the literature.

In accordance, we highly suggest network quarantine as a control strategy
of malware spreading. However, the period that a network takes to transfer an
infected computer to quarantine (1/δ) must be concise. Furthermore, contin-
uous awareness towards immunizing computers will lead the way to network
solidity.

References

[1] S. M. Al-Tuwairqi and W. Bahashwan. A dynamic model of viruses with the
effect of removable media on a computer network with heterogeneous immunity.
Adv Differ Equ, 260, 2020. https://doi.org/10.1186/s13662-020-02710-0.

[2] C. Gan, X. Yang and Q. Zhu. Global stability of a computer virus propagation
model with two kinds of generic nonlinear probabilities. Abstract and Applied
Analysis, 2014, 2014. https://doi.org/10.1155/2014/735327.

[3] C. Gan, X. Yang, Q. Zhu and W. Liu. A propagation model of computer virus
with nonlinear vaccination probability. Commun Nonlinear Sci Numer Simulat,
19:92–100, 2014. https://doi.org/10.1016/j.cnsns.2013.06.018.

https://doi.org/10.1186/s13662-020-02710-0
https://doi.org/10.1155/2014/735327
https://doi.org/10.1016/j.cnsns.2013.06.018


Impact of Quarantine Strategies on Malware Dynamics 301

[4] Z. Hu, H. Wang, F. Liao and W. Ma. Stability analysis of a computer
virus model in latent period. Chaos, Solitons & Fractals, 75:20–28, 2015.
https://doi.org/10.1016/j.chaos.2015.02.001.

[5] J. O. Kephart and S. R. White. Directed-graph epidemiological models of com-
puter viruses. IEEE Symposium on Security and Privacy, pp. 343–358, 1991.

[6] N.H. Khanh. Dynamical analysis and approximate iterative solutions of an an-
tidotal computer virus model. Int. J. Appl. Comput. Math, 3:S829–S841, 2017.
https://doi.org/10.1007/s40819-017-0385-6.

[7] S. Koonprasert and N. Channgam. Global stability and sensitivity analysis of
SEIQR worm virus propagation model with quarantined state in mobile internet.
Global Journal of Pure and Applied Mathematics, 13:3833–3850, 2017.

[8] M. Kumar, B.K. Mishra and T.C. Panda. Stability analysis of a quaran-
tined epidemic model with latent and breaking-out over the internet. In-
ternational Journal of Hybrid Information Technology, 8(7):133–148, 2015.
https://doi.org/10.14257/ijhit.2015.8.7.12.

[9] A. Lanz, D. Rogers and T.L. Alford. An epidemic model of malware virus
with quarantine. Journal of Advances in Mathematics and Computer Science,
33(4):1–10, 2019. https://doi.org/10.9734/jamcs/2019/v33i430182.

[10] D. Li, J. Chen, B.L. Jianwei, B. Qianhong Wu and Weiran Liu. Modeling and
hopf bifurcation analysis of benign worms with quarantine strategy. Springer
International Publishing, 2:103–118, 2017.

[11] W. Liu, C. Liu, X. Liu, S. Cui and X. Huang. Modeling the spread of mal-
ware with the influence of heterogeneous immunization. Applied Mathematical
Modelling, 40:3141–3152, 2016. https://doi.org/10.1016/j.apm.2015.09.105.

[12] M. Martcheva. An Introduction to Mathematical Epidemiology. Springer, 2015.
https://doi.org/10.1007/978-1-4899-7612-3.

[13] B. K. Mishra and D. K. Saini. SEIRS epidemic model with delay for transmission
of malicious objects in computer network. Applied Mathematics and Computa-
tion, 188(2):1476–1482, 2007. https://doi.org/10.1016/j.amc.2006.11.012.

[14] B.K. Mishra and N. Jha. SEIQRS model for the transmission of malicious objects
in computer network. Applied Mathematical Modelling, 34(3):710–715, 2010.
https://doi.org/10.1016/j.apm.2009.06.011.

[15] M.R. Parsaei, R. Javidan, N. Shayegh Kargar and H. Saberi Nik. On the global
stability of an epidemic model of computer viruses. Theory in Biosciences, 136(3-
4):169–178, 2017. https://doi.org/10.1007/s12064-017-0253-2.

[16] L. Perko. Differential Equations and Dynamic Systems. Springer Verlag, 1991.
https://doi.org/10.1007/978-1-4684-0392-3.

[17] J. Piqueira and C. Batistela. Considering quarantine in the SIRA mal-
ware propagation model. Mathematical Problems in Engineering, 2019, 2019.
https://doi.org/10.1155/2019/6467104.

[18] J. Piqueira, A. deVasconcelos, C. Gabriel and V. Araujo. Dynamic mod-
els for computer viruses. Computers and Security, 27(7-8):355–359, 2008.
https://doi.org/10.1016/j.cose.2008.07.006.

[19] Y.S. Rao, P.K. Nayak, H. Saini and T.C. Panda. Behavioral modeling of
malicious objects in a highly infected network under quarantine defence. In-
ternational Journal of Information Security and Privacy, 13(1):17–29, 2019.
https://doi.org/10.4018/IJISP.2019010102.

Math. Model. Anal., 27(2):282–302, 2022.

https://doi.org/10.1016/j.chaos.2015.02.001
https://doi.org/10.1007/s40819-017-0385-6
https://doi.org/10.14257/ijhit.2015.8.7.12
https://doi.org/10.9734/jamcs/2019/v33i430182
https://doi.org/10.1016/j.apm.2015.09.105
https://doi.org/10.1007/978-1-4899-7612-3
https://doi.org/10.1016/j.amc.2006.11.012
https://doi.org/10.1016/j.apm.2009.06.011
https://doi.org/10.1007/s12064-017-0253-2
https://doi.org/10.1007/978-1-4684-0392-3
https://doi.org/10.1155/2019/6467104
https://doi.org/10.1016/j.cose.2008.07.006
https://doi.org/10.4018/IJISP.2019010102


302 S. Al-Tuwairqi and W. Bahashwan

[20] R. Upadhyay, S. Kumari and A. Misra. Modeling the virus dynam-
ics in computer network with SVEIR model and nonlinear incident rate.
Journal of Applied Mathematics and Computing, 54(1-2):485–509, 2017.
https://doi.org/10.1007/s12190-016-1020-0.

[21] R. Upadhyay and P. Singh. Modeling and control of computer virus attack
on a targeted network. Physica A: Statistical Mechanics and its Applications,
538:122617, 2020. https://doi.org/10.1016/j.physa.2019.122617.

[22] F. Wang, Y. Zhang, C. Wang, J. Ma and S.J. Moon. Stability analysis of a
SEIQV epidemic model for rapid spreading worms. Computers and Security,
29(4):410–418, 2010. https://doi.org/10.1016/j.cose.2009.10.002.

[23] J. Watmough and P. van den Driessche. Reproduction numbers and sub-
threshold endemic equilibria for compartmental models of disease transmission.
Mathematical Biosciences, 180:29–48, 2002. https://doi.org/10.1016/S0025-
5564(02)00108-6.

[24] L. Yang and X. Yang. An epidemic model of computer viruses with vaccination
and generalized nonlinear incidence rate. Physica A, 392:6523–6535, 2013.

[25] L. Yang and X. Yang. The impact of nonlinear infection rate on the
spread of computer virus. Nonlinear Dynamics, 82(1-2):85–95, 2015.
https://doi.org/10.1007/s11071-015-2140-z.

[26] L. Yang, X. Yang, Q. Zhu and L. Wen. A computer virus model with graded
cure rates. Nonlinear Analysis: Real World Applications, 14:414–422, 2013.
https://doi.org/10.1016/j.nonrwa.2012.07.005.

[27] Y. Yao, X. w. Xie, H. Guo, F. x. Gao and G. Fu. The worm propagation
model with dual dynamic quarantine strategy. Communications in Computer and
Information Science, 135(PART 2):497–502, 2011. https://doi.org/10.1007/978-
3-642-18134-4 79.

[28] C.C. Zou, W. Gong and D. Towsley. Worm propagation modeling and analysis
under dynamic quarantine defense. In Proceedings of the 2003 ACM Workshop
on Rapid Malcode, WORM 03, pp. 51–60, New York, NY, USA, 2003. Association
for Computing Machinery.

https://doi.org/10.1007/s12190-016-1020-0
https://doi.org/10.1016/j.physa.2019.122617
https://doi.org/10.1016/j.cose.2009.10.002
https://doi.org/10.1016/S0025-5564(02)00108-6
https://doi.org/10.1016/S0025-5564(02)00108-6
https://doi.org/10.1007/s11071-015-2140-z
https://doi.org/10.1016/j.nonrwa.2012.07.005
https://doi.org/10.1007/978-3-642-18134-4_79
https://doi.org/10.1007/978-3-642-18134-4_79

	Introduction
	Model 1: network quarantine
	Model description
	Mathematical analysis 

	Model 2: Anti-virus software quarantine
	Model description
	Mathematical analysis

	Numerical analysis
	Numerical experiments
	Sensitivity analysis

	Conclusions
	References

