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Abstract. The Dullin-Gottwald-Holm equation models the unidirectional propaga-
tion of shallow regime water waves. In this work, the Lie symmetry analysis of the
generalised two-component modified weakly dissipative Dullin-Gottwald-Holm sys-
tem is performed. Using symmetry reduction, the exact solutions are obtained in the
form of power series and trigonometric functions. Also using multiplier approach, the
conservation laws are obtained. The 3D graphical representations are also shown for
obtained solutions.
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1 Introduction

Dullin et al. [7] discussed the 1 + 1 quadratically nonlinear equation

ut+(c0+3u)ux+βuxxx−α2(2uxuxx+uuxxx + uxxt) = 0, x ∈ R, t > 0, (1.1)

known as the Dullin-Gottwald-Holm (DGH) equation. Here, u represents the
fluid velocit in x direction; the constants β

c0
and α2 are squares of length

scales, and c0 =
√
gh > 0 is the linear wave speed for undisturbed water at

rest at spatial infinity where g is the gravitational constant and h is the mean

�
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fluid depth. DGH equation models the unidirectional propagation of shallow
water waves over a flat bottom. For α = 0, it becomes the Korteweg-de Vries
equation; while for β = 0, α = 1, (1.1) recovers the well known Camassa-Holm
(CH) equation.

The CH equation arises while studying some non-Newtonian fluids. It mod-
els small amplitude, finite length radial deformation waves in hyperelastic rods.
This completely integrable equation has bi-Hamiltonian structure and so, it
possesses infinitely many conservation laws [2]. It’s property of presence of
breaking waves has attracted lot of attention [6]. For β = 0, α = 1, c0 = 2k
(k an arbitrary constant), (1.1) recovers the Fuchssteiner-Fokas-Camassa-Holm
equation, which has ”peakon” solitary wave solution [5].

Lie group method [1,19] is a powerful method to find the invariant solutions
of system of nonlinear differential equations. This method is used for finding the
symmetries, for symmetry reduction [15] and for finding the invariant solutions
of system of nonlinear partial differential equations (PDEs) [11, 12, 13, 14]. By
using this method, the invariant solutions of the DGH equation have been found
by Gupta and Anupma [9] as well as, the invariant solutions of the dissipative
DGH equation have been found by Wei and Wang [24].

Guo et al. [8] followed the Ivanov’s approach in the presence of a linear
shear flow and non-zero vorticity to derive the following two-component DGH
system [3,4] as

ut + (c0 + 3u)ux + βuxxx − α2(2uxuxx + uuxxx + uxxt) + ρρx = 0,

ρt + (ρu)x = 0.
(1.2)

To allow the dependence on the average density ρ̄ as well as the pointwise
density ρ, this system (1.2) has been modified to modified two-component DGH
system [25] as

ut + (c0 + 3u)ux + βuxxx − α2(2uxuxx + uuxxx + uxxt)− γρρ̄x = 0,

ρt + (ρu)x = 0.

Here, ρ =
(
1− ∂2x

)
(ρ̄ − ρ̄0), with ρ̄0 to be constant and γ is the downward

acceleration of gravity in applications to shallow water waves.

It is important to include energy dissipation mechanisms in experiments
for real waves. Therefore, Tian [21] considered weakly dissipative modified
two-component DGH system (mDGH2) as

ut + (c0 + 3u)ux + βuxxx − α2(2uxuxx + uuxxx + uxxt)

+ λ(u− α2uxx)− γρρ̄x = 0,

ρt + (ρu)x + λρ = 0,

with weakly dissipative terms λ(u − α2uxx) and λρ, where λ is a dissipative
parameter. Tian derived asymptotic behaviour [21] and infinite propagation
speed [22] of weakly dissipative mDGH2 system. The blow up phenomena of
weakly dissipative mDGH2 system has also been derived by Tian et al. [23].
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In this paper, weakly dissipative mDGH2 system is considered in a gener-
alised form as

ut − α2uxxt + (c0 + 3u)ux + βuxxx − σα2(2uxuxx + uuxxx)

+ λ(u− α2uxx)− γρρ̄x = 0,

ρt + (ρu)x + λρ = 0.

(1.3)

This system includes several classical shallow water wave models. For example,
if σ = 1, this system becomes the weakly dissipative mDGH2 system.

Let w = ρ̄− ρ̄0 in the above system (1.3), then it can be transformed as

ut − α2uxxt + (c0 + 3u)ux + βuxxx − σα2(2uxuxx + uuxxx)

+ λ(u− α2uxx)− γwx(w − wxx) = 0,

wt − wxxt + u(wx − wxxx) + ux(w − wxx) + λ(w − wxx) = 0.

(1.4)

The symmetries of generalised weakly dissipative mDGH2 system (1.4) are
obtained by using Lie symmetry method. The exact solutions of system (1.4)
are found in the form of power series [16] and other exact solutions in the form
of hyperbolic and trigonometric functions. The separated and combined 3D
plots are shown for the obtained solutions. The conservation laws [10] are also
derived by using the multiplier approach [17,18].

2 Symmetry reduction

The Lie classical method [1,12,19] is used in this section for symmetry analysis
in order to solve the above system of nonlinear PDEs (1.4).

Proposition 1. Equation (1.4) admits the following Lie symmetry operators:

V1 = ∂x, V2 = ∂t.

Proof. Consider the Lie group of point transformations

x∗ =x+ εξ(x, t, u, w) +O(ε2), t∗ = t+ ετ(x, t, u, w) +O(ε2),

u∗ =u+ εη(x, t, u, w) +O(ε2), w∗ = w + εζ(x, t, u, w) +O(ε2), (2.1)

such that if u,w satisfy (1.4), then u∗, w∗ also satisfy (1.4). By using the
above group of transformations (2.1) in system of PDEs (1.4), the invariance
conditions are

ηt − α2ηxxt + ηx(c0 + 3u− 2σα2uxx)− α2ηxx(λ+ 2σux)

+ ηxxx(β − σα2u) + η(3ux + λ− α2σuxxx) = 0,

ζwx − ζxxwx + ζx(w − wxx) = 0.

By substituting the values of extended infinitesimals, and equating the co-
efficients of differentials of u and w to 0, obtain a set of determining equations.

Math. Model. Anal., 27(1):101–116, 2022.
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The infinitesimals ξ, τ, η, ζ obtained by solving the determining equations are
found as

ξ = C1, τ = C2, η = 0, ζ = 0,

where C1, C2 are arbitrary constants. The corresponding vector fields are
V1 = ∂x, V2 = ∂t . ut

On considering the vector field V2+εV1, the similarity variables are obtained as

r = x− εt, u = g(r), w = h(r),

where r is new independent variable and g, h are new dependent functions.
Back substituting these variables in equation (1.4), the reduced system of ODEs
is obtained as

(α2ε+β−σα2g)g′′′−α2(2σg′+λ)g′′+(3g+c0 − ε)g′+λg+γ(h′′−h)h′ = 0,

(ε− g)h′′′ − (λ+ g′)h′′ + (g − ε)h′ + (g′ + λ)h = 0, (2.2)

where ′ denotes the differentiation with respect to r.

3 Exact solutions

In this part, the exact solutions of system of ODEs (2.2) are obtained in the
form of power series and other exact solutions in the form of hyperbolic and
trigonometric functions.

3.1 Power series solutions

Let power series solution [16] be of the form

g(r) =

∞∑
m=0

amr
m, h(r) =

∞∑
m=0

bmr
m, (3.1)

for system of ODEs (2.2). Computing third order derivatives, product terms
and substituting these computed values in (2.2), it can be expressed generally
as

− σα2
∞∑
m=1

( m∑
k=0

(m−k+1)(m−k+2)(m− k + 3)akam−k+3

)
rm + 3a0a1

+ 3

∞∑
m=1

(
m∑
k=0

(m−k+1)akam−k+1

)
rm−α2λ

∞∑
m=1

(m+1)(m+2)am+2r
m

+ λa0−2σα2
∞∑
m=1

(
m∑
k=0

(k+1)(m−k+1)(m−k+2)ak+1am−k+2

)
rm

+ (c0−ε)
∞∑
m=1

(m+1)am+1r
m+(α2ε+β)

∞∑
m=1

(m+1)(m+2)(m+3)am+3r
m
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+ 6a3(α2ε+β)+γ

∞∑
m=1

(
m∑
k=0

(k+1)(m−k+1)(m−k+2)bk+1bm−k+2

)
rm

+ 2b1b2γ−a0a1γ−γ
∞∑
m=1

(
m∑
k=0

(m−k+1)bkbm−k+1

)
rm+(c0−ε)a1

− 6σα2a0a3 + λ

∞∑
m=1

amr
m − 4σα2a1a2 − 2a2α

2λ = 0,

(3.2a)

− 6a0b3 −
∞∑
m=1

(
m∑
k=0

(m− k + 1)(m− k + 2)(m− k + 3)akbm−k+3

)
rm + a0b1

+

∞∑
m=1

(
m∑
k=0

(m− k + 1)akbm−k+1

)
rm − 2λb2 − λ

∞∑
m=1

(m+ 1)(m+ 2)bm+2r
m

−
∞∑
m=1

(
m∑
k=0

(k + 1)(m− k + 1)(m− k + 2)ak+1bm−k+2

)
rm

+ ε

∞∑
m=1

(m+ 1)(m+ 2)(m+ 3)bm+3r
m +

∞∑
m=1

(
m∑
k=0

(m− k + 1)bkam−k+1

)
rm

+ 6εb3 + a1b0 − εb1 + λb0 + λ

∞∑
m=1

bmr
m − 2a1b2 − ε

∞∑
m=1

(m+ 1)bm+1r
m = 0.

(3.2b)

From above Equations (3.2a) and (3.2b) collecting coefficients of rm, for m = 0,
it can be observed that

a3 =

(
λa0 + (c0 − ε+ 3a0 − a0γ)a1 + 2b1b2γ − 2α2a2(λ+ 2a1σ)

)
6α2(a0σ − ε)− 6β

,

b3 =
1

6(a0 − ε)
((a0 − ε)b1 − 2(λ+ a1)b2 + (λ+ a1)b0) .

(3.3)

In general, for m ≥ 1, it can be seen that

am+3 =
1

(α2(a0σ − ε)− β)(m+ 1)(m+ 2)(m+ 3)

(
3

m∑
k=0

(m− k + 1)akam−k+1

− σα2
m∑
k=1

(m− k + 1)(m− k + 2)(m− k + 3)akam−k+3 + λam

− 2σα2
m∑
k=0

(k + 1)(m− k + 1)(m− k + 2)ak+1am−k+2
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+ (c0 − ε)(m+ 1)am+1 + γ

m∑
k=0

(k + 1)(m− k + 1)(m− k + 2)bk+1

× bm−k+2 − γ
m∑
k=0

(m−k+1)bkbm−k+1−α2λ(m+1)(m+2)am+2

)
,

(3.4a)

bm+3 =
1

(a0−ε)(m+1)(m+2)(m+3)

(
−

m∑
k=0

(k+1)(m−k+1)(m−k+2)

× ak+1bm−k+2−
m∑
k=1

(m−k+1)(m−k+2)(m−k+3)akbm−k+3

+

m∑
k=0

(m− k + 1)akbm−k+1 + λbm − λ(m+ 1)(m+ 2)bm+2

− ε(m+ 1)bm+1 +

m∑
k=0

(m− k + 1)bkam−k+1

)
.

(3.4b)

Thus, all the coefficients am, bm, for m ≥ 4 of power series (3.1) can be obtained
from (3.3) and (3.4) as follows

a4 =
1

24α2(a0σ − ε)− 24β

(
λa1 − 6α2(3σa1a3 + 2σa22 + λa3)

+ 2(c0 − ε+ 3a0)a2 + 3a21 + (6b1b3 + 4b22 − 2b0b2 − b21)γ

)
,

b4 =
1

24(a0 − ε)

(
2(a0 − ε)b2 − 12a1b3 + 2a1b1 + λ(b1 − 6b3) + 2(b0 − 2b2)a2

)
,

a5 =
1

60α2(a0σ − ε)− 60β

(
λa2 − 6α2(8σa1a4 + 7σa2a3 + 2λa4)

+ 9a1a2 + 3(c0 − ε+ 3a0)a3 + 3(6b2b3 − b1b2 − b0b3 + 4b1b4)γ
)
,

b5 =
1

60(a0 − ε)

(
3(a0 − ε)b3 + 3a1(b2 − 12b4) + 3a2(b1 − 6b3)

+ λ(b2 − 12b4) + 3(b0 − 2b2)a3

)
,

and so on. Thus, for arbitrary chosen constants a0, a1, a2 and b0, b1, b2, the
other terms of the sequences {am}∞m=0 and {bm}∞m=0 can be determined suc-
cessively from (3.3) and (3.4) in a unique manner. Therefore,

g(r) = a0 + a1r + a2r
2 +

1

6α2(a0σ − ε)− 6β

×
(
λa0 + (c0 − ε+ 3a0 − a0γ)a1 + 2b1b2γ − 2α2a2(λ+ 2a1σ)

)
r3 + . . . ,

h(r) = b0+b1r+b2r
2+

1

6(a0 − ε)
((a0−ε)b1−2(λ+a1)b2+(λ+ a1)b0) r3+ . . . .
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Convergence of power series
Now we will check the convergence of the power series solution (3.1) of system
of ODEs (2.2). From (3.4a), it can be observed that

|am+3| ≤A
( m∑
k=0

|ak||am−k+1|+ |am|+
m∑
k=1

|ak||am−k+3|+ |am+2|

+

m∑
k=0

|ak+1||am−k+2|+ |am+1|+
m∑
k=0

|bk+1||bm−k+2|

+

m∑
k=0

|bk||bm−k+1|
)
, m = 1, 2, 3, . . . ,

where

A = max

{
|λ|

|α2(a0σ − ε)− β|
,

|2α2σ|
|α2(a0σ − ε)− β|

,
|c0 − ε|

|α2(a0σ − ε)− β|
,

|α2λ|
|α2(a0σ − ε)− β|

,
|γ|

|α2(a0σ − ε)− β|
,

|3|
|α2(a0σ − ε)− β|

}
.

Similarly, from (3.4b), it can be observed that

|bm+3| ≤B
( m∑
k=0

|ak+1||bm−k+2|+
m∑
k=1

|ak||bm−k+3|+
m∑
k=0

|ak||bm−k+1|

+ |bm+2|+ |bm+1|+
m∑
k=0

|bk||am−k+1|
)
, m = 1, 2, 3, . . . ,

where B = max {|λ|/|a0 − ε|, |ε|/|a0 − ε|, |1|/|a0 − ε|} . Defining other power
series as

µ = P (r) =

∞∑
m=0

pmr
m, ν = Q(r) =

∞∑
m=0

qmr
m, (3.5)

such that pi = |ai| and qi = |bi| for i = 0, 1, 2, 3 and

pm+3 =A

( m∑
k=0

pkpm−k+1 + pm +

m∑
k=1

pkpm−k+3 + pm+2 +

m∑
k=0

pk+1pm−k+2

+ pm+1 +

m∑
k=0

qk+1qm−k+2 +

m∑
k=0

qkqm−k+1

)
,

qm+3 =B

( m∑
k=0

pk+1qm−k+2 +

m∑
k=1

pkqm−k+3 +

m∑
k=0

pkqm−k+1 + qm

+ qm+2 + qm+1 +

m∑
k=0

qkpm−k+1

)
,

for m = 1, 2, 3, ... . Then, it can be easily seen that |am| ≤ |pm|, |bm| ≤ |qm|, for
m = 0, 1, 2, ... Therefore, the series µ = P (r) =

∑∞
m=0 pmr

m and ν = Q(r) =∑∞
m=0 qmr

m are the majorant series of (3.1).

Math. Model. Anal., 27(1):101–116, 2022.
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Now, it remains to show that these series (3.5) have a positive radius of
convergence. It can be calculated that

P (r) = p0 + p1r + p2r
2 + p3r

3 +

∞∑
m=1

pm+3r
m+3

= p0 + p1r + p2r
2 + p3r

3 +A
( ∞∑
m=1

m∑
k=0

pkpm−k+1r
m+3 +

∞∑
m=1

pmr
m+3

+

∞∑
m=1

m∑
k=1

pkpm−k+3r
m+3 +

∞∑
m=1

pm+2r
m+3 +

∞∑
m=1

m∑
k=0

pk+1pm−k+2r
m+3

+

∞∑
m=1

pm+1r
m+3+

∞∑
m=1

m∑
k=0

qk+1qm−k+2r
m+3+

∞∑
m=1

m∑
k=0

qkqm−k+1r
m+3

)
= p0 + p1r + p2r

2 + p3r
3 +A

(
2P 2 − 2p0P +Q2 − q0Q

+ (P − p0 − 2p0p1 − q0q1)r + (P 2 + P − p20 − p0 − p1 +Q2 − q20)r2

+ (−q21 − q0q2 − 2p0p2 − 2p21 − 4p0p3 − 4p1p2)r2

+ (P−p0+2p0p3−2p0p1−p1−p2 − 2q0q3 − 2q1q2 − q0q3 − 2q0q1)r3
)
,

and

Q(r) = q0 + q1r + q2r
2 + q3r

3 +

∞∑
m=1

qm+3r
m+3

= q0 + q1r + q2r
2 + q3r

3 +B

( ∞∑
m=1

m∑
k=0

pk+1qm−k+2r
m+3

+

∞∑
m=1

m∑
k=0

pkqm−k+1r
m+3+

∞∑
m=1

qm+2r
m+3 +

∞∑
m=1

qm+1r
m+3

+

∞∑
m=1

m∑
k=0

qkpm−k+1r
m+3+

∞∑
m=1

m∑
k=1

pkqm−k+3r
m+3 +

∞∑
m=1

qmr
m+3

)
= q0 + q1r + q2r

2 + q3r
3 +B

(
2PQ− 2p0Q+ (Q− q0 − 2p1q0)r

+ (2PQ+Q− q0 − q1 − 2q0p2 − 2p1q1 − 2p0q0)r2

+ (Q− q0 − q1 − q2 − 2p0q1 − 2q1p2 − 2q0p3 − 2q2p1 − 2p1q0)r3
)
.

Now, considering the implicit functional equations in the form of independent
variable r as

F (r, µ, ν) = µ− p0 − p1r − p2r2 − p3r3 −A
(

2µ2 − 2p0µ+ ν2 − q0ν

+ (µ− p0 − 2p0p1 − q0q1)r +
(
µ2 + µ− p20 − p0 − p1 + ν2 − q20

− q21 − q0q2 − 2p0p2 − 2p21 − 4p0p3 − 4p1p2

)
r2 + (−p0 + 2p0p3)r3
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+ (µ− 2p0p1 − p1 − p2 − 2q0q3 − 2q1q2 − q0q3 − 2q0q1)r3
)
,

G(r, µ, ν) = ν − q0 − q1r − q2r2 − q3r3 −B
(

2PQ− 2p0Q+ (Q− q0 − 2p1q0)r

+ (2PQ+Q− q0 − q1 − 2q0p2 − 2p1q1 − 2p0q0)r2

+ (Q− q0 − q1 − q2 − 2p0q1 − 2q1p2 − 2q0p3 − 2q2p1 − 2p1q0)r3
)
.

Since F (r, µ, ν) and G(r, µ, ν) are analytic in the neighborhood of (0, p0, q0)
and F (0, p0, q0) = 0, G(0, p0, q0) = 0. Furthermore, the Jacobian determinant

J =
∂(F,G)

∂(µ, ν)
= 1− 2Ap0 − 2ABq20 6= 0,

if the parameters p0 = |a0| and q0 = |b0| are chosen suitably. By the implicit
function theorem [20], it can be seen that µ = P (r) and ν = Q(r) are analytic
in a neighborhood of point (0, p0, q0). This shows that both the power series
(3.1) converge in a neighborhood of point (0, p0, q0). This completes the proof.
Thus, the exact analytic power series solution of generalised weakly dissipative
mDGH2 system (1.4) can be written as

u(x, t) = a0 + a1(x− εt) + a2(x− εt)2 +
1

6α2(a0σ − ε)− 6β

×
(
λa0 + (c0 − ε+ 3a0 − a0γ)a1 + 2b1b2γ − 2α2a2(λ+ 2a1σ)

)
× (x− εt)3 +

∞∑
m=1

am+3(x− εt)m+3,

w(x, t) = b0+b1(x−εt)+b2(x−εt)2+ ((a0 − ε)b1 − 2(λ+a1)b2+(λ+ a1)b0)

× (x− εt)3

6(a0 − ε)
+

∞∑
m=1

bm+3(x− εt)m+3, (3.6)

where am+3 and bm+3 are given by recurrence relation (3.4).

3.2 Travelling wave solutions

In order to obtain travelling wave solutions [9] of the weakly dissipative mDGH2
system (1.4), the different particular values of parameters of ODE system (2.2)
are considered.

3.2.1 α = ±1
3
, c0 = −9β, σ = 1

For α = ± 1
3 , c0 = −9β, σ = 1 and keeping all other parameters same, the

ODE system (2.2) reduces to

(ε+9β−g)g′′′−(2g′+λ)g′′ + 9(3g − 9β − ε)g′ + 9λg + 9γ(h′′ − h)h′ = 0,

(ε− g)h′′′ − (λ+ g′)h′′ + (g − ε)h′ + (g′ + λ)h = 0.
(3.7)

Equation (3.7) possesses travelling wave solutions as

(i) g(r) = C3ι sinh(r)(4 cosh2(r)− 1), h(r) = C4 cosh(r),

(ii) g(r) = C7e
±3r+3C6 , h(r) = C5e

±r+C6 ,

Math. Model. Anal., 27(1):101–116, 2022.
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where ι represents an imaginary number, C3, C4, C5, C6 and C7 are arbitrary
constants. Thus, the travelling wave solutions of the mDGH2 system (1.4) are

(i) u(x, t) = C3ι sinh(x− εt)(4 cosh2(x− εt)− 1),

w(x, t) = C4 cosh(x− εt),
(ii) u(x, t) = C7e

±3(x−εt)+3C6 , w(x, t) = C5e
±(x−εt)+C6 .

(3.8)

3.2.2 α = ±1, β = −c0, σ = 1

For α = ±1, β = −c0, σ = 1 and keeping all other parameters same, the ODE
system (2.2) reduces to

(ε− c0 − g)g′′′ − (2g′ + λ)g′′ + (3g + c0 − ε)g′ + λg + γ(h′′ − h)h′ = 0,

(ε− g)h′′′ − (λ+ g′)h′′ + (g − ε)h′ + (g′ + λ)h = 0.
(3.9)

Equation (3.9) possesses travelling wave solutions as

(i) g(r) = C3 cosh3
(r

3

)
− 3

4
C3 cosh

(r
3

)
,

h(r) = C4ι sinh
(
±r

3

)(
4 cosh2

(r
3

)
− 1
)
,

(ii) g(r) = C6 sinh3

(
±1

3
r + C7

)
+

3

4
C6 sinh

(
±1

3
r + C7

)
,

h(r) = C5 sinh3

(
±1

3
r + C7

)
+

3

4
C5 sinh

(
±1

3
r + C7

)
,

where C3, C4, C5, C6 and C7 are arbitrary constants. Thus, the travelling wave
solutions of the mDGH2 system (1.4) are

(i) u(x, t) = C3 cosh3

(
x− εt

3

)
− 3

4
C3 cosh

(
x− εt

3

)
,

w(x, t) = C4ι sinh

(
± (x− εt)

3

)(
4 cosh2

(
x− εt

3

)
− 1

)
,

(ii) u(x, t)=C6 sinh3
(
± (x−εt)

3
+C7

)
+

3

4
C6 sinh

(
± 1

3
(x−εt)+C7

)
,

w(x, t)=C5 sinh3
(
± (x−εt)

3
+C7

)
+

3

4
C5 sinh

(
± 1

3
(x−εt)+C7

)
.

(3.10)

3.2.3 α = ±3
2
, β = −9

4
c0, σ = 1

For α = ± 3
2 , β = − 9

4c0, σ = 1 and keeping all other parameters same, the
ODE system (2.2) reduces to

9

4
(ε− c0 − g)g′′′ − 9

4
(2g′ + λ)g′′ + (3g + c0 − ε)g′ + λg + γ(h′′ − h)h′ = 0,

(ε− g)h′′′ − (λ+ g′)h′′ + (g − ε)h′ + (g′ + λ)h = 0.

(3.11)
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Equation (3.11) possesses travelling wave solutions as

g(r) = C3 sinh2

(
±1

3
r + C2

)
+

1

2
C3,

h(r) = C4 sinh3

(
±1

3
r + C2

)
+

3

4
C4 sinh

(
±1

3
r + C2

)
,

where C2, C3 and C4 are arbitrary constants. Thus, the travelling wave solu-
tions of the mDGH2 system (1.4) are

u(x, t) = C3 sinh2

(
±1

3
(x− εt) + C2

)
+

1

2
C3,

w(x, t) = C4 sinh3

(
± (x− εt)

3
+ C2

)
+

3

4
C4 sinh

(
± (x− εt)

3
+ C2

)
.

(3.12)

3.2.4 α = ±3, β = −9c0, σ = 1

For α = ±3, β = −9c0, σ = 1 and keeping all other parameters same, the
ODE system (2.2) reduces to

9(ε− c0 − g)g′′′ − 9(2g′ + λ)g′′ + (3g + c0 − ε)g′ + λg + γ(h′′ − h)h′ = 0,

(ε− g)h′′′ − (λ+ g′)h′′ + (g − ε)h′ + (g′ + λ)h = 0.

(3.13)

Equation (3.13) possesses travelling wave solutions as

g(r) = C3 cosh

(
±1

3
r + C2

)
,

h(r) = C4 cosh3

(
±1

3
r + C2

)
− 3

4
C4 cosh

(
±1

3
r + C2

)
,

where C2, C3 and C4 are arbitrary constants. Thus, the travelling wave solu-
tions of the mDGH2 system (1.4) are

u(x, t) = C3 cosh

(
±1

3
(x− εt) + C2

)
,

w(x, t) = C4 cosh3

(
± (x− εt)

3
+ C2

)
− 3

4
C4 cosh

(
± (x− εt)

3
+ C2

)
.

(3.14)

4 Conservation laws

In this part, the local conservation laws [10] of generalised weakly dissipative
mDGH2 system (1.4) are obtained by using the multiplier approach [17, 18].
Consider the multipliers of the form

Λ(x, t, u, w, ux, wx, uxx, wxx), quadψ(x, t, u, w, ux, wx, uxx, wxx).

Math. Model. Anal., 27(1):101–116, 2022.
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The simplified determining equations to be solved are

Λt = − 1

γ
((uψw − γΛ)λ) , Λu = −ψw

γ
, ψt = ψwλw + λψ, ψww = 0,

Λuxx
= 0, Λx = 0, Λux

= 0, Λwxx
= 0, Λw = 0, Λwx

= 0,

ψuxx
= 0, ψx = 0, ψux

= 0, ψwxx
= 0, ψu = 0, ψwx

= 0. (4.1)

The solution of above determining equations (4.1) yields three multipliers as

Λ(1) = −u
γ
e2λt, ψ(1) = we2λt, Λ(2) = 0, ψ(2) = eλt,

Λ(3) = eλt, ψ(3) = 0. (4.2)

Thus, the conserved fluxes in accordance to each multiplier (4.2) are

T
(1)
t =

e2λt

2γ

(
−u2 + α2uuxx + γw2 − γwwxx

)
,

T (1)
x =

e2λt

2γ

(
α2σ(2u2uxx + uuxt − utux) + β(u2x − 2uuxx − u2(c0 + 2u))

+ γ(2uw2 − 2uwwxx + wxwt − wwxt)
)
,

T
(2)
t = eλt(w − wxx), T (2)

x = ueλt(w − wxx), T
(3)
t = eλt(u− α2uxx),

T (3)
x = −e

λt

2

(
α2σ(2uuxx + u2x) + γ(w2 − w2

x)− 2βuxx − u(2c0 + 3u)
)
.

5 Discussion

The solution (3.12) contains arbitrary constants C2, C3, C4, ε which lead to
many possible solutions. The graphical representations are shown by consider-
ing a possibility of these constants.

Figure 1. 3D plot of u(x, t) of solution (3.12) by considering
C2 = 0, C3 = 1, C4 = − 1

5
, ε = 1

10
and positive sign for angle.

Figures 1 and 2 depict the 3D graphs of solution (3.12) of (1.4) by consider-
ing C2 = 0, C3 = 1, C4 = − 1

5 , ε = 1
10 and positive sign for angle. The solution
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Figure 2. 3D plot of w(x, t) of solution (3.12) by considering
C2 = 0, C3 = 1, C4 = − 1

5
, ε = 1

10
and positive sign for angle.

(3.14) also contains arbitrary constants C2, C3, C4, ε leading to infinite possible
solutions. The graphical representations are shown by considering a possibility
of these constants. Figures 3 and 4 depict the 3D graphs of solution (3.14) of
(1.4) by considering C2 = 0, C3 = −13, C4 = 1, ε = 1

100 and positive sign for
angle. The relation of solutions u(x, t) and w(x, t) can also be observed from

Figure 3. 3D plot of u(x, t) of solution (3.14) by considering
C2 = 0, C3 = −13, C4 = 1, ε = 1

100
and positive sign for angle.

their combined 3D plot as in Figure 5. The overlapping and non-overlapping
parts, the smoothness, non-singural regions of u(x, t) and w(x, t) can be exam-
ined easily, due to their different shading. The lining shade is used for u(x, t)
while plain shade is used for w(x, t). Figure 5 represents combined solution
(3.14) by considering C2 = 0, C3 = 10, C4 = − 1

12 , ε = 1
50 and positive sign for

angle. For w(x, t) = 0, λ = 0, σ = 1, the solutions (3.6), (3.8), (3.10), (3.12),
(3.14), are the new solutions of the DGH equation considered by Gupta and
Anupma [9].

For w(x, t) = 0, α = σ = 1, β = −c0, the solutions (3.6), (3.10), are the new
solutions of the dissipative DGH equation considered by Wei and Wang [24].

Math. Model. Anal., 27(1):101–116, 2022.
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Figure 4. 3D plot of w(x, t) of solution (3.14) by considering C2 = 0, C3 = −13, C4 = 1,
ε = 1

100
and positive sign for angle.

Figure 5. 3D plot of combined solution (3.14) by considering C2 = 0, C3 = 10,
C4 = − 1

12
, ε = 1

50
, positive sign for angle. Here, lining shade is used for u(x, t) (upper)

while plain shade is used for w(x, t) (lower).

6 Conclusions

In this work, the Lie symmetry analysis of the generalised weakly dissipative
modified two-component Dullin-Gottwald-Holm system has been performed.
This system has been reduced to a system of ODEs by using the classical
symmetries. Using symmetry reduction, the exact solutions of this system
have been obtained in the form of power series (3.6) and other exact solutions
in the form of hyperbolic and trigonometric functions (3.8),(3.10),(3.12),(3.14).
The periodic solutions of this system has been found for the first time, to the
best of author’s knowledge. Also using multiplier approach, the conservation
laws have been obtained. The 3D graphical representations have also been
shown for obtained solutions.
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